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In a recent article, we showed how the properties of the density-density correlation function and its integral,
the local structure factor, in the fluid interfacial region, in systems with short-ranged forces, can be understood
microscopically by considering the resonances of the local structure factor [A. O. Parry and C. Rascón, Nat.
Phys. 15, 287 (2019)]. Here, we illustrate, using mean-field square-gradient theory and the more microscopic
Sullivan density functional model, and how this approach generalizes when there is liquid-gas asymmetry, i.e.,
when the bulk correlation lengths of the coexisting liquid and gas phases are different. In particular, we are
able to express the correlation function exactly as a simple average of contributions arising from two effective
Ising-symmetric systems referred to as the symmetric gas and symmetric liquid. When combined with our earlier
results, this generates analytical approximations for the correlation function and the local structure factor, which
are near indistinguishable from the numerical solution to the Ornstein-Zernike equations over the whole range of
wave vectors. Our results highlight how asymmetry affects the correlation function structure and describes the
crossover from a long-ranged Goldstone mode to short-ranged properties determined by the local density as the
wave vector increases.

DOI: 10.1103/PhysRevE.100.052801

I. INTRODUCTION

Correlation functions play a vitally important role in char-
acterizing the equilibrium properties of the different possible
phases of matter. At a very basic level, it is clear that the
regular arrangement of atoms in a perfect solid lattice leads to
long-ranged correlations in atomic positions. Simple liquids
and gases display no long-ranged order, although there may
be short-ranged order in a dense liquid, arising from local
packing effects, which decays rapidly as the distance between
the particles increases. Away from the immediate vicinity of
the critical point, the pair-correlation function in the liquid
and gas phases is isotropic and decays exponentially on a
microscopic scale set by the appropriate bulk correlation
length. There are two well known scenarios in which this
simple picture is complicated. Complex fluids, such as liquid
crystals, display a much wider variety of phases which are
distinguished by the orientational as well as positional order.
Second, even for simple fluids, the presence of an interface
separating coexisting liquid and gas phases drastically alters
the nature of atomic correlations. This arises directly from the
thermal fluctuations of the interface, controlled by the surface
tension σ , which lead to much longer-ranged correlations in
the vicinity of the interface [1–6]. If the interface is pinned by
a gravitational field, correlations along the interface decay on
a scale set by the capillary length, which is about a millimeter
for molecular fluids. Indeed, in the absence of pinning due to
gravity or a nearby wall (say), translations of a free interface
cost no energy, resulting in a scale-free Goldstone mode. In

this case, exact microscopic sum rules determine that the
two-dimensional (2D) Fourier transform of the density-
density (pair) correlation function G(z, z′; q), where q is the
wave vector parallel to the interface and z the coordinate
normal to the interface, must diverge, when q → 0 as [2,3]

G(z, z′; q) ≈ ρ ′(z)ρ ′(z′)
βσq2

. (1)

Here, ρ(z) denotes the density profile, ρ ′(z) = dρ(z)/dz, its
derivative, and β = 1/kBT . This result is of profound signifi-
cance to the fundamental statistical mechanics of fluids at in-
terfaces. In particular, it tallies precisely with the mesoscopic
capillary-wave theory of the interface, which models it simply
as a structureless surface under tension—a description which
is extremely accurate at length scales much larger than the
underlying microscopic bulk correlation length [1,3].

The question of how correlations near a fluid interface
behave at larger values of the wave-vector q, that is, how
the Goldstone-mode divergence (1) is modified, has received
considerable attention over the past few decades [7–21]. In
recent articles, we have shown how one may use microscopic
density functional theory (DFT) to determine the proper-
ties of G(z, z′, q) and its integral S(z; q) (the local structure
factor) over the whole range of wave vectors for systems
with short-ranged forces [21,22]. These new insights arise
from noting that the properties of the local structure factor
and correlation function are strongly constrained due to the
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presence of resonances in S(z; q), which occur at specific
values of the wave vector. This approach allows us to un-
derstand analytically the crossover from the Goldstone mode
at small q to bulklike behavior at larger q, without having to
introduce mesoscopic ideas, such as a wave-vector dependent
surface tension. In our previous work, we focused largely on
model systems which display a simple Ising symmetry. In the
present paper, we show how this analysis can be extended to
the more realistic case where there is liquid-gas asymmetry,
i.e., where the correlation lengths of the coexisting bulk
liquid and gas phases are different. In particular, using simple
mean-field square-gradient theory, we show that there is an
exact construction which determines the correlation function
and local structure factor at the interface [specifically, where
the gradient ρ ′(z) is largest] in terms of averages of the
corresponding quantities of an effective Ising symmetric gas
and an effective Ising symmetric liquid. This allows us to
determine analytically the properties of G(0, 0, q) and S(0, q)
over the the whole range of wave vectors. We show that
same approach also applies to the more microscopic Sullivan
density functional model [23–26] allowing us to determine the
form of the correlation function and local structure factor us-
ing the accurate Carnahan-Starling equation of state for hard
spheres.

Our paper is arranged as follows. We begin with square-
gradient theory and recap the main results for G and S which
apply to systems with a perfect Ising symmetry. We then allow
for asymmetry between the bulk liquid and the gas phases
and describe a construction which allows one to determine
exactly the correlation function at the interface as an aver-
age of two equally weighted Ising symmetric systems—one
corresponding to a gas and one to a liquid. When combined
with the earlier results for symmetric systems, this leads to
an analytical approximation for G(0, 0; q), which we test
against the numerical solution of the Ornstein-Zernike (OZ)
equation for a model square-gradient potential with a wide
range of asymmetries. A simple extension of the analysis
generates an expression for the local structure factor S(0; q)
at the interface, which we compare against the numerical
solution of the OZ equation. We repeat this exercise for the
Sullivan model showing how the analytical approximations
for G(0, 0; q) and S(0; q) capture very accurately the proper-
ties of the correlation function and local structure factor over
the whole range of wave vectors. Finally, the implications and
physical interpretation of our results are discussed.

II. CORRELATIONS IN THE PRESENCE
OF LIQUID-GAS ASYMMETRY

A. Density functional theory formalism

Within the framework of DFT, the equilibrium density
profile and correlation functions of an inhomogeneous fluid
can be determined from a grand potential functional [4],

�[ρ] = F [ρ] −
∫

dr[μ − Vext (r)]ρ(r), (2)

where μ is the chemical potential, Vext (r) is the external field,
and ρ(r) is the density distribution. All the information con-
cerning fluid-fluid forces is contained within the Helmholtz
free-energy functional F [ρ] for which various mean-field

approximations can be performed. The equilibrium density
profile is obtained from minimization of the grand potential,

δ�[ρ]

δρ
= 0, (3)

and the direct correlation function is obtained as the second
functional derivative,

C(r, r′) = 1

kBT

δ2F [ρ]

δρ(r)δρ(r′)
, (4)

which must be evaluated at the equilibrium fluid density.
Hereafter, we set kBT = 1. From the direct correlation func-
tion, we can obtain the density-density correlation function
G(r, r′) from the solution of the inhomogeneous OZ equation,∫

dr′′C(r, r′′)G(r′′, r′) = δ(r − r′). (5)

We consider a free planar interface (i.e., under a vanishing
external field) separating coexisting liquid and gas phases for
which the equilibrium density profile ρ(z) is a function only of
the distance z normal to the interface. Translational invariance
along the interface means that both the direct and the density-
density correlation depend on the coordinates z and z′ of
the two particles and the parallel separation between them.
It is then convenient to consider the 2D Fourier transforms
C(z, z′; q) and G(z, z′; q), where q is the modulus of the wave
vector parallel to the interface. In this case, the OZ equation
reduces to∫

dz′′C(z, z′′; q)G(z′′, z′; q) = δ(z − z′), (6)

which we will seek to solve for different model density
functionals. The integral of the density-density correlation
function defines the local structure factor,

S(z; q) =
∫

dz G(z, z′; q), (7)

whose q = 0 limit identifies the local compressibility
S(z; 0) = ∂ρ(z)/∂μ. Therefore, the local structure factor may
also be determined directly by solving the integrated OZ
equation, ∫

dz′C(z, z′; q)S(z′; q) = 1. (8)

Finally, we mention that the surface tension for the free
interface is determined via the thermodynamic definition,

σ = � + pV

A
, (9)

where � is the equilibrium value of the grand potential, p is
the pressure, and V and A are the volume and interfacial area,
respectively.

In this paper, we consider two simple models of the inter-
facial region applicable to systems with short-ranged forces:
square-gradient theory and the more microscopic Sullivan
local density functional [25,26]. Neither model accounts for
packing effects at the molecular scale, although such effects
are relatively minor for a free liquid-gas interface. This is par-
ticularly the case if we restrict attention to temperatures above
the intersection of the Fisher-Widom line and the liquid-gas
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coexistence curve where the density profile decays monoton-
ically on the liquid side [27]. Being mean-field in nature,
neither model accounts for the capillary-wave induced broad-
ening of the liquid-gas interface. In three dimensions, how-
ever, this broadening is extremely weak since the interfacial
width is anticipated to increase as

√
ln A [1]. Consequently,

the density profiles predicted by both models will be, at least,
qualitatively similar to those seen in simulation studies of
systems of truncated Lennard-Jones forces (say). The merits
of both these simple models is that they account for both bulk
and interfacial behavior, and, therefore, allow us to consider
the modification to the Goldstone-mode divergence (1) as the
wave-vector q is increased to the scale of the inverse bulk
correlation length where the standard capillary-wave picture
of the interface breaks down. Here, as mentioned earlier, we
will concentrate on allowing for liquid-gas asymmetry as is
pertinent to real fluids.

B. Square-gradient model

The first model we consider is a mean-field square-gradient
theory based on the grand potential functional [4,5],

�[ρ] =
∫

dr
(

f

2
(∇ρ)2 + �φ(ρ)

)
, (10)

where the coefficient f of the gradient term is hereafter set
to unity since it does not appear in our final results. Below
a bulk critical temperature Tc, the bulk free-energy density
φ(ρ) has a double-well structure modeling the coexistence
of bulk liquid and gas phases with densities ρl and ρg.
Thus, φ′(ρg) = φ′(ρl ) = 0 with coexistence demanding that
φ(ρg) = φ(ρl ). The shifted potential �φ(ρ) = φ(ρ) − φ(ρl )
conveniently subtracts the bulk contribution. In general, the
potential will also have a maximum at some intermediate den-
sity ρ0, where �φ′(ρ0) = 0. For Ising symmetric potentials,
this is obviously equivalent to the midpoint or critical density
ρ0 = (ρg + ρl )/2. The curvatures of the potential φ′′(ρb) =
κ2

b determine the inverse correlation lengths κb = 1/ξb of
the bulk liquid (b = l) and bulk gas (b = g) phases. These
determine the exponential decay of the bulk pair correlation
function Gb(r) ∝ exp(−κbr)/r, where r is the distance be-
tween the particles. The three-dimensional Fourier transform
of Gb(r) defines the two bulk structure factors, which, in
square-gradient theory, have a simple Lorentzian form

Sb(q) = Sb(0)

1 + ξ 2
b q2

, (11)

where Sb(0) = 1/�φ′′(ρb) identifies the bulk compressibility
Sb(0) = ∂ρ/∂μ. It is also convenient to consider the 2D
(Hankel) Fourier transform when the particles sit on the same
z plane,

Gb(q) = 1

2
√

κ2
b + q2

, (12)

which was referred to as Gb(0; q) in Ref. [21]. We now
consider that a planar interface of macroscopic area separates
the coexisting liquid and gas phases and is located near the
z = 0 plane. At mean-field level, no additional pinning field
needs to be specified. The equilibrium density profile follows

from the solution of the Euler-Lagrange equation,

ρ ′′(z) = �φ′(ρ), (13)

where the prime denotes differentiation with respect to the
argument shown. This is solved subject to boundary condi-
tions ρ(−∞) = ρg and ρ(∞) = ρl with the origin chosen
to correspond to the maximum of the density gradient, i.e.,
ρ ′′(0) = 0. Thus, the density at the origin corresponds to ρ0,
the maximum in the potential �φ(ρ). This is not a definition
of an interfacial collective coordinate; rather, a convenient
choice for the origin of the coordinates. The Euler-Lagrange
equation has a first integral,

ρ ′(z) =
√

2 �φ(ρ), (14)

and substitution into �[ρ] determines the surface tension
via (9) as

σ =
∫ ∞

−∞
dz ρ ′(z)2, (15)

or, equivalently,

σ =
∫ ρl

ρg

dρ
√

2 �φ(ρ). (16)

The direct correlation function of the inhomogeneous fluid is
given by the δ function operator,

C(r, r′) = [ − ∇2
r + �φ′′(ρ(z))

]
δ(r − r′), (17)

which has the 2D Fourier transform,

C(z, z′; q) = [ − ∂2
z + q2 + �φ′′(ρ(z))

]
δ(z − z′). (18)

Hence, the OZ equations for the correlation function and local
structure factor reduce to[ − ∂2

z + q2 + �φ′′(ρ(z))
]
G(z, z′; q) = δ(z − z′), (19)

and [ − ∂2
z + q2 + �φ′′(ρ(z))

]
S(z; q) = 1. (20)

C. Correlations with Ising symmetry

It has long been known that, for all potentials φ(ρ), the
correlation function obtained from the OZ equation displays
the anticipated Goldstone-mode divergence (1) as q → 0 [28].
Hence, the local structure factor also diverges as S(z; q) ≈
�ρ ρ ′(z)/σq2 in the same small wave-vector limit. Here,
�ρ = ρl − ρg is the difference between the bulk densities.
Recently, however, new insights into the full wave-vector
behavior of the correlation function and local structure fac-
tor have emerged from recognizing that the local structure
factor has, in addition to the Goldstone mode, a hierarchy of
resonances occurring at qξb = √

3,
√

8
√

15 · · · , on the liquid
(b = l) and gas (b = g) sides [21]. These strongly constrain
the allowed behaviors of both G and S. Let us begin with
the case of perfect Ising (lattice-gas) symmetry for which the
bulk correlation functions and, hence, ξb, Sb(q), and Gb(q)
are identical in the liquid and gas phases. In this case, the
existence of the resonances means that, in addition to (7),
there is another relation between the local structure and the
correlation function which may be expressed as a sum over the
resonances. Specifically, for all potentials φ(ρ) which have an
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analytic expansion about the bulk density, the local structure
factor can be written

S(z; q) = Sb(q) + �ρ ρ ′(z)

σ1q2
(
1 + ξ 2

b q2
)

+ �ρ

ρ ′(0)

∞∑
n=2

σ

σn

G(0, z; q) − G(0, z;
√

n2 − 1κb)(
1 + ξ 2

b q2
)(

1 − ξ 2
b q2

n2−1

) ,

(21)

where, again, we emphasize that the origin corresponds to
the maximum in ρ ′(z). The resonances are weighted by
generalized surface tensionlike coefficients σn, the values
of which are determined by the correlation function and
satisfy the summation condition 1/σ1 + 1/σ2 + · · · = 1/σ .
This automatically ensures that the local structure factor has
the required Goldstone-mode divergence at small q. From
this relation, two extremely accurate approximations for the
wave-vector dependence of the correlation function and local
structure factor at the origin emerge

G(0, 0, q) ≈ Gb(q) + ρ ′(0)2

σq2

Gb(q)

Gb(0)
, (22)

and

S(0; q) ≈ Sb(q) + �ρ ρ ′(0)

σq2

Sb(q)

Sb(0)
. (23)

The expression for G(0, 0; q) implies that the real-space de-
cay of the correlation function along the interface may be
regarded as the bulk decay plus a convolution between a
bulklike term and the Goldstone mode, arising from interfacial
fluctuations. Recall that the results (22) and (23) are exact for
the standard Landau quartic potential [21]. The expression
for G(0, 0; q) is also exact for the trigonometric potential
�φ(ρ) ∝ sin2[π (ρ − ρg)/�ρ]. In general, these approxima-
tions always capture correctly the low- and high-q limits and
are typically never more than a few percent away from the
result obtained from the numerical solution of the OZ equa-
tions (19) and (20). This is particularly true for the expression
for G(0, 0; q) which, for example, has a maximum error of
less than 0.5% for the potential φ(ρ) modeling an interface
near a tricritical point [22]. For practical purposes, they can
be considered the full analytical solutions for the correlation
function and local structure factor at the origin where these
functions take their maximum values in the interfacial region.

D. Correlations with liquid-gas asymmetry

We now turn attention to systems with liquid-gas asym-
metry. That is, systems for which the correlation lengths ξb

and, hence, Gb(q) and Sb(q) are different in the bulk liquid
and gas phases. A potential �φ(ρ) modeling this is shown
schematically in Fig. 1 and has a larger curvature at the bulk
gas density �φ′′(ρg) > �φ′′(ρl ) so that ξl > ξg as pertinent
to real fluids. Also, the density ρ0 at which �φ(ρ) has a
maximum is closer to the bulk gas density than to the liquid.
We now describe a simple construction which allows us to de-
termine the correlation function G(0, 0; q) in this asymmetric
system where again the origin is chosen to be the position
where ρ(0) = ρ0 and the density gradient is a maximum.

FIG. 1. An asymmetric potential �φ(ρ ) and two symmetric gas
and liquid potentials �φsym

g (ρ ) and �φ
sym
l (ρ ) constructed from it by

reflecting �φ(ρ ) about the density ρ0 where it is a maximum (black
dot).

First, we note the surface tension can be divided trivially into
contributions from the gas and liquid regions either side of the
origin,

σ =
∫ ρ0

ρg

dρ
√

2 �φ(ρ) +
∫ ρl

ρ0

dρ
√

2 �φ(ρ). (24)

Next, from the asymmetric potential �φ(ρ), we construct two
effective Ising symmetric potentials as shown in Fig. 1: A
symmetric gas potential �φ

sym
g (ρ), which is defined to be the

same as �φ(ρ) for ρ < ρ0 together with its mirror reflection
for ρ > ρ0, and a symmetric liquid potential �φ

sym
l (ρ), de-

fined to be the same as �φ(ρ) for ρ > ρ0 together with its
mirror reflection for ρ < ρ0. We can define and determine
the physical properties for each of these symmetric systems.
For example, the surface tensions of the symmetric gas and
symmetric liquid potentials are clearly given by

σ sym
g = 2

∫ ρ0

ρg

dρ
√

2 �φ(ρ), (25)

and

σ
sym
l = 2

∫ ρl

ρ0

dρ
√

2 �φ(ρ), (26)

respectively. Thus, the true surface tension σ can be regarded
as the average of the two Ising symmetric tensions,

σ = 1
2

(
σ sym

g + σ
sym
l

)
. (27)

Similarly, we can determine the correlation functions from the
solution of[ − ∂2

z + q2 + �φ
sym
b

′′(ρ(z))
]
Gsym

b (z, z′; q) = δ(z − z′)
(28)

for the symmetric gas (b = g) and symmetric liquid (b =
l) phases. Here, ρ(z) is the profile for the corresponding
symmetric potential, which are simply related to the true
density profile. It is then easy to see from simple matching
of the solutions for z > 0 and z < 0 that the (inverse of the)
correlation function of the asymmetric potential at the origin
can be written exactly as the average,

1

G(0, 0; q)
= 1

2

(
1

Gsym
g (0, 0; q)

+ 1

Gsym
l (0, 0; q)

)
, (29)

which can also be written as

G(0, 0; q) = f ∗
g (q) Gsym

g (0, 0; q) + f ∗
l (q) Gsym

l (0, 0; q),
(30)
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FIG. 2. Asymmetric model potential (34) for three values of the
parameter a. The value a = 0 corresponds to Ising symmetry (ξg =
ξl ), whereas a = 3 and a = 8 correspond to strong asymmetry: ξl =
2ξg and ξl = 3ξg, respectively. The black dots represent the location
of the maximum, which corresponds to the origin of coordinates for
the density profiles ρ(z), shown in the inset.

where

f ∗
g (q) = Gsym

l (0, 0; q)

Gsym
g (0, 0; q) + Gsym

l (0, 0; q)
, (31)

and f ∗
g (q) + f ∗

l (q) = 1. The utility of the exact result (29) is
that we can combine it with the extremely accurate analytical
approximations,

Gsym
b (0, 0; q) ≈ Gb(q) + ρ ′(0)2

σ
sym
b q2

Gb(q)

Gb(0)
, (32)

which, we stress, only involves properties defined using the
true asymmetric potential and density profile. This leads to

1

G(0, 0; q)
≈ 1

2

∑
b=g,l

1

Gb(q)
(
1 + ρ ′(0)2

σ
sym
b q2Gb(0)

) . (33)

This approximation is one of the main new results of our
paper and, as we will see, is effectively the analytical solution
for the correlation function for a potential with arbitrary
liquid-gas asymmetry. Indeed, it is exact, for example, when
the double-well potential is made from matching two Landau
quartic potentials with different liquid and gas correlation
lengths or by matching a Landau quartic potential for one well
and a trigonometric potential for the other.

To illustrate the accuracy of the above analytical approxi-
mation, we apply it to the model six-order polynomial poten-
tial (see Fig. 2),

�φ(ρ) = κ2
l (ρ − ρg)2(ρ − ρl )2

2(�ρ)2

(
1 + a

(ρ − ρl )2

(�ρ)2

)
, (34)

which contains a dimensionless parameter a controlling the
asymmetry between the bulk correlation lengths,

ξl = √
1 + a ξg. (35)

When a = 0, the potential reduces to the standard Landau
quartic potential for which (22) and (23) are exact. When a >

0, the model is asymmetric and no longer exactly solvable. For

FIG. 3. Surface tensions σ sym
g and σ

sym
l for the symmetric gas

and liquid as a function of the asymmetry parameter a for the
potential (34). The true tension σ is the average (dashed line).

example, for a = 3, we have ξl = 2ξg, whereas for a = 8, we
have ξl = 3ξg. Corresponding profiles are shown in the inset
of Fig. 2. The values of the symmetric liquid and symmetric
gas surface tensions are shown in Fig. 3 as a function of the
asymmetry parameter. Figure 4, then, compares the analytical
approximation (33) with the full numerical solution of the
OZ equation (19), demonstrating its extraordinary accuracy
over the full range of wave vectors. For completion, we
also show the comparison obtained when we approximate
both symmetric surface tensions by the equilibrium value

Approximations Errors

Exact
Approx
Approx

FIG. 4. Comparison of the exact numerical solution (dots) of the
OZ equation (19) for G(0, 0; q) using the asymmetric potential (34)
with the analytical approximation (33) for three different values of
the asymmetry parameter a (red lines). The even simpler approxima-
tion (36), which uses σ

sym
b ≈ σ , is also shown (blue dashed lines).

Percentage errors are shown in the inset. Both approximations are
exact for the Ising symmetric case a = 0.
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σ
sym
b ≈ σ in (33). That is, we make the further approximation,

1

G(0, 0; q)
≈ 1

2

∑
b=g,l

1

Gb(q)
(
1 + ρ ′(0)2

σq2Gb(0)

) , (36)

which does not require the evaluation of the symmetric surface
tensions, and can be easily implemented in simulation studies.
Although this latter approximation is about three times less
accurate than the original one, it is still a remarkably good
description of the full wave-vector dependence, encompassing
the correct small- and large-q behavior.

E. The local structure factor with liquid-gas asymmetry

The above analysis extends to the determination of the
local structure factor. Either side of the origin, the correlation
function decays as

G(0, z; q) = G(0, 0; q)

Gsym
b (0, 0; q)

Gsym
b (0, z; q) (37)

for z > 0 (b = l ) and z < 0 (b = g). Integration of (37) de-
termines that the local structure at the origin can be written
exactly as the weighted sum of contributions from the sym-
metric gas and symmetric liquid,

S(0; q) = f ∗
g (q) Ssym

g (0; q) + f ∗
l (q) Ssym

l (0; q), (38)

which, pleasingly, has the same weightings as the result (30)
for the correlation function. This is an exact result if we
determine the local structure factors of the symmetric gas and
liquid from solution of[ − ∂2

z + q2 + �φ
sym
b

′′(ρ(z))
]
Ssym

b (z, z′; q) = 1. (39)

However, as with our discussion of the correlation function,
there is no need to do this. Instead, we may use in (38) the
very accurate approximations,

Ssym
g (0; q) ≈ Sg(q) + 2(ρ0 − ρg)ρ ′(0)

σ
sym
g q2

Sg(q)

Sg(0)
, (40)

and

Ssym
l (0; q) ≈ Sl (q) + 2(ρl − ρ0)ρ ′(0)

σ
sym
l q2

Sl (q)

Sl (0)
, (41)

which follow from (23) together with the approximations (32)
to evaluate the weightings f ∗

g (q) and f ∗
l (q). Figure 5 demon-

strates the excellent agreement between this analytical ap-
proximation and that obtained from the numerical solution of
the OZ equation (20) for the asymmetric potential (34). Again,
as with the correlation function G(0, 0; q), the difference
between both results can only be discerned by looking at the
percentage error as shown in the inset.

We also present in Fig. 5 the approximation for S(0; q) de-
scribed in Ref. [21]. This is derived, in an alternative manner,
using the resonance expansion (21), which does not involve
computing symmetric gas and symmetric liquid potentials,
and is written

S(0; q) ≈ fg(q)Sg(q) + fl (q)Sl (q)

+ �ρ ρ ′(0)

σq2

(
fg(q)

Sg(q)

Sg(0)
+ fl (q)

Sl (q)

Sl (0)

)
. (42)

Approximations Errors

Exact
Approx
Approx

FIG. 5. Comparison of the exact numerical solution (dots) of the
OZ equation (20) for S(0; q) using the asymmetric potential (34)
with the analytical approximation based on (38) together with (40)
and (41) for three different values of the asymmetry parameter a (red
lines). The alternative approximation (42) is also shown (blue dashed
lines) with almost identical results. Percentage errors are shown in
the inset. Both approximations are exact for the Ising symmetric case
a = 0.

This expression involves weights, different from those ap-
pearing in (30) and (38), given by fg(q) = �κg(q)/[�κg(q) +
�κl (q)] with �κb(q) =

√
κ2

b + q2 − κb and fg(q) + fl (q) =
1. As seen in Fig. 5, it is remarkable to us that these two
approximations, which are very different in appearance, are
almost identical numerically, and each describe accurately the
behavior of the local structure factor over the whole wave-
vector range. We comment on this later.

We can also determine the properties of the local structure
factor away from the origin since the solution of the OZ
equation can be written exactly as

S(z; q) =
{

Ssym
g (z; q) + AGsym

g (0, z; q) for z < 0,

Ssym
l (z; q) − AGsym

l (0, z; q) for z > 0,
(43)

where

A = Ssym
l (0; q) − Ssym

g (0; q)

Gsym
g (0, 0; q) + Gsym

l (0, 0; q)
. (44)

In (43), we may use the exact resonant expansion (21) for
Ssym

b (z; q) on each side of the interface. As expected, there
are two different sets of surface tensionlike coefficients {σ b

n },
one on the liquid side (b = l), one on the gas side (b = g).
When the position z is a few correlation lengths away from
the origin, only the term related to the derivative of the profile
is of importance, and we can approximate at fixed q,

S(z; q) ≈ Sb(q) + �ρ ρ ′(z)

σ b
1 q2

(
1 + ξ 2

b q2
) . (45)
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Here, the surface tensionlike coefficients are only determined
by bulk properties [19],

σ b
1 = κb�ρ

�φ′′(ρb)

|�φ′′′(ρb)| . (46)

Finally, integration of S(z; q) over the macroscopic interval
[−Lg, Ll ] determines the total structure factor exactly as

STOT(q) = 1

2

[
Ssym

TOT g(q) + Ssym
TOT l (q)

]

−1

2

[
Ssym

l (0; q) − Ssym
g (0; q)

]2

Gsym
g (0, 0; q) + Gsym

l (0, 0; q)
. (47)

This may then be evaluated to high accuracy by using the
approximations (32), (40), and (41) together with the approx-
imations for the symmetric total structure factors [21],

Ssym
TOT b(q) ≈ 2LbSb(q) + 4(ρ0 − ρb)2

σ
sym
b q2

Sb(q)

Sb(0)
. (48)

It is straightforward to show that, with these approxima-
tions, the total structure factor STOT(q) contains the correct
Goldstone-mode divergent term �ρ2/σq2 in the limit q → 0,
which is not sensitive to capillary-wave fluctuations since
there is no dependence on the derivative of the profile.

III. SULLIVAN MODEL

Having demonstrated that liquid-gas asymmetry can be
treated within the square gradient, we now show that near
identical results apply to the more microscopic Sullivan model
for which we may use the very accurate Carnahan-Starling
equation of state for hard spheres. The Sullivan model is based
on the Helmholtz free-energy functional [19,25,26,29],

F [ρ] =
∫

dr fh(ρ(r))

+ 1

2

∫∫
dr1dr2ρ(r1)w(|r1 − r2|)ρ(r2), (49)

where fh(ρ) is the free-energy density for bulk hard spheres
and the derivative dfh(ρ)/dρ = μh(ρ) is the local hard-sphere
chemical potential. The intermolecular potential has a Yukawa
form

w(r) = − α

4πrR2
e−r/R, (50)

where −α = ∫
dr w(r) is the integrated strength and the

range is R. Hereafter, without loss of generality, we set
R = 1 or, equivalently, measure all lengths in units of R.
Minimization of the grand potential functional leads to the
Euler-Lagrange equation for the density profile which, for a
planar interface, reduces to

d2μh

dz2
= μh(ρ(z)) − μ − αρ(z), (51)

which is also similar to the ordinary differential equation
(ODE) for the profile in square-gradient theory. This has a
first integral,

dμh

dz
=

√
ψ (μh), (52)

where

ψ (μh) = (μh(ρ) − μ)2 − 2α(ph(ρ) − p), (53)

and ph(ρ) is the hard-sphere pressure. The function ψ (μh)
plays the same role as the bulk potential 2 �φ(ρ) in square-
gradient theory. It has equal minima at μh(ρb) and a maximum
at μh(ρ0), where ρ0 is the density at which d2μh/dz2 = 0.
This we choose as the origin. The surface tension σ can be
written [26]

σ = 1

α

∫
dz

(
dμh

dz

)2

, (54)

and is similar to the square-gradient result.
The correlation functions and local structure factor also sat-

isfy similar differential equations to those appearing square-
gradient theory [19,21]. If we define

α H (2)(z, z′; q) = μ′
h(ρ(z))μ′

h(ρ(z′))G(z, z′; q), (55)

and

H (z; q) = S(z; q)μ′
h(ρ(z))

1 + q2
, (56)

manipulation of the OZ integral equation leads to the ordinary
differential equations,(

−∂2
z + q2 + 1 − α

dρ

dμh

)
H (2)(z, z′; q) = δ(z − z′), (57)

and (
−∂2

z + q2 + 1 − α
dρ

dμh

)
H (z; q) = 1. (58)

The latter ODE identifies the bulk structure factors Sb(q) in
the liquid (b = l) and gas (b = g) phases as

Sb(q) = Sb(0)

1 + q2ξ 2
b

1 + q2R2

, (59)

where

Sb(0) = 1

μ′
h(ρb) − α

, (60)

and identifies the OZ correlation lengths ξb as

R

ξb
=

√
μ′

h(ρb)

α
− 1, (61)

where we have reinstated the length scale R. Similarly, the 2D
Fourier transform of the pair-correlation function in the bulk
is given by

Gb(q) = α(dρ/dμh)2

2
√

κ2
b + q2

, (62)

where κb = 1/ξT
b is the inverse of the bulk true correlation

length ξT
b =

√
ξ 2

b + R2.
The functions H (z; q) and H (2)(z, z′; q) are related in pre-

cisely the same way that S(z; q) and G(z, z′; q) are within
square-gradient theory, provided that dρ/dz is replaced by
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dμh/dz. It follows that, if we specialize to a class of free-
energy densities fh(ρ) that have an Ising symmetry, we can
write S(z; q) as an expansion over resonances [21]:

S(z; q) = Sb(q)γb(z) + �ρ ρ ′(z)

σ1q2

Sb(q)

Sb(0)
+ �ρ

ρ ′(0)

Sb(q)

Sb(0)

×
∞∑

n=2

σ

σn

G(0, z; q) − G(0, z;
√

n2 − 1κb)(
1 − q2(ξT )2

n2−1

) , (63)

where

γb(z) = μ′
h(ρb)

μ′
h(ρ(z))

(64)

is referred to as the bulk-enhancement factor. Thus, apart
from this additional factor γb(z) in front of the first term,
this is identical to the result for the square-gradient theory.
Indeed, this allows us to immediately write the highly accurate
approximations for the correlation function and local structure
factor (at the origin) in symmetric systems as

G(0, 0; q)

Gb(q)
≈ γb(0)2 + ρ ′(0)2

σq2Gb(0)
, (65)

and

S(0; q)

Sb(q)
≈ γb(0) + �ρ ρ ′(0)

σq2Sb(0)
. (66)

An identical construction can now be used for a realistic hard-
sphere chemical potential which will incorporate liquid-gas
asymmetry. That is, symmetric gas and liquid systems can be
defined as reflections of ψ (μh) about μh(ρ0) where ψ (μh) is
a maximum. The surface tension can then be written as the
average (27), where

σ sym
g = 2

α

∫ 0

−∞
dz

(
dμh

dz

)2

, (67)

and

σ
sym
l = 2

α

∫ ∞

0
dz

(
dμh

dz

)2

. (68)

Moreover, identical exact rules (29) and (38) apply to the
correlation function and local structure factor at the origin,
defined where dμh/dz is a maximum [or, equivalently, when
ρ(z) = ρ0]. These exact expressions can, then, be used in
combination with the extremely accurate approximations,

Gsym
b (0, 0; q)

Gb(q)
≈ γ (0)2 + ρ ′(0)2

σ
sym
b q2Gb(0; 0)

, (69)

and

Ssym
b (0; q)

Sb(q)
≈ γ (0) + 2|ρ0 − ρb|ρ ′(0)

σ
sym
b q2Sb(0)

(70)

to determine the whole wave-vector dependence analytically.
Thus, for example, the prediction for the correlation function
at the origin incorporating liquid-gas asymmetry is

1

G(0, 0; q)
≈ 1

2

∑
b=g,l

1

Gb(q)
(
γb(0)2 + ρ ′(0)2

σ
sym
b q2Gb(0)

) . (71)

In Fig. 6, we compare this approximation for G(0.0; q)
with the numerical solution of the OZ equation using the

Approximation Error

FIG. 6. Sullivan model results for G(0, 0; q). Comparison of
the exact numerical solution (dots) of the OZ equation (57) with
the analytical approximation (71). We use the Carnahan-Starling
equation of state and a representative temperature T/Tc = 0.74,
corresponding to a strong asymmetry ξT

l /ξT
g ≈ 2.1. The relative

error of the approximation is shown in the inset.

Carnahan-Starling equation of state for μh(ρ) for a represen-
tative temperature representing strong liquid-gas asymmetry.
The maximum error is less than 0.5%. For the local structure
factor, we also compare with the alternative approximation
derived in Ref. [21],

S(0; q) ≈ γg(0) fg(q)Sg(q) + γl (0) fl (q) Sl (q)

+ �ρ ρ ′(0)

σq2

(
fg(q)

Sg(q)

Sg(0)
+ fl (q)

Sl (q)

Sl (0)

)
, (72)

where fg(q) and fl (q) are unchanged from (42). Again, both
approximations yield very similar results and are hardly dis-
tinguishable from the numerical solution of the OZ equation
(See Fig. 7).

IV. DISCUSSION

In this paper, we have shown that, within both square-
gradient theory and the more microscopic Sullivan model of
the free interface, the presence of liquid-gas asymmetry can
be elegantly incorporated using a simple construction which
weights the correlation function and the local structure factor
in terms of the corresponding expressions for effective Ising
symmetric liquid and gas interfaces. Using this approach,
we can, for all practical purposes, analytically determine
G(0, 0; q) and S(0; q) over the full range of wave vectors.
Our approximations, in particular, those for the correlation
functions (33) and (71), are near indistinguishable from the
numerical solution of the OZ equation. These equations for
square-gradient theory and the Sullivan model, respectively,
are the main results of our paper.

To finish our paper, we make a few remarks regarding the
interpretation of some of our results. The first of these is that
the mixing rule for the correlation function (29) is particularly
simple. The reason why this mixing rule is expressed in terms
of the inverse of the correlation function rather than G itself
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Exact
Approx
Approx

Approximations
 Errors

FIG. 7. Sullivan model results for S(0; q). Comparison of the
exact numerical solution (dots) of the OZ equation (58) for T/Tc =
0.74 with the analytical approximation (38) together with (69)
and (70) (red line). The alternative approximation based on (72)
(blue dashed line) is also shown, but it is indistinguishable from the
previous approximation. The relative errors of both approximations
are shown in the inset.

can be traced to the Goldstone-mode divergence since the
latter implies that G is inversely proportional to the surface
tension. There is, therefore, a simple correspondence between
the mixing rule (29) and the expression for the surface ten-
sion (27) written as the average of the symmetric gas and
liquid tensions. It is interesting that, when expressed in terms
of the weights fg(q) and fl (q) of the symmetric gas and
symmetric liquid contributions, the exact mixing rules for the
correlation function (30) and local structure factor (38) are
the same. However, this parallelism does not imply that one
can split consistently the correlation function and structure
factor into bulk and interfacial contributions as has been often
assumed. In fact, our paper shows that the correlation function
and local structure factor decompose naturally into symmetric
gas and symmetric liquid contributions but not into bulk and
interfacial contributions. This is clear in the explicit form of
the approximation (71), which is, for all practical purposes,
the analytical result for G(0, 0; q).

The mixing rule for the local structure factor leads to a new
accurate analytical approximation for S(0; q), which yields
remarkably similar results to an alternate approximation (72)
proposed in Ref. [21]. The reason for this robustness is that
both approximations rely on the constrained form of the
structure factor imposed by the resonant expansion (21). The
new approximation, based on (38) together with (69) and (70),
is slightly more accurate than (72), although the latter is easier
to implement in simulations and experiments.

The analytical approximation (71) for the correlation func-
tion shows that liquid-gas asymmetry enters in three different
ways: Through the different bulk contributions Gb(q), through
the surface tensions σ

sym
b , which weight the Goldstone-mode

contributions and finally through the bulk enhancements
γb(0)2. In fact, the latter are the most important factors when

the wave-vector q is much larger than the inverse of the bulk
gas correlation length q 
 κg. In this limit, the correlation
function and local structure factor behave as

G(0, 0; q) → α

2μ′
h(ρ0)2q

, (73)

and

S(0; q) → 1

μ′
h(ρ0)

(
1 + 1

q2

)
. (74)

Interestingly, these results are unrelated to the correspond-
ing bulk liquid, gas expressions, and the Goldstone-mode
behavior. Indeed, they are entirely local, dependent only on
the density ρ0 = ρ(0), where G and S are being evaluated
as could be anticipated physically. Also, we note that both
expressions are equivalent to the large wave-vector behav-
ior of the correlation function and structure factor of the
unstable homogeneous phase with density ρ0. Note that the
results (73) and (74) remain valid as the temperature is in-
creased to the critical point, the interface disappears, and ρ0

tends to the critical density ρc. At this point, (73) and (74)
correspond simply to the bulk critical behavior of Gb(q)
and Sb(q).

Finally, let us return to the potential limitations of our
method and conclusions. The models considered here are
mean fieldlike and do not include the broadening of the inter-
facial width induced by capillary-wave fluctuations. However,
as stressed earlier, in three dimensions, the broadening of the
profile is extremely weak and does not affect significantly
the structure of the density profile, even for interfaces of
mesoscopic extent. Indeed, we have already shown that the
present approach quantitatively explains the complex wave-
vector dependence of the total structure factor seen in the
largest simulations of the liquid-gas interface in systems with
truncated Lennard-Jones forces [16,19,21]. We are, therefore,
confident that our predictions for the correlation function and
local structure factor can be applied even in the presence of
interfacial roughness, which would be included implicitly in
the value of the gradient ρ ′(0). A second criticism is that
our models are local and do not account for short-ranged
packing effects. Although packing effects do not significantly
influence the density profile, they may well show up more
prominently in the correlation function. However, it appears
reasonable to us that the present local theories not only
explain the leading-order corrections to the Goldstone mode
(as the wave vector increases), but also identify correctly
the physical meaning of the large-q behavior, namely, that
the correlation function and structure factor behave locally.
We believe that this is something that can be tested us-
ing DFT models that account more accurately for packing
effects.
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