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Slope selection in unstable multilayer growth in 1 + 1 dimensions: Step flow models
with downward funneling
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We study analytically and numerically aspects of the dynamics of slope selection for one-dimensional models
describing the motion of line defects, steps, in homoepitaxial crystal growth. The kinetic processes include
diffusion of adsorbed atoms (adatoms) on terraces, attachment and detachment of atoms at steps with large yet
finite, positive Ehrlich-Schwoebel step-edge barriers, material deposition on the surface from above, and the
mechanism of downward funneling (DF) via a phenomenological parameter. In this context, we account for the
influence of boundary conditions at extremal steps on the dynamics of slope selection. Furthermore, we consider
the effect of repulsive, nearest-neighbor force-dipole step-step interactions. For geometries with straight steps,
we carry out numerical simulations of step flow, which demonstrate that slope selection eventually occurs. We
apply perturbation theory to characterize time-periodic solutions of step flow for slope-selected profiles. By
this method, we show how a simplified step flow theory with constant probabilities for the motion of deposited
atoms can serve as an effective model of slope selection in the presence of DF. Our analytical findings compare
favorably to step simulations.
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I. INTRODUCTION

Epitaxial growth comprises kinetic processes and thermo-
dynamic effects that contribute to the formation and evolu-
tion of thin films and nanostructures on crystal surfaces. To
predict the evolving crystal surface morphology under growth
conditions, it is imperative to develop reliable models for the
underlying out-of-equilibrium dynamics, from the atomistic
scale to the continuum [1,2]. This goal gives rise to a hierarchy
of kinetic models, which include atomistic descriptions such
as kinetic Monte Carlo (KMC) algorithms, mesoscale theories
which aim to capture the motion of line defects (steps) at the
nanoscale [3,4], and continuum models which may emerge
from the coarse graining of individual atoms or atomic layers
at larger scales [5–7].

In homoepitaxial growth, in particular, the material de-
posited on the surface takes on the crystalline orientation
of the substrate. An aspect of homoepitaxy that has been
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the subject of intensive studies is the evolution of mounds
during unstable growth. In situations of experimental interest,
islands successively nucleate on top of other islands and can
ultimately form a crystalline mound. It is well known that this
surface instability is driven by kinetic mechanisms such as
the Ehrlich-Schwoebel (ES) effect, which signifies the energy
barrier inhibiting transport of adsorbed atoms (adatoms) be-
tween atomic layers [4,8,9].

With this paper, our goal is to describe how kinetic and
thermodynamic ingredients of step flow may affect the long-
time surface profiles in slope selection. We use a step flow
model with an ad hoc downward funneling (DF) mechanism,
by which atoms landing on the surface from above are in-
corporated to the lower step edge and, thus, create a lateral
downhill current that favors slope selection [10–12]. In our
formulation, the DF mechanism is assumed to be present, and
is introduced into the model through a phenomenological pa-
rameter. This modeling of DF is adopted from Refs. [13–16],
but is combined with additional step flow ingredients. We
observe and study the dynamical appearance of slope selec-
tion numerically. By assuming that slope selection ultimately
occurs, we analytically describe properties of the final slope
selected profile.
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The DF mechanism has been the subject of a series of
investigations, which usually (albeit not always) invoke KMC
simulations or continuum models. Here, we adopt a mesoscale
perspective. By using a perturbation technique for step flow
equations, we analyze the joint effect on slope-selected pro-
files of the following mechanisms: DF, finite but large ES
barriers, and force-dipole step-step interactions in one spatial
dimension (1D), when the step edges are straight. In our
analysis, we use a semi-infinite step train.

Before we proceed to the specifics of our approach, let us
review slope selection and the DF mechanism in homoepi-
taxial growth. First, consider the effect of the ES barrier in
the absence of DF. In principle, the ES barrier can reduce the
likelihood that an atom deposited on an island will move to the
lower layer (step) and attach to the same island. This effect
alone would result in a lateral uphill current on the growing
mound. This current can in turn cause accumulation of mate-
rial near the top of the mound, thus facilitating the nucleation
of islands. Consequently, at long enough times, the surface as
a whole would coarsen as neighboring islands would encroach
upon one another. If this phenomenon occurred, the lower is-
lands would grow more slowly. As a result, the boundaries be-
tween islands, which are steps, would bunch together. Hence,
the mound would become progressively more steep, eventu-
ally forming a single large step bunch, with an interstep spac-
ing comparable to the size of a critical nucleus. Such a steep-
ening process may also be driven by effects other than an ES
barrier, e.g., long-range attractive step-step interactions [17].

However, experimental observations have indicated that
the spacing between steps in growing mounds often remains
significantly larger than the radius of the critical nucleus, even
when the ES barrier is large compared to the Boltzmann en-
ergy, kBT ; see, e.g., Refs. [18–20]. These observations suggest
that there exists a downhill current that causes the mound
slope to stabilize over time and eventually tends to slightly
fluctuate around an equilibrium value. This stabilization signi-
fies slope selection. To account systematically for the requisite
downhill current, one can explicitly add a corresponding
kinetic mechanism such as DF to models of surface dynamics
at the atomistic, mesoscopic, or macroscopic scale. Our work
here elaborates on aspects of this theme by exploiting the
dynamical character of step flow models.

We remark that although slope selection critically depends
on a kinetic mechanism for downhill current, the origin of
this current is not necessarily DF. For example, it has been
shown that a combination of short-range attractive step-step
interactions and long-range repulsive step-step interactions
may drive a relaxing vicinal surface toward forming an array
of step bunches [21,22]. In this situation, the step spacing and
number of steps in each bunch is determined by the relative
strengths of the two types of interactions. This behavior within
a bunch may be recognized as a form of slope selection,
caused by the balance between attractive forces between steps
within a bunch and repulsive forces between distinct bunches.

A close look at the existing, extensive literature on
slope selection indicates the variety of models, approaches,
and results. It is impossible to exhaustively list the re-
lated bibliography here. A significant portion of these works
seeks atomistic descriptions of the system via KMC simu-
lations, by which the atom hopping on the crystal surface is

suitably modeled so as to kinetically favor a downhill current
on mounds [10,13,23,24]. Some of these works invoke an
atomistic model with a transient mobility with a search region
whose linear size is prescribed as an input parameter of the
KMC simulations (see, e.g., the broad review in Ref. [25]). In
juxtaposition to this approach, one should place phenomeno-
logical continuum-scale models for slope selection, which
rely on the use of fourth- or sixth-order partial differential
equations for the evolving surface height; see, e.g., [26–31].
These evolution equations usually have the structure of gradi-
ent descent of a slope-dependent energy, and allow for slope
selection via coarsening dynamics. Computations by use of
KMC simulations and continuum theories for mounds lie
beyond our present scope.

A third, less developed approach to slope selection invokes
the motion of steps [13–16]. In this view, the slope is deter-
mined by the widths of terraces that bound steps, and slope
selection means that these widths asymptotically approach
certain values. Generally speaking, the main ingredients of
step flow models are [3,32] (i) a step velocity law through
mass conservation, (ii) the diffusion of adatoms on terraces
between steps, and (iii) the attachment and detachment of
atoms at steps, expressed by suitable boundary conditions
for the adatom density at step edges. Furthermore, the elastic
force-dipole step-step interactions can in principle be incorpo-
rated into the underlying step energy [33,34]. This framework
is mesoscopic in the sense that it retains features of both the
atomistic and the continuum scale: the diffusion of adatoms
in the lateral direction is continuous yet atomistic discreteness
is kept in the vertical direction. The kinetic parameters of step
flow depend on energy barriers in correspondence to atomistic
dynamics.

In this paper, we use a step flow model with DF in order
to analyze dynamical aspects of slope selection in 1D. We
choose to incorporate DF in step flow via a phenomeno-
logical parameter, the prescribed length LDF, in the spirit
of Refs. [13–16]. From an atomistic view, LDF plausibly
measures the order of magnitude of the linear size of the
search region used in KMC simulations with a transient
mobility, along the lines discussed in [25]. However, there
is no derivation of this form of the DF mechanism in the
mesoscale picture from atomistic dynamics at this point.

In our step flow model, the DF mechanism modifies the
usual diffusion process of adatoms through the requirement
that deposition on the surface from above occurs nonuni-
formly on each terrace: atoms that would otherwise be de-
posited from above on the upper terrace and close enough to
a step edge are now directly incorporated into the lower step
edge (rather than allowed to land on the upper terrace). This
effect results in a downward mass current. In our formulation,
the basic ingredients of step motion, namely, mass conser-
vation, terrace diffusion, and attachment and detachment,
remain essentially intact. In addition, our model accounts
for nearest-neighbor, force-dipole step-step interactions. Most
importantly, we also include the creation and annihilation
of extremal steps via respective boundary conditions. These
small-scale events driven by the assumed DF (through the
parameter LDF) form a key ingredient of our formulation,
since they lead to slope selection at the macroscopic scale.
This slope selection is verified by our numerics.
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Our approach results in a nonlinear system of ordinary
differential equations (ODEs) for the step positions, which
are subject to the step creation and annihilation conditions
mentioned above. The dynamical properties of the respective
solutions are the focus of our investigation. To enable tangible
predictions without losing sight of the key physical mecha-
nisms, we apply perturbation theory by treating nonlinearities
in these ODEs as sufficiently small. In this vein, we properly
derive and solve a linear system which provides the zeroth-
order solution of our perturbative scheme, expecting that
corrections are sufficiently small. This view turns out to be
compatible with our step simulations.

It is worthwhile to compare this mesoscale description
to other works in slope selection, in an effort to further
motivate our present choice of models. We note a few ma-
jor advantages of the mesoscale perspective, beginning with
macroscale models. In our physical setting, perhaps the most
important advantage is the ability to explicitly incorporate
discrete dynamical processes, including step annihilations and
creations. Such processes can in principle be included in a
macroscale model, but in practice they are often neglected
or suppressed, for example by using periodic boundary con-
ditions (e.g., Refs. [30,31]). In the present paper, we show
that such processes can be key ingredients of slope selection.
In particular, if we modify our model only by removing all
special behavior at extremal steps, we find that no particular
slope is selected; instead, all surface profiles with constant
terrace widths are steady states.

We can point to advantages of our approach in comparison
to atomistic models as well. As we see in this paper, the use
of a mesoscale model allows us to obtain analytical insight
through perturbative techniques. In addition, the combination
of DF with elastic force-dipole step-step interactions is absent
in past works, despite the fact that the latter are expected to be
present in a wide variety of physical settings. Hence, our work
forms an extension of the interaction-free step flow models
formulated in Refs. [13–16]. We venture to add that it is in
principle computationally demanding to include the effect of
elastic interactions in KMC simulations.

In a more technical language, in this paper we explicitly
characterize the saturation surface profile a la Schinzer [13].
This profile expresses a configuration of step positions that is
reproduced upon deposition of one monolayer (ML) of atoms.
Aspects of the dynamics of the saturation profile are also stud-
ied in Refs. [14–16]. In these works, the analysis addresses the
somewhat idealized case in which the ES barrier is infinite,
and step-step interactions are absent. Here, we aim to extend
these results to the case where the ES barrier is large but finite,
and step-step interactions influence the equilibrium adatom
density at step edges. A distinctive ingredient of our analysis
is the use of perturbations to extract an approximate solution
to a system of equations that demonstrate weak nonlinear cou-
plings. We explicitly solve a truncated hierarchy of the result-
ing linear equations for a semi-infinite step train. The underly-
ing notion of perturbation will be made precise in our analysis.

We start from an idealized, linear step flow model that uses
constant probabilities for any atom deposited on a terrace to
move to the lower or upper step edge. Then, we analyze a
nonlinear step model with irreversible growth, i.e., when the
equilibrium density of adatoms at the step edges is negligibly

small. Notably, we analytically demonstrate in what sense the
former, simplified model can be viewed as an effective theory
for the latter model in the kinetic regime of a sufficiently small
DF effect.

Our approach leaves a few open questions. For instance,
since we make use of a semi-infinite 1D mound in our analy-
sis, we fail to include any explicit condition for the nucleation
of atomic layers. This choice is considered as physically
reasonable given the dimensionality of the problem. Even in a
1D finite mound (which is considered, e.g., in Refs. [14–16],
and used in our step simulations here), one cannot formulate
realistic conditions for nucleation of atomic layers. In a sim-
ilar vein, we do not address the computations of roughening
and coarsening exponents that characterize epitaxial growth
in the presence of DF. (Recently, this aspect was reexamined
via KMC simulations [25].) Although our goal is to describe
a dynamical steady state, we leave unexplored any questions
about the transient dynamics leading to this state. The issue
of transient dynamics is closely related to the aforementioned
question about nucleation, because the approach of a system
to a steady state in the present setting with a mound in ho-
moepitaxy is driven by the competition between the creation
and annihilation of steps.

The remainder of the paper is organized as follows. In
Sec. II, we formulate the relevant step flow models. In Sec. III,
we consider a simplified version of the step flow model
involving constant probabilities for atom kinetics, and extract
information about the saturation profile by using perturba-
tion theory. Our analysis partly makes use of the method of
generating function in order to solve the (discrete) difference
scheme for step positions. In Sec. IV, we treat irreversible
growth by constructing a perturbative hierarchy and compare
the results to step simulations. In Sec. V, we study the
reversible case of the step flow model by including the joint
effect of DF and step-step interactions. In Sec. VI, we discuss
closely related problems such as the setting of radial geometry
and aspects of a fully continuum theory. Finally, Sec. VII
concludes our paper with an overview of the results.

II. 1D STEP FLOW MODEL: FORMULATION

In this section, we review the basic elements of step flow
which permeate the Burton, Cabrera, and Frank (BCF) model
[32]. Furthermore, we describe an extension of this model
that directly incorporates the DF mechanism [14–16,35]. The
geometry consists of a monotone step train with ascending
steps of atomic height a in the x direction, as shown in
Fig. 1. (A similar figure appears in [14]; see their Fig. 1.)
The steps have positions xn with x0 = 0, and the nth terrace
is the region defined by xn < x < xn+1. The step positions are
time dependent, viz., xn = xn(t ), with prescribed initial values
xn(0) (t � 0). The steps are considered to advance when they
move from right to left and retreat otherwise (see Fig. 1).
In our analysis, we consider a semi-infinite step train, where
n = 0, 1, . . .. Note, however, that in our step simulations
(Sec. IV C), the step train is taken to be finite.

A. Diffusion processes and step-step interactions

An ingredient of the BCF model is the continuous diffusion
of adatoms. Let cn(x, t ) denote the density of adatoms in the
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FIG. 1. Schematic of step geometry with DF [14]. The nth step
has microscale height a and position xn with x0 = 0, and the nth
terrace is the region xn < x < xn+1 (n = 0, 1, . . .). Each pair of red,
vertical, dashed lines indicates the DF-affected part, of length LDF,
for every terrace. Dashed crooked lines ending in wide arrows indi-
cate adatom attachment by DF. Dashed straight lines ending in pairs
of arrows indicate terrace diffusion. Atoms deposited onto the bottom
terrace (0 < x < x1) diffuse to the right, toward the (ascending) step
at x = x1.

nth terrace. This cn(x, t ) satisfies the equation

∂cn

∂t
= F + D

∂2cn

∂x2
− τ−1cn, xn < x < xn+1, (1)

where D is the terrace diffusivity, F expresses the deposition
flux, and τ−1 is the evaporation rate. We assume that F is
a constant. To simplify the analysis, we neglect evaporation,
thus setting τ−1cn = 0.

Second, Eq. (1) needs boundary conditions which account
for the attachment and detachment of atoms at step edges.
These processes are modeled by the kinetic relation [36,37]

±∂c j

∂x

∣∣∣∣
x=x±

n

= 1

L∓

[
c j (x

±
n , t ) − ceq

n

]

± 1

Lp
[cn(x+

n , t ) − cn−1(x−
n , t )], (2)

on the right (+), with j = n, or left (−), with j = n − 1, of the
nth step (see Fig. 1). Here, we define the length L± = D/k±
where k± are kinetic parameters for the exchange of atoms
with the ascending (+) or descending (−) step, according to
the ES effect [8,9]; for a positive ES barrier, we have k+ > k−
and, thus, L+ < L−. Analogously, we define the length Lp =
D/kp where kp is a kinetic parameter for step permeability; by
this mechanism, atoms can hop directly over the step from
one terrace to another [37]. Finally, ceq

n is the equilibrium
adatom density at the nth step. Note that when attachment is
irreversible, we have ceq

n � 0; by slightly abusing terminology,
we will occasionally refer to this situation as irreversible step
flow. Within the present study, we neglect step permeability,
taking Lp → ∞.

Equations (1) and (2) must be supplemented with the step
velocity law. Mass conservation dictates that

dxn

dt
= −Da

(
∂cn

∂x
− ∂cn−1

∂x

)∣∣∣∣
x=xn

, (3)

where −D(∂cn/∂x) is the adatom flux on the nth terrace and
a is the lattice spacing. In Eq. (3), ∂cn/∂x is evaluated on the

right (x = x+
n ) and ∂cn−1/∂x is evaluated on the left (x = x−

n )
of the nth step.

It remains to describe the equilibrium adatom concentra-
tion, ceq

n , at the nth step; cf. Eq. (2). This quantity may in
principle account for thermodynamic effects in the step con-
figuration, including elastic force-dipole as well as entropic
step-step interactions. Such effects are captured by the total
step energy, Est, which depends on the step positions, xn. By
invoking the Gibbs-Thomson relation [3], we write

ceq
n = ceq exp

(
μn

kBT

)
. (4a)

In the above, μn is the nth step chemical potential, a thermo-
dynamic force given by the variation of Est [2,3], viz.,

μn = −∂Est

∂xn
(for fixed t > 0). (4b)

By invoking a widely used model for energy functional
Est ({xn}n�0) [2,3], we take

Est = g
∑

n

(xn+1 − xn)−2, (4c)

where g is the interaction strength. Notably, Eq. (4c) accounts
for entropic and force-dipole elastic step-step interactions in
1D. By considering these interactions as repulsive, we assume
g > 0. The parameter g is computed to be [3]

g = (πkBT )2

24a3β̃

⎡
⎣1 +

√
1 + 4Aβ̃

(kBT )2

⎤
⎦

2

,

where β̃ is the step stiffness and A expresses the purely elastic
contribution to the energy of a single step. Equation (4c) can
be modified to include long-range elastic step interactions
as well as interactions mediated by electronic surface states.
Such extensions for Est lie beyond our present scope.

B. Modifications: DF and step annihilation

Next, we incorporate DF into the nanoscale step model.

1. Diffusion with DF on terraces

By the DF mechanism, atoms deposited from above onto
the region xn < x < xn + LDF of the nth terrace are funneled
downward and are directly incorporated into the step edge, at
x = xn, instead of diffusing on the surface; see Fig. 1. The
length scale, LDF, for this process is introduced phenomeno-
logically [13–16].

The diffusion equation takes the form (with τ−1cn = 0)

∂cn

∂t
= Fn(x) + D

∂2cn

∂x2
, (5a)

where

Fn(x) =
{

F, if xn + LDF < x < xn+1,

0, if xn < x < xn + LDF.
(5b)

This modification is included only for n > 0. No DF occurs
from the bottom terrace. Thus, the diffusion equation for c0

is left unaltered; cf. Eq. (1) with τ−1c0 = 0. Additionally, the
top terrace has the right end point x = Ltot , which forms the
right end point of the domain because the top terrace has
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no ascending step. This point x = Ltot is given by the initial
condition, and it remains intact by the dynamics.

Taking into account mass conservation, the (modified)
velocity law for the nth step reads

dxn

dt
= −Da

(
∂cn

∂x
− ∂cn−1

∂x

)∣∣∣∣
x=xn

−FaLDF. (6)

Note that boundary condition (2) provides the requisite fluxes
∂cn
∂x at all boundaries except for x = 0 and x = Ltot (which are

not step edges). At each of these boundaries, we impose a
no-flux condition, viz.,

∂c0

∂x

∣∣∣∣
x=0

= 0,
∂cN

∂x

∣∣∣∣
x=Ltot

= 0.

Because the deposition (source) terms Fn(x) have jump dis-
continuities, we also need to impose boundary conditions at
the points x̄n = xn + LDF, inside each terrace (n = 1, 2, . . .);
cf. Fig. 1. These conditions dictate the continuity of the
adatom density and flux at the point x̄n, viz.,

cn(x̄−
n ) = cn(x̄+

n ), (7a)

∂cn

∂x

∣∣∣∣
x̄−

n

= ∂cn

∂x

∣∣∣∣
x̄+

n

. (7b)

By these conditions, adatoms do not accumulate at x̄n.

2. Explicit step velocity law with DF

Next, we use the solution of diffusion equation (5) to
describe in some detail the velocity, dxn/dt , of the nth step.
First, we apply the quasistatic approximation, by which

∂cn

∂t
≈ 0,

in all terraces (n = 0, 1, . . .). Thus, the adatom diffusion
equation can be solved explicitly on each terrace in simple
form.

Consequently, step velocity law (6) is written as

dxn

dt
= −a

(
Jdep

n + J int
n

)
. (8a)

In the above, Jdep
n and J int

n denote the mass fluxes due to
the external material deposition and the differences in the
chemical potentials of neighboring steps, respectively. For all
steps other than the bottom step x1 and the top step xN , we
have

J int
n = D

ceq
n+1 − ceq

n

(xn+1 − xn) + L+ + L−

+ D
ceq

n−1 − ceq
n

(xn − xn−1) + L+ + L−
, (8b)

Jdep
n = FLDF + F

2

(
1 + L− − L+ + LDF

L+ + L− + xn − xn−1

)

× (xn − xn − 1 − LDF) + F

2

(
1 − L− − L+ + LDF

L+ + L− + xn+1 − xn

)
× (xn+1 − xn − LDF). (8c)

Recall that L± = D/k± where k± are kinetic rates for the atom
detachment (+) or attachment (−) at each step edge [8,9]. On

the bottom terrace, the absence of a lower terrace and the no-
flux condition at x = 0 result in

J int
1 = D

ceq
2 − ceq

1

(x2 − x1) + L+ + L−
, (8d)

Jdep
1 = FLDF + Fx1 + F

2

(
1 − L− − L+ + LDF

L+ + L− + x2 − x1

)
× (x2 − x1 − LDF). (8e)

On the top terrace, the no-flux condition at x = Ltot implies

J int
N = D

ceq
N−1 − ceq

N

(xN − xN−1) + L+ + L−
(8f)

while Jdep
N takes the form of Eq. (8c), with xn+1 replaced

by Ltot. Notably, the sum of the deposition fluxes, Jdep
n , is

not equal to the total deposition flux, FLtot . The difference
between these two quantities is incorporated into the step
creation condition; see Sec. II B 3.

Before proceeding, we point out that large yet finite, posi-
tive ES barriers [8,9] are of particular interest in our treatment;
i.e., we assume that k+ � k−. Accordingly, to simplify the
analysis slightly, we introduce the ES length as

LES = L− − L+ = D

k−
− D

k+
,

and then neglect L+; thus, LES � L− [38]. The treatment of L+
as negligibly small is not essential, but simplifies the model
without loss of the key physics of DF in our setting.

3. Step annihilation and creation

Next, we incorporate the step annihilation and creation
conditions. In the former case, the main idea is to remove
the bottom step, at x = x1, from the system when this step
reaches the origin, x = 0. Explicitly, we introduce the step
annihilation times ti (i = 1, 2, . . .) by the property

lim
t→t−

i

x1(t ) = 0. (9a)

At these times we impose

xn(ti ) = lim
t→t−

i

xn+1(t ). (9b)

Physically, Eq. (9b) may be understood from the point of
view of coarsening of a large number of two-dimensional
(2D) mounds which may be simultaneously present on the
crystal surface. In typical situations of patterned surfaces, the
initial step configuration describes a collection of mounds.
During the subsequent surface evolution, these mounds may
encroach on one another as they tend to coalesce. In this
process, the bases of neighboring mounds touch and possibly
merge. Hence, eventually, the bases locally form a monolayer.
At this stage of evolution, the steps bounding the bases collide
and annihilate. In our geometry of a mound composed of a
monotone step train in 1D, at each step annihilation time the
most recently completed monolayer takes on the role of the
substrate. We choose to use Eq. (9b) to represent a change in
the vertical reference frame upon each step annihilation for
mathematical convenience; cf. Ref. [14].

Let us also describe the step creation condition. In the
setting with a finite mound, used in our step simulations
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(Sec. IV C), our approach is to track the mass deposited onto
the top terrace without being incorporated into the mound
elsewhere in an auxiliary variable, m(t ). This m(t ) satisfies
the initial value problem

dm

dt
= F

2

(
1 + LES + LDF

LES + Ltot − xN

)
(Ltot − xN − LDF), (10a)

m(0) = 0. (10b)

In this context, we introduce the step creation times, si (i =
1, 2, . . .), via the property

lim
t→s−

i

m(t ) = mnuc, (10c)

where mnuc is a phenomenological parameter representing the
size of a critical nucleus. We require that

xN+1(si ) = Ltot − mnuc, (10d)

m(si ) = 0. (10e)

The total mass is conserved according to this step creation
condition. Note that new steps are created more rapidly when
the top terrace is large. The step annihilation and creation
conditions imply that the total number of steps, expressed by
N = N (t ), is a discrete, dynamic variable which decreases by
1 when t = ti and increases by 1 when t = si.

We should comment on limitations of our model. The main
limitation is related to the use of 1D geometries. Equations
(9) become more complicated in the realistic setting of truly
2D geometries. In that case, the annihilation process of two
colliding steps with opposite signs may in principle not oc-
cur simultaneously along the entire steps. This complication
cannot be directly incorporated into our model.

In a similar vein, because of our restriction to 1D geome-
tries, our formulation necessarily makes use of an idealized
mechanism for nucleation. It is not possible to accurately de-
scribe 2D nucleation using a 1D model, even if the nucleation
process is taken to be stochastic. For example, the dependence
of the nucleation rate for an island in 2D on the length of the
boundary cannot be included in our setting.

C. Rescaling and equations of motion for terrace widths

In this section, we express the step flow model in nondi-
mensional form by use of a suitable length scale for DF. This
length enables us to formulate nondimensional equations of
motion for the terrace widths. These equations form the focus
of most of our analysis in this paper.

We elect to rescale all lengths appearing in the problem by
the phenomenological DF length, LDF; see Fig. 1. We make
this choice anticipating that typically the terrace widths are
on the order of LDF. We also rescale time, t , by Fa, where
F is the deposition flux per unit length and a is the lattice
spacing. The effect of the time scaling is that 1 monolayer
(ML) of deposition occurs per unit of rescaled time. In regard
to the notation, we redefine several frequently used variables
as follows:

xn → xn/LDF, Ln → Ln/LDF,

t → Fat, Jn → Jn/(FLDF).

These replacements persist throughout the paper. Upon mak-
ing these substitutions, the nondimensional version of Eq. (8a)
takes the form

dxn

dt
= −(

J int
n + Jdep

n

)
.

We now express J int
n and Jdep

n in their nondimensional form,
in terms of suitable nondimensional variables. We obtain the
following equations for J int

n :

J int
n = 2εs

c̃eq
n+1 − c̃eq

n

1 + 2εs(xn − xn−1)

+ 2εs
c̃eq

n−1 − c̃eq
n

1 + 2εs(xn − xn−1)
, n �= 1, N, (11a)

J int
1 = 2εs

c̃eq
2 − c̃eq

1

1 + 2εs(x2 − x1)
, (11b)

J int
N = 2εs

c̃eq
N−1 − c̃eq

N

1 + 2εs(xN − xN−1)
, (11c)

c̃eq
n = c̃eq exp{−g̃[(xn+1 − xn)−3

+ (xn − xn−1)−3]}, n �= 1, N, (11d)

c̃eq
1 = c̃eq exp{−g̃(x2 − x1)−3}, (11e)

c̃eq
N = c̃eq exp{g̃(xN − xN−1)−3}. (11f)

In the above, we introduce the nondimensional parameters

c̃eq = Dceq

FLDFLES
, (12a)

g̃ = 2g

kBT L2
DF

, (12b)

εs = LDF

2LES
. (12c)

Furthermore, we obtain the following equations for Jdep
n :

Jdep
n = 1 + P+(Ln−1)(Ln−1 − 1) + P−(Ln)(Ln − 1), n > 1,

Jdep
1 = 1 + L0 + P−(L1)(L1 − 1).

Here, we introduce the kinetic probabilities

P−(Ln) = εs
Ln − 1

1 + 2εsLn
, n � 1, (13)

and P+(Ln) = 1 − P−(Ln), which represent the probabilities
for an atom deposited on the nth terrace to move upward (+)
or downward (−). Recall that L0 = x1, Ln = xn+1 − xn for 1 �
n < N and LN = Ltot − xN .

D. Semi-infinite mound

In most of the remainder of this paper, we simplify the
analysis without losing sight of the basic physical mechanisms
by considering a semi-infinite mound (unless we state other-
wise). Hence, the step train extends infinitely to the right (in
the positive x direction) but is terminated at the bottom, on the
left (at x = 0); see Fig. 1. In this configuration, we seek out
the saturation profile [13]. This surface profile amounts to an
arrangement of step positions that is exactly reproduced after
each monolayer of deposition.
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In more technical terms, we address the solution of a
system of differential equations for the terrace widths subject
to the step annihilation condition. In this framework, we seek
out a solution to the combined system that has period equal to
unity, so that the overall mound profile is reproduced upon
each monolayer of deposition. By arbitrarily selecting the
saturation profile to be the one that occurs at the exact moment
of a step annihilation, we can handle the boundary condition
implicitly. Specifically, we require that

x1(1) = 0, (14a)

xn(1) = xn−1(0), n � 1. (14b)

For the time being, we restrict attention to the case with
irreversible growth; thus, we set J int

n = 0 in Eq. (8a). In this
situation, we recast Eq. (8a), which governs the (nondimen-
sional) step positions xn, into the following equations for the
terrace widths, Ln:

dL0

dt
= −L0 − P−(L1)(L1 − 1) − 1, (15a)

dL1

dt
= L0 − [P+(L1) − P−(L1)](L1 − 1) − P−(L2)(L2 − 1),

(15b)

dLn

dt
= P+(Ln−1)(Ln−1 − 1) − [P+(Ln) − P−(Ln)](Ln − 1)

− P−(Ln+1)(Ln+1 − 1), n � 2. (15c)

We expect that, under the assumption that the slope is
selected on a semi-infinite mound, the terrace widths Ln are
asymptotically constant with n, for large enough n. Accord-
ingly, we expect that P−(Ln) will also be nearly constant for
sufficiently large n. This observation suggests that we might
approximate the irreversible step flow model by a simpler
model in which the kinetic probabilities P± depend solely on
εs (but not on Ln). However, the appropriate dependence of
P± on εs relies on the value of the limit of Ln as n → ∞,
which needs to be determined. In Sec. III, we examine this
simplified model, with P± = constant, under the assumption
that P± are prescribed. In Sec. IV, we return to this question
on the dependence of the actual P± on εs.

III. SIMPLIFIED STEP MODEL: CONSTANT P±

In this section, we study an implication for slope selection
of a simplified, linear version of Eqs. (15). In this version, the
probabilities P±(L) are taken to be constants. Our motivation
for this simplification is twofold. First, results from this model
admit a simple physical interpretation. It has been argued that
the behavior of the respective solution retains universal, phys-
ically appealing features of the actual epitaxial system [14].
Second, the model of this section is expected to reasonably
describe the long-time behavior of the (nonlinear) step flow
model in the kinetic regime of a relatively strong ES barrier,
when the ES length is larger than the typical terrace width.
Third, our analysis of the simplified case has elements that
are useful in the treatment of the (more demanding) nonlinear
step system.

The simplified system for the terrace widths reads

dL0

dt
= −L0 − P+ − P−L1, (16a)

dL1

dt
= L0 − L1 + P+ − P−(L0 − 2L1), (16b)

dLn

dt
= Ln−1 − Ln − P−(Ln−1 − 2Ln + Ln+1), n � 2. (16c)

In the above, P± are given constants with P+ + P− = 1. This
model is introduced and studied in Refs. [14–16]. Note that
the DF mechanism only appears explicitly in the evolution
equations for L0(t ) and L1(t ). Recall that the nth terrace width,
Ln, is scaled with length LDF.

Our goal is to characterize the saturation profile emerging
from Eqs. (16). From this characterization, we extract the
limiting value of the surface slope. We treat this problem
by using the notion of the generating function, by which the
linear system of terrace widths is transformed to a complex-
valued function, G. This technique is suitable for the present
linear case, but cannot be directly applied to the nonlinear
step flow, for which a different approach is warranted. This
alternate approach can also be applied to this linear problem.
We defer a discussion of this approach to the Appendix.

The technique based on the generating function has been
used previously in the context of step flow for slope selection
[13,14]. However, these analyses are limited to the case with
P− = 0 [13,14]. In contrast, our approach, despite its pertur-
bative character, ultimately addresses the case for arbitrary
constant P− with 0 � P− < 1/2.

We exploit the property that for P− = 0 the system of
evolution equations for Ln(t ) exhibits a simple triangular
structure. To use this property for P− > 0, we treat the terms
that are proportional to P− as small perturbations. In this
framework, the contribution to the solution for the nth terrace
width, Ln(t ), from a given perturbation order, say, k, in powers
of P− involves only Ln and Ln−1 to order k, and Ln+1 to order
k − 1. Thus, the triangular structure of the system manifests to
arbitrary order, k. This attribute allows for a similar treatment
(as for P− = 0) of the problem with P− > 0 in the perturbation
scheme. By summation of all orders in P−, our results hold for
0 � P− < 1/2.

In more detail, we define the generating function, G, asso-
ciated with the sequence of terrace widths, Ln(t ), by

G(ζ , t ) =
∞∑

n=0

ζ nLn(t ). (17)

In this formula, ζ is complex and subject to the requirement
that the series on the right-hand side converge. By differenti-
ating G(ζ , t ) with respect to time, t , and using Eqs. (16), we
derive the following evolution equation for G(ζ , t ):

∂G

∂t
= (ζ − 1)G(ζ , t ) + (ζ − 1)P+

− P−(ζ − 1)2 G(ζ , t ) − G(0, t )

ζ
, (18a)

with initial condition

G(ζ , 0) = R(ζ ) ≡
∞∑

n=0

Ln(0)ζ n. (18b)
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Recall that our objective is to determine the saturation profile.
Hence, we seek out an R(ζ ) such that the solution to Eq. (18a)
satisfies Ln+1(1) = Ln(0) for n = 0, 1, . . . and L0(1) = 0.
This requirement may be transparently encoded into G by the
statement

G(ζ , 1) = ζR(ζ ). (19)

To reiterate, the function R(ζ ) entering the initial condition
here is part of the solution of the problem. In fact, R(ζ ) is the
generating function of the saturation profile.

A naive approach to solving Eqs. (18) would be to separate
G(ζ , t ) from its value at ζ = 0 on the right-hand side and
integrate forward in time. This procedure yields a relation for
G(ζ , t ) in terms of the unknown R(ζ ) and G(0, t ). However,
the separation of G(ζ , t ) from G(0, t ) creates an artificial
singularity in the formula for G(ζ , t ). The continuity of
G(ζ , t ) as ζ → 0 dictates that this singularity be removable
via imposition of some additional compatibility condition. We
choose not to follow this approach here.

We proceed to find G(ζ , t ) by perturbations, treating the
terms involving P− in the evolution equations as sufficiently
small. To this end, we apply the formal expansion

G(ζ , t ) = P+
∞∑

k=0

Pk
−G(k)(ζ , t ), (20)

where the coefficients, G(k), are considered as independent
of P−, and the factor of P+ is included for later algebraic
convenience. The substitution of the above expansion into
Eq. (18a) entails the following hierarchy:

∂G(0)

∂t
= (ζ − 1)G(0)(ζ , t ) + (ζ − 1), (21a)

∂G(1)

∂t
= (ζ − 1)G(1)(ζ , t ) − (ζ − 1)

− (ζ − 1)2 G(0)(ζ , t ) − G(0)(0, t )

ζ
, (21b)

∂G(k)

∂t
= (ζ − 1)G(k)(ζ , t ) − (ζ − 1)2

× G(k−1)(ζ , t ) − G(k−1)(0, t )

ζ
, k � 2. (21c)

In Eq. (21b), the term −(ζ − 1) arises entirely as a result of
the factor of P+ in Eq. (20).

We now apply initial condition (18b) and periodicity con-
dition (19) through the hierarchy by introducing functions
R(k)(ζ ) as

G(k)(ζ , 0) = R(k)(ζ )

and imposing the requirement

G(k)(ζ , 1) = ζR(k)(ζ ). (22)

Using Eq. (22), hierarchy (21) can be solved recursively.
Integration in time yields

G(0)(ζ , t ) = e(ζ−1)t R(0)(ζ ) + e(ζ−1)t [1 − e(1−ζ )t ], (23a)

G(1)(ζ , t ) = e(ζ−1)t R(1)(ζ ) − e(ζ−1)t [1 − e(1−ζ )t ] − e(ζ−1)t

×(ζ − 1)2

{∫ t

0
e(1−ζ )s G(0)(ζ , s) − G(0)(0, s)

ζ
ds

}
,

(23b)

G(k)(ζ , t ) = e(ζ−1)t R(k)(ζ ) − e(ζ−1)t (ζ − 1)2

×
{∫ t

0
e(1−ζ )s G(k−1)(ζ , s) − G(k−1)(0, s)

ζ
ds

}
,

(23c)

where k � 2 in the last expression. With the dynamics in
place, it remains only to compute the functions R(k)(ζ ) by
using Eq. (22). This procedure yields

R(0)(ζ ) = eζ−1

ζ − eζ−1
(1 − e1−ζ ), (24a)

R(1)(ζ ) = − eζ−1

ζ − eζ−1
(1 − e1−ζ ) − (ζ − 1)2eζ−1

ζ − eζ−1

×
{∫ 1

0
e(1−ζ )s G(0)(ζ , s) − G(0)(0, s)

ζ
ds

}
, (24b)

R(k)(ζ ) = − (ζ − 1)2eζ−1

ζ − eζ−1

{∫ 1

0
ds e(1−ζ )s

× G(k−1)(ζ , s) − G(k−1)(0, s)

ζ

}
, k � 2. (24c)

Note that Eqs. (23) and (24) cannot be used separately, but
must be solved as a system. To illustrate this point, we obtain
the following explicit formulas:

G(0)(ζ , t ) = e(ζ−1)t

[
eζ−1

z − eζ−1
(1 − e1−ζ ) + 1 − e(1−ζ )t

]
,

(25a)

R(1)(ζ ) = 1 − eζ−1

ζ − eζ−1
− eζ−1(ζ − 1)2

ζ (ζ − eζ−1)

×
(

eζ−1 − 1

ζ − eζ−1
+ 1 + e

e−ζ − 1

ζ

)
, (25b)

G(1)(ζ , t ) = e(ζ−1)t [R(1)(ζ ) − 1 + e(1−ζ )t ]

− e(ζ−1)t (ζ − 1)2

ζ

{
t[R(0)(ζ ) + 1] + e

e−ζ t − 1

ζ

}
.

(25c)

To continue to obtain expressions for R(k) and G(k) for higher
k, use the formula for G(1) in Eq. (24c) with k = 2 in order to
obtain R(2), then apply Eq. (23c) to obtain G(2), and iterate.

An appealing feature of the surface profile that can be read-
ily extracted from R(ζ ) by using Eqs. (24) is the asymptotic
limit of the slope, i.e., the value limn→∞(a/Ln). This limit
can be computed without the explicit computation of R(ζ ).
Indeed, notice that

lim
n→∞ Ln(0) = lim

ζ→1
[(1 − ζ )R(ζ )]

= lim
ζ→1

[
P+(1 − ζ )

∞∑
k=0

Pk
−R(k)(ζ )

]

= P+
∞∑

k=0

Pk
− lim

ζ→1
[(1 − ζ )R(k)(ζ )].
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The computation of these limits yields

lim
ζ→1

[(1 − ζ )R(k)(ζ )] = 2 lim
ζ→1

[(1 − ζ )R(k−1)(ζ )], k � 1,

lim
ζ→1

[(1 − ζ )R(0)(ζ )] = 2.

Hence, we obtain

lim
ζ→1

[(1 − ζ )R(k)(ζ )] = 2k+1.

Accordingly, we compute

lim
n→∞ Ln = 2P+

∞∑
k=0

(2P−)k = 2P+
1 − 2P−

= 1 + P+ − P−
P+ − P−

,

if 2P− < 1. Thus, the limiting value of the mound slope, m,
equals

m = lim
n→∞

(
a

Ln

)
= a

P+ − P−
1 + P+ − P−

, (26)

where the lattice spacing, a, is scaled with LDF. (Thus, this
m is nondimensional, as it should be.) Equation (26) is a
highlight of our analysis.

It should be mentioned that formula (26) has limitations.
Evidently, P− is not allowed to take the value 1/2, as
seen by the geometric series involved in the computation of
limn→∞ Ln above. In fact, we can argue on physical grounds
that Eq. (26) becomes questionable when P− is sufficiently
close to 1/2 and, thus, m approaches zero. Indeed, in view
of Eq. (13), this regime can be reached when the ES barrier
is relatively weak, if εsLn � 1 with Ln � 1. In this case, m
is expected to be small, but nonlinearities in step flow are
significant; hence, the simplified model of this section may
not capture the step dynamics accurately.

Formula (26) has been previously obtained by a flux bal-
ance argument [39]. The idea in this argument is to balance
out the uphill and downhill fluxes on the nth terrace with
n � 2. The uphill flux results from the condition P+ > P−,
while the downhill flux results from the DF mechanism.
Equating these fluxes gives (P+ − P−)(L∞ − 1) = 1, where
L∞ is the limiting terrace width. The last equation is obeyed
by L∞ = am−1; thus, Eq. (26) is recovered. In contrast to
the flux balance argument, which appears to be tailored to
a (doubly) infinite step train, our analysis here connects the
selected slope to the choice of the kinetics for the extremal
steps, at the bottom of a semi-infinite mound.

In the present framework of the generating function,
G, the terrace widths, Ln(t ), can be computed via the
expansion

Ln(t ) = P+
∞∑

k=0

Pk
−Ln,(k)(t ),

where the coefficients, Ln,(k)(t ), are given by

Ln,(k)(t ) = 1

n!

∂nG(k)

∂ζ n

∣∣∣∣
ζ=0

(n = 0, 1, . . .). (27)

Evolution equations for Ln,(k)(t ) then follow from Eqs. (21).
For example, using Eq. (21a) we obtain evolution equations

for Ln,(0), viz.,

dL0,(0)

dt
= ∂G(0)

∂t

∣∣∣∣
ζ=0

= −L0,(0)(t ) − 1, (28a)

dL1,(0)

dt
= ∂

∂ζ

∂G(0)

∂t

∣∣∣∣
ζ=0

= L0,(0)(t ) − L1,(0)(t ) + 1, (28b)

dLn,(0)

dt
= 1

n!

∂n

∂ζ n

∂G(0)

∂t

∣∣∣∣
ζ=0

(n � 2)

= n

n!

∂n−1

∂ζ n−1

∂G(0)

∂t

∣∣∣∣
ζ=0

− 1

n!

∂n

∂ζ n

∂G(0)

∂t

∣∣∣∣
ζ=0

= Ln−1,(0)(t ) − Ln,(0)(t ). (28c)

Alternatively, these equations may be derived directly from
dominant balance arguments, without the use of the generat-
ing function. We carry out this approach for the present setting
in the Appendix. We also apply this approach to the nonlinear
step flow model in Sec. IV A.

Similarly, we can invoke approximations for R(ζ ) to derive
approximate formulas for the saturation profile, by using
identity (27) at t = 0. With k = 0, Eq. (24a) yields the general
expression

Ln,(0) =
n∑

m=0

(−1)m (n + 1 − m)men+1−m − (n − m)men−m

m!
.

This expression is obtained via expanding (ζ − eζ−1)−1 in
powers of ζ for |ζ | < 1. A few particular values of Ln,(0) (for
n = 0, 1, 2) are given here:

L0,(0) = e − 1 ≈ 1.718,

L1,(0) = e2 − 2e ≈ 1.952,

L2,(0) = e3 − 3e2 + 3
2 e ≈ 1.9958.

In principle, one can apply a similar procedure for Eq. (25b) in
order to obtain expressions for the coefficients Ln,(1), but the
procedure is more cumbersome. For example, the values of
Ln,(1) involving just the first two terraces (n = 0, 1) are found
to be

L0,(1) = 1 − 5e

2
+ e2 ≈ 1.593,

L1,(1) = e

6
(38 − 45e + 12e2) ≈ 1.969.

IV. NONLINEAR STEP FLOW MODEL
IN IRREVERSIBLE GROWTH

In this section, we focus on the nonlinear step flow model
under irreversible growth. We repeat that in this setting the
equilibrium adatom density at every step is nearly zero, viz.,
ceq

n � 0 at the nth step in kinetic relation (2). We integrate
Eqs. (15) for the evolving terrace widths with definitions
(12c) and (13). Our goal is to approximately characterize the
saturation profile. In our approach, we treat the parameter εs

as small. First, we formulate an explicit iterative scheme. Sec-
ond, we provide and discuss numerical computations using
this scheme.
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A. Iterative method: Formulation

For later algebraic convenience, we define the quantity

Q(L) = ε−1
s P−(L) = L − 1

1 + 2εsL
. (29)

By use of this Q, Eqs. (15) read
dL0

dt
= −L0 − 1 − εsQ(L1)(L1 − 1), (30a)

dL1

dt
= L0 − L1 + 1 + 2εsQ(L1)(L1 − 1) − εsQ(L2)(L2 − 1),

(30b)

dLn

dt
= Ln−1 − Ln − εsQ(Ln−1)(Ln−1 − 1) + 2εsQ(Ln)

× (Ln − 1) − εsQ(Ln+1)(Ln+1 − 1), n � 2. (30c)

Next, we consider the expansion

Ln(t ) =
∞∑

k=0

εk
s L(k)

n (t ) (n � 0), (31)

where the coefficients L(k)
n (t ) are treated as independent of

εs. The substitution of this expansion for Ln(t ) into Eqs. (30)
leads to hierarchical equations of motion for the associated
coefficients, L(k)

n . To carry out this program, we need to
group the ensuing terms on the right-hand sides of Eqs. (30)
according to their order in εs. Caution should be exercised in
handling the nonlinear terms Q(Ln)(Ln − 1) since these terms
must be expanded in powers of εs as well.

We now describe evolution equations for L(k)
n up to second

order in εs, i.e., for k = 0, 1, 2, while we keep n fixed. To
carry out this task, we need a suitable approximation for
Q(Ln)(Ln − 1). Recalling (29), we have

Q(Ln)(Ln − 1) = (Ln − 1)2

1 + 2εsLn
= (

L(0)
n − 1

)2 − 2εs
(
L(0)

n − 1
)

× [(
L(0)

n

)2 − L(0)
n − L(1)

n

] + O
(
ε2

s

)
.

The symbol O(ε2
s ) implies that the remainder of the respective

expansion is of second order in the small parameter, εs.
We substitute the above approximation for the quantity

Q(Ln)(Ln − 1) into Eqs. (30) and invoke the principle of
dominant balance. We obtain the following equations for L(k)

n
(k = 0, 1, 2):

dL(0)
0

dt
= −L(0)

0 − 1, (32a)

dL(0)
1

dt
= L(0)

0 − L(0)
1 + 1, (32b)

dL(0)
n

dt
= L(0)

n−1 − L(0)
n , n � 2, (32c)

dL(1)
0

dt
= −L(1)

0 − (
L(0)

1 − 1
)2

, (32d)

dL(1)
1

dt
= L(1)

0 − L(1)
1 + 2

(
L(0)

1 − 1
)2 − (

L(0)
2 − 1

)2
, (32e)

dL(1)
n

dt
= L(1)

n−1 − L(1)
n − (

L(0)
n−1 − 1

)2 + 2
(
L(0)

n − 1
)2

− (
L(0)

n+1 − 1
)2

, n � 2, (32f)

dL(2)
0

dt
= −L(2)

0 + 2
(
L(0)

1 − 1
)[(

L(0)
1

)2 − L(0)
1 − L(1)

1

]
, (32g)

dL(2)
1

dt
= L(2)

0 − (
L(2)

1 − 1
) + 2

(
L(0)

2 − 1
)

× [(
L(0)

2

)2 − L(0)
2 − L(1)

2

]
− 4

(
L(0)

1 − 1
)[(

L(0)
1

)2 − L(0)
1 − L(1)

1

]
, (32h)

dL(2)
n

dt
= L(2)

n−1 − L(2)
n + 2

(
L(0)

n−1 − 1
)

× [(
L(0)

n−1

)2 − L(0)
n−1 − L(1)

n−1

]
− 4

(
L(0)

n − 1
)[(

L(0)
n

)2 − L(0)
n − L(1)

n

] + 2
(
L(0)

n+1 − 1
)

× [(
L(0)

n+1

)2 − L(0)
n+1 − L(1)

n+1

]
, n � 2. (32i)

We also impose the following terminal conditions:

L(k)
0 (1) = 0, (33a)

L(k)
n (1) = L(k)

n−1(0), n � 1, k = 0, 1, 2, (33b)

which ensure that, to the desired order of perturbation theory,
Ln(0) is the saturation profile as defined previously.

Before moving on to the solution of the aforementioned
problem, we inspect the structure of Eqs. (32). It is clear
that the zeroth-order problem (with k = 0) of the present
formulation, expressed by Eqs. (32a)–(32c), is the same as
the corresponding problem for the simplified, linear step flow
model of constant probabilities, with P+ = 1 and P− = 0
(see Sec. III). In particular, there is no downward transport
except for DF. These equations can be integrated exactly by
exploiting their triangular structure. For this development, see
the Appendix.

Equations (32d)–(32i) introduce the effects of downward
transport other than DF through additional forcing terms.
These terms involve coefficients from the previous perturba-
tion orders, and thus take into account the fact that the amount
of downward transport depends on the terrace widths.

We now discuss in some detail the solution to Eqs. (32d)–
(32i). We solve these evolution equations recursively. In each
case, we use et as an integrating factor, and integrate the
equation from the final time, t = 1, to the observation time,
t . For k = 1, this procedure yields the following relations:

L(1)
0 (t ) = −e−t

∫ t

1
es

[
L(0)

1 (s) − 1
]2

ds, (34a)

L(1)
1 (t ) = e−t

{
eL(1)

0 (0) +
∫ t

1
dses

[
L(1)

0 (s) + 2
[
L(0)

1 (s) − 1
]2

− (
L(0)

2 − 1
)2]}

, (34b)

L(1)
n (t ) = e−t

{
eL(1)

n−1(0) +
∫ t

1
ds es

[
L(1)

n−1 − [L(0)
n−1(s) − 1]2

+ 2
[
L(0)

n (s) − 1
]2 − [

L(0)
n+1(s) − 1

]2]}
, n � 2.

(34c)
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The analogous formulas to the next perturbation order, k = 2,
can be derived similarly but are omitted here for the sake of
brevity.

The analytical formalism of this subsection, although in-
creasingly cumbersome with the perturbation order, k, is
amenable to numerical computations. (This task is addressed
in Sec. IV B.)

B. Iterations: Numerical results and effective model

Next, we use the iterative method formulated in Sec. IV A
in order to study the behavior of terrace widths in slope
selected profiles. Overall we obtain two appealing results.
First, the contribution to the terrace widths from the second-
order terms in perturbation theory are quite small, even when
εs becomes relatively large (of the order of unity). Second, the
first-order results compare favorably to the results of direct
numerical simulations of the step flow model.

In principle, the iterative scheme involves integrals that
may be evaluated analytically, but this procedure becomes
increasingly cumbersome after just a few iterations. Thus,
we evaluate these integrals numerically. We also carry out
a similar computation for the simplified model of constant
probabilities (Sec. III). Notably, because this simplified model
is linear, it is straightforward to carry out the computation
to arbitrary order in perturbations. We take advantage of this
property to obtain accurate results for this model even if P−
takes values close to 1/2.

The results of our iterative procedure are summarized in
Fig. 2, which shows the outcomes of the perturbative expan-
sions for the first few terrace widths as functions of εs and P−.
Figure 2 clearly indicates that the terrace widths, at least when
computed to second order in perturbation theory, are almost
linear functions of εs; i.e., the coefficients L(2)

n are negligibly
small. In Table I, we show the coefficients, L(k)

n , that generate
the expansion for the step flow model, as well as a few of the
coefficients for the simplified model of constant probabilities.
Evidently, L(2)

n are found to be relatively small for n � 1.
In view of these results, we identify

Ln � L∞ = 2 + 2εs, n � 1, (35)

FIG. 2. Plots of terrace widths, Ln, in the saturation profile for
(a) the irreversible step flow model of Eqs. (30), in which Ln is
viewed as a function of εs (top panel), and (b) the simplified step
model of Eqs. (16) where Ln is viewed as a function of probability
P− (bottom panel).

which we consider as a reasonable approximation for the
terrace widths, in the large-n asymptotic regime of the irre-
versible step flow model.

Next, we provide two intuitive explanations for the rela-
tively small values of the coefficients L(2)

n of the perturbation
expansion in the step flow model, as well as for the reason

TABLE I. Terrace width expansion coefficients, L(k)
n , in saturation profile, for irreversible and simplified step flow models (as indicated

inside parentheses of first row); see Eq. (31). Note that L(0)
n is the same in each model. The expansion order, n, takes values with n � 9 while

the perturbation order is k = 0, 1, 2.

n L(0)
n L(1)

n (simp.) L(1)
n (step) L(2)

n (simp.) L(2)
n (step)

0 1.71828183 1.59335153 1.49638475 3.24895018 0.16583988
1 1.95249244 1.96893802 1.98136495 3.93330269 −0.00679066
2 1.99579137 2.00125417 2.00658950 3.99630281 −0.02393955
3 2.00003885 2.00002908 2.00006258 3.99980897 −0.00130086
4 2.00005758 1.99987984 1.99970687 4.00009654 0.00130010
5 2.00000507 1.99998206 1.99995886 4.00002838 0.00025839
6 1.99999964 2.00000106 2.00000239 3.99999957 −0.00000911
7 1.99999989 2.00000056 2.00000123 3.99999882 −0.00000911
8 1.99999999 2.00000004 2.00000009 3.99999986 −0.00000089
9 2.00000000 1.99999999 1.99999998 4.00000002 0.00000013
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why the ensuing first-order approximation may be expected
to exactly take the form of Eq. (35).

First, we consider a flux balance argument, analogous to
the argument used to obtain Eq. (26) for the simplified model
of Sec. III. In this case, the balance equation reads

1 + εs
(L − 1)2

1 + 2εsL
=

(
1 − εs

L − 1

1 + 2εsL

)
(L − 1), (36)

which exactly yields L = 2 + 2εs. A similar derivation of this
result has been given previously in [13]. We remind the reader
that the flux balance argument here is local, as it involves
the terrace width away from extremal steps. In other words,
this argument leaves out the different behavior of steps at the
bottom of the mound.

Second, we make a systematic attempt to establish a closer
connection between the step flow model of this section and
its simplified version of constant probabilities (Sec. III). Con-
sider the simplified model with the value of P− determined
from Eq. (13), where the value of Ln comes from applying the
zeroth-order approximation and taking the limit n → ∞. We
already established that the result of this procedure is L∞ = 2.
This result in turn suggests that, at least for small εs, we may
approximate the slope selected profile arising in the step flow
model by considering instead the simplified model with

P− = εs

1 + 4εs
.

Equation (26) with this value of P− entails the limit

lim
n→∞ Ln = 2 + 6εs

1 + 2εs
. (37)

This approximation agrees with Eq. (35) to first order in εs.
In this regard, we may consider the simplified model with P−
chosen to be equal to εs/(1 + 4εs) to be an effective model for
the irreversible step flow model in the small-εs regime. This
characterization is one of the key results of our analysis.

C. Step simulations

In this subsection, we compare the results of direct integra-
tion of the ordinary differential equations (ODEs) for terrace
widths in the nonlinear step flow model to our perturbation
analysis of the saturation profile. To this end, we assume that
the mound is finite. This assumption implies that we must
include a mechanism for the creation of steps on top of the
mound in order to account for slope selection. Bearing in
mind that no 1D nucleation model is physically compelling,
we resort to the nucleation condition described in Eqs. (10)
for irreversible growth.

In Fig. 3, we show the average terrace width, viz.,

1

N (t ) + 1

N (t )∑
n=0

Ln(t ),

in snapshots of the irreversible step flow model (at several
time instants) for various values of parameter εs, which ex-
presses the relative strength of the DF effect and ES bar-
rier. We compare these results to the analytical prediction
a/m = 2 + 2εs. In regard to the nucleation condition used in
the simulations, we set mnuc = 1 + εs and apply the initial
conditions m(0) = 0 and Ln(0) = 11 for all n. In addition,

FIG. 3. Comparison of the analytical prediction limn→∞ Ln =
2 + 2εs of Eq. (35) in saturation profile to results of numerical
simulations for irreversible step flow under nucleation conditions
(10) which involve the mass m(t ) and nucleation parameter mnuc.
The prescribed initial conditions are m(0) = 0 and Ln(0) = 11 for
n = 0, 1, . . . , N , and mnuc = 1 + εs. The prescribed number, N , of
initial terraces is taken to increase linearly with εs.

we linearly increase the number, N , of initial terraces as εs

increases. By scaling mnuc with εs, we enable slope selection.
Similarly, by scaling the overall system size with εs, we reduce
the effect of the extremal steps on the average terrace width in
the large-εs step simulations.

The results of our step flow simulations for sufficiently
long times, t , are found to be in reasonably good agreement
with the analytical prediction of Eq. (35) for the terrace
widths (see Fig. 3). The discrepancy between the analytical
prediction and the short-time snapshots can be considered to
be due to transient behavior. For large enough εs, even the
long-time snapshot demonstrates some deviation. This can be
attributed to the breakdown of slope selection. In this regime,
the widths, Ln, of terraces far away from the extremal steps
are significantly different from the widths of terraces near the
domain boundaries.

V. REVERSIBLE GROWTH: STEP-STEP INTERACTIONS

In this section, we examine a more general version of the
step flow model, centered around Eqs. (8), which includes
the effect of repulsive step-step interactions (see Sec. II A).
We consider reversible growth; i.e., the nth step equilibrium
density, ceq

n , of adatoms is now a function of terrace widths.
Thus, in principle, we have a nonzero flux J int

n . Here, we
briefly outline the incorporation of step-step interactions into
the equations of motion for the terrace widths and carry out
step simulations for finite mounds, using the step creation
condition introduced in Eqs. (10).

The contribution of step-step interactions to the step veloc-
ity law comes from the incorporation of Eqs. (4) into step flow.
In particular, the step chemical potential, μn, is the variational
derivative of elastic-dipole energy (4c), in a discrete setting.
When the height and width of the (finite) mound are held
fixed, this energy is minimized if all terraces except the top
and bottom terraces have the same width, while the top and
bottom terraces are arbitrarily small. This statement relies on

052802-12



SLOPE SELECTION IN UNSTABLE MULTILAYER GROWTH … PHYSICAL REVIEW E 100, 052802 (2019)

the assumption that the top and bottom steps, which have
positions x1 and xN , only interact (repulsively) with steps
that are their nearest neighbors in the same step train; these
neighboring steps are located at x = x2, xN−1, respectively.
This property follows from Eqs. (11e) and (11f). We choose
not to implement more complicated scenarios, e.g., the pos-
sibility that x1 interacts with a step of the opposite sign in a
neighboring mound.

Let us now intuitively discuss what is the possible effect
of step-step interactions on the dynamics of terrace widths in
the presence of DF, and the resulting slope selection. Overall,
we expect that these interactions tend to render more uniform
the widths of terraces that are sufficiently far from the domain
boundaries, cause an increase to the speed of the bottom step,
and reduce the speed of the top step. The effect of the interac-
tions on the terraces away from the boundaries is expected to
be minor, because the kinetic processes under consideration
(with DF included) already contribute significantly to the
same effect; see Sec. IV. On the other hand, the effect of
step-step interactions on terraces near the boundaries may be
significant, and indeed may cause the reduction of the average
mound slope, by accelerating the rate of step annihilation and
slowing the rate of step creation.

Our numerical findings by step simulations for finite
mounds are displayed in Fig. 4. In these plots, we show
snapshots of the terrace width, Ln(t ), versus n at times t = 500
and t = 5 × 104. Recall the definitions of nondimensional
parameters c̃eq, g̃, and εs introduced in Eqs. (12), and the pa-
rameter mnuc entering the step creation conditions of Eqs. (10).
In the step simulations we set c̃eq = 10, εs = 1/2, and mnuc =
1.5, while we vary g̃ by using the values g̃ = 0, 1, 5, 10.
Furthermore, we apply the initial conditions that the step train,
or mound, has linear size equal to Ltot = 300 and consists
of N = 50 terraces with equal width, where all lengths are
scaled by the DF length, LDF. Note that the case with g̃ = 0
(vanishing step-step interactions) amounts to the irreversible
case (Sec. IV). The other simulations, for g̃ �= 0, show the
effect of increasing, nonzero strength of step-step repulsion
(Fig. 4). To avoid distorting the vertical scale of our plots, we
choose to exclude the top and bottom terrace widths from the
results of Fig. 4.

In particular, in Fig. 4(a), we present the terrace width,
Ln(t ), as a function of n at a relatively short time, t , for
several values of g̃. Evidently, the step interaction affects the
dynamics of slope selection in a way that is more complicated
than the simple intuitive argument given above would suggest.
In particular, we notice that the changes in Ln, relative to the
case with g̃ = 0, do not have the same sign along the step
train, as a function of n. We also notice that the changes
in g̃ have a small but detectable effect on Ln far away from
the domain boundaries. Nonetheless we see that the most
prominent effects are near the extremal steps, as expected.

The long-time behavior of Ln observed in Fig. 4(b) in-
dicates the intuitively expected effects of step-step inter-
actions. In fact, we notice that the step profile in the re-
versible case resembles the one of the irreversible case far
away from the boundaries. In particular, the terrace widths
away from the mound top and bottom have values close
to L∞ = 3 which is predicted by Eq. (35) with εs = 1/2.
Near the boundaries, however, the step interactions drive the

FIG. 4. Terrace width, Ln(t ), versus n for fixed times, t , in the
context of the reversible step flow model of Eqs. (8), in the presence
of repulsive step-step interactions. Plots are shown at times (a) t =
500 and (b) t = 50 000. The (scaled) interaction strength, g̃, varies;
g̃ = 0, 1, 5, 10. In all simulations, we set c̃eq = 10, εs = 1/2, and
mnuc = 1.5; cf. Eqs. (10) and (12). We use the initial conditions
xn(0) = 6n for n = 1, 2, . . . , 49, and m(0) = 0 for mass variable
m(t ); and the system linear size Ltot = 300.

extremal terraces to be significantly wider than in the irre-
versible case. This effect increases essentially monotonically
with g̃. Moreover, the step interactions affect the overall
mound slope only slightly, for the values of g̃ used in our step
simulations (g̃ = 0, 1, 5, 10). In fact, the long-time snapshots
of Ln(t ) for g̃ = 0, 1 contain 100 steps while the correspond-
ing snapshots for g̃ = 5, 10 contain 98 steps. However, it
should be pointed out that this situation may change signifi-
cantly for much larger values of g̃. By inspection of the step
velocity law, let us recall that the step dynamics result from
the competition of mass fluxes J int

n and Jdep
n (see Sec. II C).

For sufficiently strong step interactions, J int
n may dominate,

thus suppressing the effect of DF which is present in Jdep
n .

This extreme regime of the step interaction parameter, g̃, lies
beyond our present scope.

VI. DISCUSSION

In this section, we discuss a few open problems related
to the dynamics of step trains in the presence of DF. First,
we outline ingredients of the step flow model with DF in
radial geometries, when the steps form concentric circles [32].
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Second, we describe aspects of continuum limits for evolving
stepped surfaces by including DF, as a possible extension to
previous similar works, e.g., [7]. Third, we list a few open
problems inspired by our work.

A. Radial geometry

Consider an axisymmetric mound that consists of a stack
of concentric circular islands at positions r = rn(t ), where
r is the distance from the axis of the mound. We can now
formulate a step flow model in a fashion analogous to the
setting with straight steps (Sec. II). Suppose that step-step
interactions are neglected in the definition of the step chemical
potential, μn. Accordingly, the equations of motion for the
nonextremal steps read

drn

dt
= Fa

[
LDF + P+,n(rn − rn−1 − LDF)

]
+ Fa

[
P−,n+1(rn+1 − rn − LDF)

]
+ D

(
ceq

n+1 − ceq
n

dn+1
+ ceq

n−1 − ceq
n

dn

)
,

where P+,n + P−,n = 1, and

P−,n = 1

2dn

{
1

2
[(rn − LDF)2 − (rn−1)2]

(
1 + 2LES

rn

)

+ (rn − LDF)2 ln

(
rn

rn − LDF

)
− (rn−1)2 ln

(
rn

rn−1

)}
,

dn = [rn−1(rn − rn−1 − LDF)]

[
LES

rn
+ ln

(
rn

rn−1

)]
,

ceq
n = ceq exp

(
β̃

kBT
r−1

n

)
.

Additional terms can be included in the equations of motion
for the step radii, rn(t ), in order to account for the step-
step interactions [3]. The ensuing ODE system for rn(t ) is
amenable to a perturbation method akin to the one in Sec. IV.
This task is not addressed here.

A similar system of equations for the step radii appears in
Ref. [40]. However, in the 2D geometry, the description of
step annihilation is complicated. It is worthwhile to note that
in the 1D geometry one can visualize the situation in which
two parallel straight steps of opposite sign simply collide and
geometrically annihilate one another. In contrast, in 2D set-
tings the process of step annihilation may not be described in
this fashion; in particular, the radial character of the geometry
may not possibly be preserved after two neighboring mounds
collide. In Ref. [40], the authors circumvent this difficulty via
a mechanism by which bottom islands annihilate when they
reach a critical radius. The demanding problem of island or
step annihilation in 2D geometries is not further discussed in
the present paper.

B. Continuum limits of step train with DF

The step flow models discussed hitherto are amenable
to corresponding (heuristic) continuum limits in the surface
region away from the extremal steps. For example, consider
the 1D geometry of Fig. 1, with a monotone step train. The

key idea is to identify each terrace width, Ln(t ), with ρ(x, t )−1,
where ρ is a local step density as a function of the spatial
coordinate, x, and time, t ; or, equivalently, with a(∂h/∂x)−1,
where a is the lattice spacing and h(x, t ) is the local height
[5–7]. Let us focus on the irreversible step flow (Sec. IV).
Upon appropriately scaling out the deposition rate, F , and
the DF length, LDF, and carrying out local Taylor expansions,
the resulting continuum evolution law, or partial differential
equation (PDE), for the step density is

∂ρ

∂t
= 1

2

∂2

∂x2

[
1 + 2εs

1 + 2εsρ−1
(ρ−1 − 1)

]
. (38a)

Alternatively, one can obtain a second-order PDE for h(x, t ).
Notably, in the presence of repulsive step-step interactions
between straight steps, one can obtain a fourth-order PDE for
ρ(x, t ) or h(x, t ). In regard to the requisite boundary condi-
tions, let us consider a semi-infinite step train. A heuristic
argument may specify a boundary condition at the bottom of
the mound. Such a condition would state that the rate of loss
of steps at the bottom of the mound is given by −ρv where v

is the continuum-scale (negative) step velocity at the base of
the mound. This formulation suggests a boundary condition
of the form

∂

∂x

[
1 + 2εs

1 + 2εsρ−1
(ρ−1 − 1)

]∣∣∣∣
x=0

= ρ

(
1 + 1 + 2εs

1 + 2εsρ−1

)
(ρ−1 − 1)

∣∣∣∣
x=0

. (38b)

Equations (38) form a plausibly well-posed continuum theory
for slope selection in the presence of DF. We believe that
the use of a boundary condition along the lines of Eq. (38b)
renders such a theory distinct from otherwise similar theories
using periodic boundary conditions [30,31]. However, we
should point out that Eq. (38b) in particular is actually not
consistent with the step dynamics near the base of the mound,
which display a truly discrete character. For an analogous
situation in faceted crystals, in which individual steps may
affect the surface profile macroscopically, see, e.g., [41,42].
Step flow simulations suggest that the discrete step density
is usually significantly higher at the base of the mound than
farther away. As a result, boundary condition (38b) may
grossly overestimate the rate of step loss. This pathology can
be recognized more easily in the extreme case with LDF = 0
and P− = 0, when no downward transport occurs. In this case,
there is a “Zeno effect,” which is known to prevent the bottom
step from ever annihilating [14]. This effect is an artifact of
the step flow model, but even from the atomistic point of view,
the annihilation of the bottom step should be very slow in this
case. By contrast, the annihilation of the bottom step occurs at
a lower-bounded rate according to PDE (38a) with boundary
condition (38b).

In principle, if the step annihilation times, t j , were known
for a given initial step configuration, then one could iden-
tify an appropriate continuous variable, say, 	(t ), such that
	(t j ) = j. This 	(t ) would count the number of steps that
have annihilated. The modification of boundary condition
(38b) so that the overall loss of steps after time t is 	(t )
would presumably remove most of the discrepancy between
the heuristic continuum limit and the underlying, discrete step
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model. The program of constructing the continuum-scale 	(t )
from the sequence {t j} is left for future work.

C. Other open problems

We close this section by outlining a couple of other
problems related to slope selection that are inspired by but
left open in our analysis. Our purpose is to motivate future
investigations in the context of slope selection via step flow.

First, consider the dynamical system described by the high-
dimensional vector 
L(t ) = (L0(t ), L1(t ), . . . , LN (t )), which
consists of all terrace widths of a finite mound. Admittedly, we
still lack an analytical understanding of slope selection from
the viewpoint of the subsampled dynamical system 
L(t j ),
where t j is the time of the jth step creation or annihilation
event. Our analysis does not help in analyzing the dynamics
of this system; we only construct its fixed point. The difficulty
in studying the dynamics in question is that the overall dy-
namical system 
L(t ) is not truly continuous, because of the
step creation and annihilation processes. Thus, the ostensibly
straightforward goal of showing that there is an attracting
orbit of period 1 is in fact quite challenging. If 
L(t j ) were
given explicitly, then this question would be converted to the
perhaps easier task of showing that the fixed point of this
system is attracting [43].

A means of dealing with the above difficulty and studying
the dynamics of the continuous system would be to give some
asymptotic characterization of the time of the jth nucleation
event and the jth annihilation event for large j. Then, one
could possibly modify the continuum limit of Sec. VI B
through a change of the time variable in order to more
accurately resolve the total number of steps in the system. This
task is left unresolved in the present paper.

Another problem of interest concerns the creation of steps
by nucleation of islands. Although our numerical simulations
incorporate nucleation on top of mounds, our analysis ex-
cludes it, as a result of the use of a semi-infinite mound;
see Sec. II. However, in certain systems such as Ag (100)
at 300 K, the kinetics of step creation may be the dominant
contribution to slope selection [14]. In principle, it would
be interesting to extend our analytical framework to take
into account step creation. In this direction, difficulties arise
because one must treat either step creation or annihilation ex-
plicitly. By contrast, the analysis in Sec. III and Sec. IV treats
annihilation implicitly for purposes of finding the saturation
profile. Moreover, nucleation of islands on terraces other than
the top terrace can occur, in which case the step train is no
longer monotone. This possibility is not considered in this
paper, and should be expected to be relevant in the regime
of small slopes (respectively large terrace widths) [13,38].

VII. CONCLUSION

In this paper, we applied a perturbative technique to the
description of slope selection on a 1D mound in the presence
of DF and a large ES barrier. For this purpose, we studied
analytically and numerically the solution of systems of ODEs
for the terrace widths, Ln(t ), of 1D step trains, without and
with step-step interactions. From a dynamical systems point
of view, these ODEs are “nearly recursive,” in the sense that

the contribution to dLn/dt from Lm for m > n scales with
a small parameter, εs, which expresses the strength of DF
relative to the ES barrier.

We applied the perturbative technique to a model for
mound slope selection with kinetic parameters derived from
a simplified step flow model of constant probabilities for the
motion of adatoms on terraces of a semi-infinite system, and
from a more complicated step flow model in which the corre-
sponding probabilities depend on terrace widths. In the former
model, we analytically derived, directly from the dynamics,
the long-time slope of the mound far from its base. In the
latter model, we carried out a similar calculation with the help
of numerics for finite mounds. A noteworthy result is the
characterization of the above simplified model as a plausible
effective theory of slope selection. The perturbative method
is also applicable to other models, including models for 1D
mounds with interacting steps or 2D, axisymmetric mounds.

Our analysis leaves some unresolved questions though.
The main missing piece of the picture is an understanding of
the full dynamical behavior. Specifically, we lack a reliable
description of the step annihilation times for desirable initial
conditions. If the annihilation times could be computed or at
least asymptotically estimated, then the step flow model could
be consistently replaced by a continuum theory: an evolution
PDE for the height or step density profile along with a step
annihilation boundary condition. We hope that our analysis
will motivate further studies in this direction.
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APPENDIX: DIRECT ITERATIVE SCHEME FOR
SIMPLIFIED STEP FLOW MODEL

In this Appendix, we review the perturbative technique that
underlies the computation of the saturation profile within the
simplified model of Sec. III. This method makes use of a direct
recursive scheme, which exploits the triangular structure of
the governing ODE system. By recourse to Sec. III, the
starting point is to treat the probability parameter P− as small.

In this vein, consider the formal expansion

Ln(t ) =
∞∑

k=0

Pk
−L(k)

n (t ), n � 0. (A1)

Equations (16) indicate that the terrace widths, Ln, scale
proportionally to P+. Thus, we define

Rn(t ) = Ln(t )

P+
.
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By Eq. (A1), this Rn is expanded into a series of the form

Rn(t ) =
∞∑

k=0

Pk
−R(k)

n (t ).

The substitution of Ln(t ) = P+Rn(t ) by the above formal
expansion into Eqs. (16) leads to the following hierarchy for
the associated coefficients, R(k)

n :

dR(0)
0

dt
= −R(0)

0 − 1, (A2a)

dR(0)
1

dt
= R(0)

0 − R(0)
1 + 1, (A2b)

dR(0)
n

dt
= R(0)

n−1 − R(0)
n , (A2c)

dR(k)
0

dt
= −R(k)

0 − R(k−1)
1 , (A2d)

dR(k)
1

dt
= R(k)

0 − R(k)
1 − R(k−1)

2 + 2R(k−1)
1 , (A2e)

dR(k)
n

dt
= R(k)

n−1 − R(k)
n − R(k−1)

n−1 + 2R(k−1)
n − R(k−1)

n+1 ;

n � 2, k � 1. (A2f)

Note that this system exhibits a triangular structure: to com-
pute R(k)

n , it is necessary to first compute R(k− j)
m for j =

0, 1, . . . and m = 0, 1, . . . , n + j.
The equations of motion for R(k)

n are supplemented with the
terminal conditions

L0(1) = 0, Ln(1) = Ln−1(0), n � 1.

These conditions form the requirements for the saturation
profile, discussed in the main text; for example, see Eq. (19).
We impose these conditions for the whole hierarchy via

R(k)
0 (1) = 0, k � 0, (A3a)

R(k)
n (1) = R(k)

n−1(0), n � 1, k � 0. (A3b)

We now integrate Eqs. (A2), imposing conditions (A3)
as initial conditions. The resulting formulas for R(k)

n (t )
read

R(0)
0 (t ) = e1−t − 1, (A4a)

R(0)
1 (t ) = e−t

{
eR(0)

0 (0) +
∫ t

1
es

[
R(0)

0 (s) + 1
]

ds

}
, (A4b)

R(0)
n (t ) = e−t

{
eR(0)

n−1(0) +
∫ t

1
es

[
R(0)

n−1(s)
]

ds

}
, (A4c)

R(k)
0 (t ) = −e−t

∫ t

1
esR(k−1)

1 (s) ds, k > 0, (A4d)

R(k)
1 (t ) = e−t

{
eR(k)

0 (0) +
∫ t

1
es

[
R(k)

0 (s) − R(k−1)
2 (s)

+ 2R(k−1)
1 (s)

]
ds

}
, k > 0, (A4e)

R(k)
n (t ) = e−t

{
eR(k)

n−1(0) +
∫ t

1
es[R(k)

n−1(s) − R(k−1)
n−1 (s)

+ 2R(k−1)
n (s) − R(k−1)

n+1 (s)] ds

}
; n > 1, k > 0.

(A4f)

The coefficients, L(k)
n , of expansion (A1) are

L(0)
n (t ) = R(0)

n (t ),

L(k)
n (t ) = R(k)

n (t ) − R(k−1)
n (t ), k � 1.

Evidently, hierarchy (A4) may be integrated directly. The
key observation is that R(k)

n (t ) = e−t p(k)
n (t ) where p(k)

n (t ) is a
polynomial of degree at most n + 2k, except when n = k = 0.
Thus, if we define

p(k)
n (t ) =

n+2k∑
p=0

c(k)
n,pt p,

the problem reduces to evaluating the requisite coefficients,
c(k)

n,p.
We proceed to outline the procedure of determining c(k)

n,p.
For k = 0, we compute

c(0)
1,0 = e(e − 2), (A5a)

c(0)
1,1 = e. (A5b)

These values serve as initial conditions for the following
recursion, with n � 2:

c(0)
n,0 = (e − 1)c(0)

n−1,0 −
n−1∑
p=1

c(0)
n−1,p

p + 1
, (A6a)

c(0)
n,p = c(0)

n−1,p−1

p
, 1 � p � n. (A6b)

The use of Eqs. (A5b) and (A6b) gives

c(0)
n,n = e

n!
, (A7a)

c(0)
n,p = c(0)

n−p,0

p!
, p < n. (A7b)

Putting the pieces of this framework together yields the fol-
lowing recursion relation:

c(0)
n,p = 1

p!

⎛
⎝(e − 1)c(0)

n−p−1,0 − e

(n − p)!
−

n−p−2∑
p′=1

c(0)
n−p−(p′+1),0

(p′ + 1)!

⎞
⎠

for n � 2, p < n. Thus, the problem of determining cn,p is
entirely reduced to the case with p = 0, whose recursion takes
the convenient form

c(0)
n,0 = (e − 1)c(0)

n−1,0 − e

n!
−

n−2∑
p′=2

c(0)
n−p′,0

p′!

for n � 2, initialized by (A5a). The result for the saturation
profile to this order is limn→∞ c(0)

n,0 = 2.
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The structure of the difference scheme is the same for all
orders, k > 0. The procedure is essentially the same for all or-
ders, but the computation becomes increasingly cumbersome
with k. By using a similar methodology, to the next order,
k = 1, we find the following relations:

c(0)
0,0 = c(0)

1,0 + c(0)
1,1 = e(e − 1),

c(1)
0,p = −c(1)

1,p−1

p
, p = 1, 2,

c(1)
1,0 = (e − 1)c(1)

0,0 +
2∑

p=0

c(0)
2,0

p + 1
− 2

1∑
p=0

c(0)
1,p

p + 1
,

c(1)
1,p = c(1)

0,p−1 − c(0)
2,p−1 + 2c(0)

1,p−1

p
, p = 1, 2, 3,

c(1)
n,0 = (e − 1)c(1)

n−1,0 −
n+1∑
p=1

c(1)
n−1,p

p + 1
+

n−1∑
p=0

c(0)
n−1,p

p + 1

− 2
n∑

p=0

c(0)
n,p

p + 1
+

n+1∑
p=0

c(0)
n+1,p

p + 1
, n � 2,

c(1)
n,p = c(1)

n−1,p−1 − c(0)
n−1,p−1 + 2c(0)

n,p−1 − c(0)
n+1,p−1

p
,

n � 2, p = 1, 2, . . . , n,

c(1)
n,n+1 = c(1)

n−1,n + 2c(0)
n,n − c(0)

n+1,n

n + 1
, n � 2,

c(1)
n,n+2 = c(1)

n−1,n+1 − c(0)
n+1,n+1

n + 2
, n � 2.
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