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Helicoids in chiral liquid crystals under external fields
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Cholesteric liquid crystals, subject to externally applied magnetic fields and confined between two parallel
planar surfaces with strong homeotropic anchoring conditions, are found to undergo transitions to different
types of helicoidal configurations with disclinations. Analytical and numerical studies are performed in order to
characterize their properties. In particular, we produce a phase diagram for the transitions from the nematic state
to the helicoidal phases in terms of the molecular chirality and the strength of the applied magnetic field.
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I. INTRODUCTION

In the absence of external applied magnetic or electric
fields and in free space, a cholesteric liquid crystal twists
uniformly about a single axis: Rodlike chiral molecules self-
assemble into a helical arrangement along a single direction.
Under confinement, the natural twisted structures of the chiral
nematic liquid crystals are often incommensurate with the
geometry, dimension, and surface anchoring of the confining
regions. Due to this geometric frustration, the confined chiral
liquid crystals struggle to maintain their helical pitch and the
preferred directors at the confining walls. A similar frustration
mechanism takes place for a cholesteric liquid crystal in an
electric or magnetic field: The field alignment is incompatible
with the cholesteric twist. In both cases of frustration, the
cholesteric is subject to an anisotropic environment: The
competition between favored twist and anisotropy leads to
the distortion and the partial or total unwinding of the helical
nematic texture and to the formation of intriguing frustrated
director configurations with topological defects [1,2]. The
simultaneous interplay of the intrinsic molecular chirality, the
external fields, and the boundary conditions, generate new
structures either localized or extended. These structures can
be elongated stringlike objects called cholesteric fingers (or
threads) or helicoids [3–8], or they may be localized objects
called cholesteric bubbles or spherulitic domains [9–12].
Recently, it has been recognized that cholesteric bubbles
can have the remarkable properties of skyrmions. Skyrmions,
originally proposed in the field of nuclear physics [13], are
localized structures in which the magnitude of the order
parameter (the nematic director n in this case) remains con-
stant, but the orientation continuously varies in a complex
texture that cannot be annealed away. Moreover, very recently,
Smalyukh et al. generated in confined chiral liquid crystals
a type of defects in the director field configurations, called
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triple-twist torons, by geometrical frustration and by using
Laguerre-Gaussian vortex laser beams. They also showed
numerically their existence from a theoretical point of view
[14–16].

All such configurations, i.e., helicoids, skyrmions, torons,
and other specific solitonic textures, e.g., hopfions and merons
[14–17], are stabilized by some type of topological and/or
nontopological conservation laws [18] and, at least, in some
approximate setting, they can be described in terms of in-
tegrable nonlinear equations [19]. Moreover, these novel
structures have been studied through a range of techniques,
including experiments and numerical simulations in several
confinement geometries, such as thin layers, wedge cells,
cylindrical cavities, and spherical droplets [20–23]. Relevant
variational and numerical calculations for skyrmions have
been performed in two dimensions by Bogdanov and Shes-
takov [24] and Bogdanov et al. [25], and more recently in
three dimensions by Leonov et al. [26]. In the latter paper,
authors studied the Frank-Oseen (FO) free energy in the
confined geometry,

B =
{

(x, y, z) ∈ R3, |z| � L

2

}
, (1)

L being the nematic cell gap under the action of an external
field and with weak anchoring conditions, i.e., the Rapini-
Popoular anchoring surface energy [27]. They calculated the
director texture for skyrmions. The boundary conditions trans-
late into conditions on the partial derivatives of the director
on the confining surfaces. Later, in Ref. [28], the authors per-
formed similar variational and numerical calculations in the
same confining geometry but for the case of strong anchoring
(n perpendicular at the confining surfaces) and in the absence
of external fields. In particular, the authors of Ref. [28] worked
out analytical and numerical solutions for a single helicoid
and for a helicoid lattice. By using similar calculations, they
investigated isolated skyrmions and skyrmion lattices.

In this paper, we consider a chiral liquid crystal confined
within B as in (1) with strong homeotropic anchoring condi-
tions and in the presence of an external magnetic field.

As opposed to Ref. [28], the inclusion of an external field
leads to a nonlinear partial differential equation (PDE) for the
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director orientation angle, more precisely, the elliptic sine-
Gordon equation on the strip, possibly with discontinuous
boundary conditions. New static chiral states are found and
recognized to be similar to cholesteric fingers (helicoids) with
defects of disclination type [3,8]. We classify and describe
these configurations by analytical and numerical methods.
In particular, we discuss a new type of solutions called 2π

helicoids where the director field n(r), independent of y,
rotates by 2π over the strip, that is, the projection of B onto
the (x, z) plane. In addition to the 2π helicoids, we also find
π helicoids where the director n(r) only twists once over the
strip. All these solutions contain disclination-type singulari-
ties. Accordingly, the evaluation of the static free energy leads
to the introduction of a phenomenological cutoff, which, in
turn, determines a critical parameter for the transition to the
nematic uniform state. Transitions from the uniform nematic
state to 2π and π helicoids are represented in the phase space
of the spontaneous chiral twist and magnetic strengths.

The paper is organized as follows. In Sec. II, we introduce
the mathematical model. In Secs. III and IV, we solve the
nonlinear PDE problem and find the solutions in a closed
analytical form. In Sec. V, we build up a phase diagram of
the solutions by energy comparison. Finally, in Sec. VI, we
draw our conclusions and plan future work.

II. THE MODEL

We consider a static cholesteric liquid crystal (CLC) layer,
confined in between two identical planar surfaces placed at
z = ± L

2 and extending to infinity in the orthogonal directions
(x, y) in a suitable Cartesian reference system (O, x, y, z) with
orthonormal basis vectors x, y, and z. The system is described
by the unimodular director field n(r) ∈ RP 2,

n(r) = [sin θ (r) cos φ(r), sin θ (r) sin φ(r), cos θ (r)], (2)

due to the Z2 symmetry of the microscopic model [29] and
governed by the Frank-Oseen free energy density,

EFO = K1

2
(∇ · n)2 + K2

2
(n · ∇ × n − q0)2

+ K3

2
(n × ∇ × n)2 − χa

2
(n · H)2, (3)

where q0 is the spontaneous chirality constant of the
cholesteric phase, whereas the positive reals Ki denote the
splay, twist, and bend Frank elastic constants, respectively,
for which we use the simplifying one constant approximation
K = K1 = K2 = K3. The last term represents the interaction
energy density with an external static magnetic field H = Hz,
which is assumed to be uniform.

At the bounding surfaces, we impose strong homeotropic
anchoring conditions, i.e., n(x, y, z = ± L

2 ) = z.
Both H and the confinement break the general ro-

tational and translational symmetries along the z direc-
tion of the fundamental cholesteric helices, i.e., n(r) =
(0, sin q0x, cos q0x). Hence, cholesteric helices are de-
formed, possibly leading to extended structures called he-
licoids or to localized cholesteric bubble domains, called
spherulites, which have been considered in Refs. [19,30].

The special symmetry reduction (constant φ = −π/2 and
y invariance),

n(r) = [0,− sin θ (x, z), cos θ (x, z)] (4)

for the director field leads to the cholesteric finger phase with
its axis along the x direction and it simplifies the Frank-Oseen
energy (3) to

EFO−2d = K

2

∫ L/2

−(L/2)
dz

∫ ∞

−∞
dx

[
[∂xθ (x, z)]2 + [∂zθ (x, z)]2

+ 2q0∂xθ (x, z) + χaH2

K
sin2 θ (x, z)

]
, (5)

where the constant magnetic contribution of the nematic phase
has been subtracted.

The corresponding equilibrium equation is the elliptic sine-
Gordon,

∂2
x � + ∂2

z � = �2 sin �, � = 2θ, � =
√

χa

K
H, (6)

where � is the reciprocal of the magnetic coherence length.
Please note that this equation does not depend on q0 as the
term Kq0∂xθ in (5) is actually a null Lagrangian.

Large classes of solutions on the plane to Eq. (6) are
well known in the literature [31] (and references therein),
but here, we are dealing with different boundary conditions.
Our reduction is the most natural extension of the problem
considered in Ref. [28] and studied also in Ref. [32] in a
linear setting. Here, we study the nonlinear problem. Strong
homeotropic anchoring conditions require �(x,± L

2 ) = 2kπ

and �(x,± L
2 ) = 2k′π with k, k′ ∈ Z, for negative and pos-

itive x’s, respectively. Thus, any nonconstant solution must
have, at least, a jump singularity on the boundaries.

III. 2π HELICOIDS

In order to embody the above requirements, a known
group-theoretical procedure [33] suggests a simple ansatz for
the solution, corresponding to the form

� = 4 arctan[X (x)Z (z)], (7)

which separately depends on the x and z variables (see also
Ref. [34]).

Plugging this expression into (6) and recalling the trigono-
metric identity sin(arctan x) = x√

1+x2 , we get

X ′′

XZ2
+ X 2

(
Z ′′

Z
− Z ′2

Z2

)
= XX ′′−2X ′2+�2X 2 + Z ′′

Z3
− �2

Z2
,

(8)
where (·)′ and (·)′′ indicate the first and the second derivatives
with respect to the argument, respectively.

The integration procedure of this equation is well known
[34], but for self-consistency of the article and for convenience
of the readers, we just sketch the main steps.

Then, performing the mixed derivative ∂2
xz to both sides of

Eq. (8), the right hand side vanishes, and it becomes

2XX ′
[

Z ′′

Z
− Z ′2

Z2

]′
− 2Z ′

Z3

[
X ′′

X

]′
= 0. (9)
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The last equation can be separated in

1

X ′X

[
X ′′

X

]′
= 4a, (10)

Z3

Z ′

[
Z ′′

Z
− 2

(
Z ′

Z

)2
]′

= 4a, (11)

where a is a separation constant.
Integrating Eqs. (10) and (11) with respect to x and z, one

obtains

X ′′ = 2aX 3 + bX, (12)

Z ′′

Z
− 2

(
Z ′

Z

)2

+ 2a

Z2
+ d = 0, (13)

which can be further integrated [i.e., multiplying the equation
for Z (z) in (13) by (Z ′/Z3)] to get

(X ′)2 = aX 4 + bX 2 + c, (14)

(Z ′)2 = gZ4 + dZ2 + a. (15)

Equations (14) and (15) contain five constants (the separation
constant a and the integration constants b, c, d , and g), but
only three of them are independent. Indeed, substituting them
in Eq. (8), one can easily obtain the relations,

g = c, b = �2 − d.

Thus, Eqs. (14) and (15) can be written in the final form

(X ′)2 = aX 4 + (�2 − d )X 2 + c, (16)

(Z ′)2 = cZ4 + dZ2 + a, (17)

which are solvable in terms of Jacobi elliptic functions.
The steplike conditions on the boundaries force to have

Z (± L
2 ) = 0 and to look for functions X (x) monotonic and

unbounded also at some finite point. Then, one obtains

X (x) = ±
√

�2 − d

a
csch(

√
�2 − dx), (18)

where a > 0 and �2 > d .
As for Z (z), the compatibility of Eq. (17) with the sine-

Gordon (6) and the above boundary conditions set d = −π2

L2 in
order to have real θ with the semiperiod of the corresponding
Z (z) exactly equal to the thickness L of the sample. Thus, we
are led to the general expression,

θn = 2 arctan

[
cn	

π (1 + 2n)

cos
(

π (1+2n)z
L

)
sinh

(
cn	

x
L

)
]

− π sgn x (19)

for n ∈ N and where the effective scale 	 = �L and the
modal factor cn = [1 + (1+2n)2π2

	2 ]
1/2

have been introduced.

The asymptotic behavior of this family of solutions is θ
x→±∞−→

∓ π , that is, the director field n(r) rotates by 2π over the strip
as depicted in Fig. 1.

We first observe that the solution only depends on the
structural parameters L and � via their product 	. Second,
there exists an entire spectrum of excitations indexed by
n � 0. Since, for n > 0, solutions are discontinuous at x = 0

FIG. 1. Distribution of n(r) for the 2π helicoid, given in (19) for
n = 0. The picture shows a cross section of the configuration at y = 0
for �L = 1. The disclination is indicated by the letter D.

and cos[π (1 + 2n)z/L] � 0, the most physically meaningful
solution corresponds to θ0(x, z) (Fig. 1), which is continuous
and differentiable at all points of the strip but at the special
points (x = 0, z = ± L

2 ). Here, it exhibits a discontinuity of
2π , indicating the presence of a disclination along the y
direction.

Whereas the dependency on z is determined uniquely by

L, on the x variable, the typical scale is �−1(1 + π2

	2 )
−(1/2)

,
which comes from the tendency of the external magnetic field
to align the molecules along its direction, further enhanced by
the anchoring of the bounding surfaces.

We also note that solution (19) can be obtained by applying
the nonlinear Bianchi superposition formula [35] for two one-
kink solutions of the elliptic sine-Gordon (6). Such a theorem
states that if �, �1, and �2 are three solutions related by
the overdetermined first order system, the so-called Bäcklund
transformation,

(∂x − ı∂y)

(
�i − �

2

)
= βi� sin

(
�i + �

2

)
, (20)

(∂x + ı∂y)

(
�i + �

2

)
= �

βi
sin

(
�i − �

2

)
, (21)

(βi ∈ C, i = 1, 2), then a fourth solution is given by

�̄ = � + 4 arctan

[
β2 + β1

β2 − β1
tan

(
�2 − �1

4

)]
. (22)

As an application, one solves the system (20) and (21)
corresponding to the trivial solution � = 0. This leads to
the kink solutions �i = 4 arctan [exp (ai + βi�ζ

2 + �ζ̄

2βi
)] with

ai integration constants for i = 1, 2. Combining these two
expressions into formula (22) and requiring real solutions for
real variables, one is led to the constraints β2 = β−1

1 and a1 =
0, a2 = ıπ . Furthermore, imposing the boundary condition,
one arrives at the expression (19) with β1 = cn + √

c2
n − 1.

This result suggests that multiple 2π -helicoid solutions
may be built up by iterating the process. Unfortunately, the
boundary conditions we impose are too rigid, and they lead
to singular solutions, which will be excluded from further
discussions.
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FIG. 2. Contour plot of θ0 around the disclination located at x =
0, z = −L/2.

Finally, let us observe that since the total change in θ

is 2π , we can distinguish two regions where the director
rapidly passes through π

2 , sandwiched by three different re-
gions in which the liquid crystal is close to the uniform
state. Around the disclination, θ0 has a conformally invariant

behavior which, in cylindrical coordinates x = ρ cos t, z =
− L

2 + ρ sin t , can be expressed as a series with respect to ρ,
namely,

θ0 = −π sgn(cos t ) + 2t − sin(2t )(	2 cos2 t + π2)

6

(ρ

L

)2

+ O

[(ρ

L

)4
]
, 0 � t � π. (23)

Thus, θ0 is almost independent of the distance ρ from
the disclination as shown by the contour plot in Fig. 2. The
corresponding singularity in the energy signals a loss of order,
and, therefore, physically, in the vicinity of the disclination,
the liquid crystal is melted from the ordered to the disordered
isotropic phase. To avoid the singularity, we single out a small
semidisk of radius a � L

2 around the disclination and replace
it with a region in the isotropic phase where it is common
practice to uniformly impose an energy density cutoff Emax ≈
K
a2 with a ≈ 10−2–10−3L [32].

By using analytical solution (19), we can write down an
expression for the difference of energy with respect to the
nematic phase in the limit of small a/L, which, up to second
order, reads

E2π = E2π − Enem ≈ K

3

{
24G + 10a2�2 + 12

√
π2 + �2L2 + 3aq0 ln(16)

− 2π

[
6 − 3aq0 + 3Lq0 + 2a2�2 + 6 ln

(
a

2L

)
+ 3 ln[�2L2 + 2π (π +

√
π2 + �2L2)]

]}
, (24)

where G is the Catalan constant. Please note that E2π corresponds to the energy of the 2π helicoids whereas Enem stands for the
energy of the nematic phase, which equals zero as can be seen from Eq. (5).

At thermal equilibrium, stable 2π helicoids may exist if E2π < 0; from the latter condition, one can infer a critical transition
value for the chiral twist parameter as a function of the external field �. Note that, due to the presence of the external field,
expansion (24) for small a/L holds as far as �L is not very high, which is true in the range of interest. By neglecting the (a/L)2

contributions in (24) and introducing the cutoff energy, we arrive at

E2π = 2KL(qH − q0)

(
π − 1

L

√
K

Emax
[π + ln(4)]

)
, (25)

with

qH = 4G − 2π + 2
√

π2 + �2L2 + π ln
(
4L2 Emax

K

) − π ln[�2L2 + 2π (π + √
π2 + �2L2)]

L
(
π − 1

L

√
K

Emax
[π + ln(4)]

) , (26)

the critical chiral twist. Since the disclination radius has an
important effect in locating the phase transition, qH might be
used to estimate the effective size of the defects appearing in
real liquid crystal samples.

IV. π HELICOIDS

In a “more elementary” class of helicoids the director n(r)
twists only once when going from the vacuum state θ = π at
x → −∞ to the nearest Z2 equivalent one, namely, θ = 0 for
x → +∞. Moreover, because of the homeotropic anchoring,

the boundary conditions on the confining surfaces will be

θ

(
x, z = ±L

2

)
=

{
π, x < 0,

0, x > 0.
(27)

Then, in such a kind of solutions, which we call π helicoids,
a couple of disclinations appear on the boundaries, parallel
to the y axis. The analysis of the full nonlinear problem (6)
with boundary values (27) is quite involved, even if one would
profit from the integrability properties of the sine-Gordon
equation through its Lax pair formulation as developed in
Ref. [36] and references therein (see the Appendix for more
details). Actually, the Lax pair problem is a matrix linear
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representation of the overdetemined Bäcklund system (20)
and (21), and it is equivalent to finding a matrix integration

factor �(x, z; λ), depending on an auxiliary complex parame-
ter λ, which makes the following one-form exact

W = exp

[
�(λ)x + ω(λ)z

σ̂3

2

]
[Q(x, z, λ)� dx + ıQ(x, z,−λ)� dz]

= d

[
exp

(
�(λ)x + ω(λ)z

σ̂3

2

)
�

]
, (28)

with σ̂3· = [σ3, ·], σi being the Pauli matrices, �(λ) and ω(λ) the dispersion functions on Cλ/{0} defined as

�(λ) = ı�

2

(
1

λ
− λ

)
, ω(λ) = �

2

(
1

λ
+ λ

)
, (29)

and Q(x, z, λ) as the potential matrix,

Q(x, z, λ) = ı

4

(
�

λ
(1 − cos �)σ3 + (�x − ı�z )σ1 − �

λ
sin �σ2

)
. (30)

Then, one can check that the closure condition of W implies that � has to satisfy the sine-Gordon equation (6). However, this
type of construction also requires the knowledge of the derivatives normal to the boundaries, possibly containing singularities
not included in (27). These difficulties are not alleviated in the limit of the linear approximation, which can be obtained by letting
� = 2θ ≈ 0 and � ≈ 12, namely,

Wlin = 2e−�(λ)x−ω(λ)z

[
ı

(
θx − ıθz − �θ

λ

)
dx −

(
θx − ıθz + �θ

λ

)
dy

]
. (31)

To avoid such an addition of extra information about the
derivatives, a long procedure was introduced in Ref. [37].
Such work led to a unifying approach in solving both linear
and nonlinear boundary value problems via a suitable integral
mapping of the boundary data into the solution [38].

The closure condition of Wlin yields the modified
Helmholtz equation which can be solved by different types
of transform methods, thus, bypassing the above mentioned
problem of the derivatives on the boundary. By exploiting the
discrete mirror symmetry along the x axes of our problems (6)
and (27), the modified Helmholtz boundary value problem on
the semistrip arises

∂2
x θ+ + ∂2

z θ+ = �2θ+ ∀ x > 0, (32a)

θ+

(
x, z = ±L

2

)
= 0, θ+(x = 0+, z) = π

2
∀ |z| <

L

2
,

θ−(x, z) = π − θ+(−x, z), ∀ x < 0 and |z| <
L

2
.

(32b)

In principle, this system could be solved by standard
Fourier series methods [39]. Because of the linearity of the
equation and the separability of the independent variables,
one can look for solutions of (32) in the form θ+(x, z) =∑∞

k=0 Xk (x)Zk (z), where Zk belongs to an orthonormal basis
of the L2

[−(L/2),+(L/2)] space. Taking into account the vanishing

of the series at |z| = L
2 , one sets Zk =

√
2
L cos ( π (2k+1)z

L ). As-
suming that the series is absolutely and uniformly convergent
together with its derivatives, its substitution into (32) can be
computed by exchanging the sum with the Laplacian operator,
which will act term by term. Using the orthonormalization of

Zk for the generic coefficient, one gets the equation,

X ′′
k =

[
�2 +

(
π (2k + 1)

L

)2
]

Xk . (33)

The corresponding solutions are real exponentials from which
we only keep those vanishing as x tends to infinity, namely,

Xk = ξk exp [− x
√

π2(2k+1)2+�2L2

L ]. The amplitudes ξk are sim-
ply determined by letting x → 0 and using again the orthonor-
malization of Zk for the series

∑∞
k=0 ξkZk = π

2 , we are led to
the solution,

θ+(x, z) = 2
+∞∑
k=0

(−1)k

2k + 1
exp

[
−x

√
π2(2k + 1)2 + 	2

L

]

× cos

(
π (2k + 1)z

L

)
. (34)

This latter cannot be cast in a factorized form as in (19) unless
when � = 0. In this case, the series can be summed up to the
closed form

θ+(x, z) = arctan

[
cos

(
πz
L

)
sinh

(
πx
L

)
]
, (35)

which, upon using the trigonometric identity arctan u +
arctan v = arctan ( u+v

1−uv
), matches Eq. (10) in Ref. [28] up to

a global sign due to the equivalence θ → π − θ in order to
comply with their far-field values.

Using expression (32b), one can continuously complete the
solution also for x < 0 except at the points (x = 0, z = ± L

2 ).
The exponential decaying in x has the characteristic length
x ≈ 2L√

	2+π2 .
However, close to x = 0, the linear approximation to the

sine-Gordon might be unsatisfactory, first because sin π
2 �= π

2 ,
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FIG. 3. Distribution of the n(x, z) field for the π helicoid. The
picture shows a cross section of the configuration at y = 0 for �L =
1. The disclination is indicated by the letter D.

and second because there the series (34) is not uniformly and
absolutely convergent, implying all well known convergence
problems at the discontinuity points. Moreover, the partial
derivatives ∂xθ (x, z) and ∂zθ (x, z) are diverging for x → 0±
and z → ± L

2 . So the differentiability of θ on the segment
{x = 0, |z| < L/2} is lost.

By finding an integration factor associated with the one-
form Wlin in Eq. (31), we can also adopt a different represen-
tation of the same solution (see the Appendix for details) as
follows [40]:

θ+(x, z) = −1

2π

[ ∫ 0

−∞
e�(λ)x+ω(λ)[z+(L/2)]G1(λ)

dλ

λ

+
∫ 0

∞
e�(λ)x+ω(λ)[z−(L/2)]G1(λ)

dλ

λ

+
∫ −ı∞

0
e�(λ)x+ω(λ)[z+(L/2)]G2(λ)

dλ

λ

]
, (36)

where

G1(λ) = ıπ

4

1 − λ2

1 + λ2

eω(λ)L − 1

eω(λ)L + 1
, (37)

G2(λ) = ıπ

4

1 − λ2

1 + λ2
(1 − e−ω(λ)L ) (38)

encode the information about the boundary conditions. In
particular, the function G1(λ) has the poles (	 = �L),

PG = {−ı[
√

	2 + (2n + 1)2π2 − π (2n + 1)]/L}n∈Z. (39)

As expected, the corresponding residues lead to expansion
(34), this bringing both approaches together. On the other
hand, by looking at the analytic properties of the integrands
in the lower half-plane Cλ, one may suitably deform the
integration contour in formula (36) in order to extract more
information about the solution near the singularities. This
alternative approach might be the starting point to study the
full nonlinear problem, which still presents difficulties to get
an explicit formula [37] (in particular, the singular behavior of
the solution around the disclination).

In Fig. 3, n(x, z) is represented by using formula (34) up
to k = 10. At (0,± L

2 ), an overlap of directional ellipsoids

occurs, thus, giving rise to disclinations extended in the
orthogonal direction y. However, the actual configuration is
sensitive to the involved parameters, which control also how
good the linear approximation is. To have more insight in the
π helicoids, a numerical boundary value problem solver has
been implemented for the full nonlinear system. We employed
standard numerical techniques, namely, the central finite dif-
ference scheme accompanied by appropriate application of
Newton’s iterative method for the calculation of the function
θ (x, z) over a suitable grid [41,42]. The problem can be coded
in almost any programming language. However, we used
MATLAB© by Mathworks [43] because of the natural way it
operates with large and sparse matrices.

In Fig. 4, a comparison between the numerical solutions
and the analytical series up to 7000 terms is presented. Al-
though the similarity of the profiles is remarkable at this accu-
racy, a study of the Laplacians shows the expected differences
associated with the different equations solved (either modified
Helmholtz or sine-Gordon).

V. PHASE TRANSITION DIAGRAM

In order to assess the relative stability of the solutions, we
have found above, i.e., π and 2π helicoids, we need now to
perform an energy analysis and to compare the solutions also
with the uniform nematic configurations to see which one
is energetically favored in terms of the physical parameters
involved, namely, q0 and �. To this purpose, we use solutions
(19) for n = 0 and (34) with its extension for negative x where,
in the latter, we truncated the series at kmax = 7000.

Recalling that the chiral strength q0 is a function of the
temperature (linear under certain conditions), one could in-
terpret the phase diagram as the result of thermal-magnetic
competitive effects in the formation of the helicoids. When the
energy of both solutions is greater than zero, the homeotropic
nematic phase is the favored one. It is important to note
that the transitions between the three different configurations
occur along two different curves (see Fig. 5). There are two
different thresholds in chirality strength for a fixed magnetic
field also depending on the disclination size a/L. In Fig. 5,
we have set a/L = 10−2, although, for smaller values of
a/L, the shape of the diagram does not change. In particular,
if a study of a pair of π helicoids as a function of the
distance between them is realized, one can see the energy
increasing when they approach. This implies the existence of
a barrier preventing the two helicoids from sitting on top of
each other unless some energy is introduced into the system
from outside. This underlines the stability of the 2π helicoids
with disclinations located at the boundaries with respect to
the decay into two π helicoids with disclinations placed at
the same point, which correspond to completely different
configurations. Conversely, this is not the case when � = 0
where the two configurations are equivalent.

Moreover, the curve between the nematic and the
π -helicoid phases should be the analogous of the straight
line �0 = π |q0|

2 in the bulk model [44]. Deviations from such
a behavior are related to the anchoring, possibly leading
to significant variations in the value of the critical external
field. Moreover, in Ref. [32], a semiempirical coexistence
curve between the homeotropic and the cholesteric phases was
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FIG. 4. Comparison of the numerical and approximated π -helicoid solutions for different values of the external field: (a) �L = 0,
(b) �L = 1, (c) �L = 3, and (d) �L = 5

found, providing the critical external field �cL in terms of
the cholesteric twist q0L. Using the present notation, such a
relation reads

�cL =
√√√√2γ 2qL

(
qL − 2

γ

)
1 − (1−e−γ qL )

γ qL

, (40)

with γ = K2/K and

qL = − 1

γ
W−1

(
−γ L

2a
e−1−q0Lγ

)
, (41)

where Wk is the kth branch of the Lambert W function [45]. A
fitting procedure to our numerical data leads to γ = 1.054,
in excellent agreement with our assumed one constant ap-
proximation (i.e., γ = 1). The corresponding best fit curve is
displayed in Fig. 5 (black dashed line).

VI. CONCLUSIONS

Summarizing, we have analytically found 2π helicoids
which are configurations in bounded CLCs with homeotropic
anchoring, allowed by the nonlinearity arising from the pres-
ence of an external field. Analogously, we studied a different

type of helicoids, the π ones. If the former configuration can
be derived in a closed form, for instance, by the Bäcklund
transformations, for the latter, we have obtained approximated
expressions and numerical solutions. Both classes of config-
urations are characterized by the presence of disclinations,
located at the boundaries. The disclinations imply energy
density divergences, which may be overcome by introducing
a phenomenological energy cutoff, corresponding to excluded
regions of melted crystal.

Numerically, we provided a phase diagram in the parame-
ters q0L and �L, which established the energetically favored
configurations among them, the uniform nematic phase, and
the corresponding transitions. We showed that π helicoids
switch to 2π helicoids under certain circumstances dictated
by the parameters of the problem. In particular, for a fixed
value of the external field, we found the sequence uniform-
to-π -to-2π helicoids as the value of the chirality increases as
expected.

We would like to specify that other configurations, such
as the three-dimensional objects discussed in the Introduction
and helicoid lattices, might modify the phase diagram pre-
sented in Fig. 5. However, it is not necessary to introduce them
in order to characterize the cholesteric-nematic transition we
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FIG. 5. Phase diagram on the plane Lq0, L�, representing the
nematic (blue), π -helicoid (orange) and 2π -helicoid (ochre) phases.
The dashed black line corresponds to the best fit to (40).

found as shown by the agreement of our results with those
obtained in Ref. [32] and the nature of the disclinations at
the boundaries. This approach is similar to previous studies
of analytical solutions limited to single helicoids with discli-
nations but in the absence of external fields and under the
assumption of y invariance (see, for instance, Refs. [46,47]
and [28,48]). Preceding detailed energy computations are now
extended to the case of external fields in order to draw a
theoretical phase diagram which can be considered equiva-
lent to the experimental or semiempirical ones presented in
Refs. [5,32,49].

This paper provides a step forward in the analytical con-
struction of the fully comprehensive phase transition diagram
for geometrically frustrated chiral nematics, which, to the best
of our knowledge, is still a crucial and formidable problem for
liquid crystals theory. In this spirit, the next step to be taken
would be the study of the existence of lattices of helicoids,
their interactions, and the corresponding phase diagram.
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APPENDIX

In this Appendix, we give details about the derivation of
the integral solution (36) to the modified Helmoltz boundary
value problem and its relation to the series representation (34).

The sine-Gordon Eq. (6) is well known to be solvable
via the inverse spectral transform (IST) [36] for initial data

given at a fixed value of one of the independent variables. The
IST is an integration procedure, which consists of studying
the analytical properties of the wave functions of a specific
linear differential operator (sometimes called the principal
Lax operator) in one independent variable. Then, analytical
deformations in the other independent variable of those wave
functions are obtained by the action of a second suitable
differential linear operator. In our case, these operators, called
a Lax pair, possess the key property to have the sine-Gordon
as their compatibility (commutativity) condition. This formu-
lation introduces a complex spectral parameter λ, analogous
to the momentum and frequency in the Fourier transform
method. In fact, one may encode information of the solution
(such as initial data and/or boundary values) into certain
specific functions of λ: the so-called scattering data. The
second Lax operator leads to linear differential equations
determining the deformations of the scattering data. These
new data are used to reconstruct the solution of the sine-
Gordon for any value of the pair of independent variables by
solving the so-called inverse linear spectral problem. More-
over, the scattering data are determined by the singularities
of the principal Lax operator wave functions on the complex
λ plane. Under suitable asymptotic assumptions on the sine-
Gordon solutions, independent wave functions are sectionally
holomorphic on the λ plane and the corresponding jump
functions along the curves separating the holomorphicity re-
gions provide the scattering data. Now, in classical complex
function theory, solving the Riemann-Hilbert problem means
reconstructing these sectionally holomorphic wave functions
from given jump functions [50]. This is an equivalent way
to formulate the inverse spectral problem. This idea can be
readily applied also in the elliptic case with rather general
boundary conditions, provided that suitable jump functions
are assured [38,51]. For the sine-Gordon on the semistrip,
this approach was almost fully developed in Ref. [37] (and
references therein) where a unified method both for linear
and for nonlinear integrable equations has been developed.
Thus, this includes the treatment of the linear (modified)
Helmholtz equation, which is exactly the linear approximation
to our original model (6). Thus, in the present Appendix, we
will apply such methods to extract interesting information
in the linear case given by Eq. (32a). This simplification
is supported by numerical calculations (see the discussion
at the end of Sec. IV). In fact, it turns out that linear and
nonlinear treatments show quite small differences in the
quantitative behavior of the solutions near the disclination
and for values of θ ≈ π

2 where we are far from a linear
scheme.

As mentioned in the main text, in the unified approach
to the study of the sine-Gordon and the modified Helmholtz
equations, the traditional Lax pair formulation is equivalent
to finding a matrix integration factor �(x, z; λ) (the wave
function), depending on λ, which makes the one-form W in
Eq. (28) exact.

The first observation is that Wlin in Eq. (31) remains closed
by adding a suitable exact one-form d[e�x+ωzκ (x, z)]. In
particular, one can choose the function κ (x, z) in such a way
to cancel the ∂zθ (∂xθ ) terms from the dx (dz) component.
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x

z

1

2

3

FIG. 6. Integration path for the Riemann-Hilbert problem (A4)–
(A6).

A special case is given by

W mod
lin = e−�(λ)x−ω(λ)z

2

×
[(

ıθx − �(λ)
∫ +∞

x
θz(ξ, z)dξ + �θ

λ

)
dx

+
(

ıθz − ı�θ

λ
+

∫ +∞

x
θ (ξ, z)dξ

− ω(λ)
∫ +∞

x
θz(ξ, z)dξ

)
dz

]
, (A1)

where � and ω are as in Eq. (29).

Suppose now that the boundary corresponds to a semistrip
where the value for θ is assigned on its three sides. Then, in
analogy with Eq. (28), we look for three functions � j, j =
1–3 such that

d (e−�(λ)x−ω(λ)z� j ) = W mod
lin . (A2)

By integrating along the paths shown in Fig. 6 (as many as the
sides of the semistrip) with the initial conditions,

�1(+∞, z; λ) = �2

(
0,−L

2
; λ

)
= �3

(
0,

L

2
; λ

)
= 0 (A3)

for any λ, one finds the functions � j , which are related by

�3 − �1 = −e�x+ωze−ω(L/2)�1

(
0,

L

2
; λ

)
, (A4)

�3 − �2 = e�x+ωzeω(L/2)�3

(
0,−L

2
; λ

)
, (A5)

�1 − �2 = e�x+ωzeω(L/2)�1

(
0,−L

2
; λ

)
. (A6)

The consistency of these equations requires the global
condition,

e−ωL�1

(
0,

L

2
; λ

)
− �1

(
0,−L

2
; λ

)
+ �3

(
0,−L

2
; λ

)
= 0.

(A7)
If the analyticity properties of the functions � j are determined
and the right hand side of (A4)–(A6) are known, such a system
will define a Riemann-Hilbert problem associated with the
original modified Helmholtz boundary value problem (BVP).

Proceeding in this way, one first integrates Eq. (A2) along
path 1, obtaining

�1 = −1

2

∫ ∞

x
e�(x−x′ )

[
ıθx′ + �θ

λ
− �(λ)

∫ +∞

x′
θz(ξ, z)dξ

]
dx′. (A8)

Hence, the constants appearing in (A4) and (A6) are given by

�1

(
0,±L

2
; λ

)
= −1

2

∫ ∞

0
e−�x′

[
ıθx′

(
x′,±L

2

)
+ �θ

(
x′,± L

2

)
λ

− �(λ)
∫ +∞

x′
θz

(
ξ,±L

2

)
dξ

]
dx′. (A9)

Since x′ � 0, the above integrals are convergent for �λ > 0.
Now, in (A5) the quantity �3(0,− L

2 ; λ) can be computed again by integrating (A2) for j = 3 along the segment
[(0, L

2 ), (0,− L
2 )]. It yields

�3

(
0,−L

2
; λ

)
= −1

2

∫ L/2

−(L/2)
e−ω[z′+(L/2)]

[
ıθz′ (0, z′) − ı�θ (0, z′)

λ
+

∫ +∞

0
θ (ξ, z′)dξ − ω(λ)

∫ +∞

0
θz′ (ξ, z′)dξ

]
dz′. (A10)

Integrating by parts the last double integral,

1

2

∫ L/2

−(L/2)
e−ω(λ)[z′+(L/2)]ω(λ)

∫ +∞

0
θz′ (ξ, z′)dξ dz′ = ω

2

[
e−ωL

∫ ∞

0
θ

(
ξ,

L

2

)
dξ −

∫ ∞

0
θ

(
ξ,−L

2

)
dξ

]

+ ω2

2

∫ L/2

−(L/2)
e−ω(λ)[z′+(L/2)]

∫ ∞

0
θ (ξ, z′)dξ dz′, (A11)
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the previous expression reads

�3

(
0,−L

2
; λ

)
= 1

2

∫ L/2

−(L/2)
e−ω[z′+(L/2)]

[
−ıθz′ (0, z′) + ı�θ (0, z′)

λ
− �2

∫ +∞

0
θ (ξ, z′)dξ

]
dz′

+ ω

2

[
e−ωL

∫ +∞

0
θ

(
ξ,

L

2

)
dξ −

∫ +∞

0
θ

(
ξ,−L

2

)
dξ

]
dz′ (A12)

for any λ ∈ C.
Although the constants introduced in (A4)–(A6) contain information about the boundary value problem, they still require

unknown data. Hence, further manipulations are needed in order to suppress them.
Turning again our attention to the original problem (32), Eqs. (A9) and (A12) become

�1

(
0,

L

2
; λ

)
= �(λ)

2

∫ ∞

0
e−�x′

∫ +∞

x′
θz

(
ξ,

L

2

)
dξ dx′, (A13)

�3

(
0,−L

2
; λ

)
= iπ [1 − e−ω(λ)L]

λ2 + 1
− �2

2

∫ L/2

−(L/2)
e−ω[z′+(L/2)]

∫ +∞

0
θ (ξ, z′)dξ dz′, (A14)

both still containing unknown functions.
To have more restrictions on them, we look at their sym-

metries. First, the z-mirror symmetry,

θ (x,−z) = θ (x, z) (A15)

implies

�1

(
0,

L

2
; λ

)
= −�1

(
0,−L

2
; λ

)
(A16)

for (A13), which, used in the global symmetry (A7), leads to

�3

(
0,−L

2
; λ

)
= (e−ωL + 1)�1

(
0,−L

2
; λ

)
. (A17)

Now, since �1(0,− L
2 ; λ) depends on λ only through �(λ), it

will enjoy the same inversion symmetry λ → − 1
λ

, namely,

�1

(
0,−L

2
; −1

λ

)
= �1

(
0,−L

2
; λ

)
. (A18)

On the other hand, �3(0,− L
2 ; λ) in (A14) depends on λ

through both ω and �2, thus, being invariant under λ → 1
λ

,

�3

(
0,−L

2
; λ

)
− ıπ (1 − e−ω(λ)L )

λ2 + 1
= �3

(
0,−L

2
;

1

λ

)

− ıπλ2(1 − e−ω(λ)L )

λ2 + 1
. (A19)

Applying the transformation λ → 1
λ

into (A17) and (A18),
substituting into (A19), and rearranging the various terms, we
are led to the equation,

�1

(
0,−L

2
; λ

)
− �1

(
0,−L

2
; −λ

)
= G1(λ), (A20)

which, because of the convergence region for �1, only makes
sense for λ ∈ R with

G1(λ) = ıπ

4

1 − λ2

1 + λ2

eω(λ)L − 1

eω(λ)L + 1
. (A21)

Analogously, using again (A17) and the above symmetries,
one obtains

�3

(
0,−L

2
; λ

)
− (e−ωL + 1)�1

(
0,−L

2
; −λ

)
= G2(λ),

(A22)
which holds on λ ∈ C− and where

G2(λ) = ıπ

4

1 − λ2

1 + λ2
(1 − e−ω(λ)L ). (A23)

Both G1 and G2 now only encode information about the
boundary conditions, but in order to use them, one has to
suitably modify the relations (A4)–(A6). Precisely, defining
the new �̃ j [coherently with the definition (A2)],

�1 = �̃1λ ∈ C+,

�2 = �̃2 − e� x+ω[z+(L/2)]�1

(
0,−L

2
; −λ

)
λ ∈ CIII,

�3 = �̃3 + e�x+ω[z−(L/2)]�1

(
0,−L

2
; −λ

)
λ ∈ CIV, (A24)

the relations (A4)–(A6) read

�̃3 − �̃1 = e�x+ωze−ω(L/2)G1(λ), λ ∈ R+,

�̃3 − �̃2 = e�x+ωzeω(L/2)G2(λ), λ ∈ ıR−, (A25)

�̃1 − �̃2 = e�x+ωzeω(L/2)G1(λ), λ ∈ R−.

The system (A25) is a Riemann-Hilbert problem defined
on three branches where the jumps are completely known
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functions. Furthermore, going back to (A8) and estimating
its asymptotic behavior for λ → ∞, one obtains a reference
value for �̃1,

�̃1(x, z; λ) = 1

2

∫ +∞

x
θz(ξ, z)dξ + O

(
1

λ

)
. (A26)

Thus, from the jump conditions (A25) and the asymptotic
value (A26), �̃1 is given by

2π ı

[
�̃1(x, z; λ) − 1

2

∫ +∞

x
θz(ξ, z)dξ

]

=
∫ 0

−∞
e�(λ′ )x+ω(λ′ )[z+(L/2)] G1(λ′)

λ′ − λ
dλ′

+
∫ 0

∞
e�(λ′ )x+ω(λ′ )[z−(L/2)] G1(λ′)

λ′ − λ
dλ′

+
∫ −ı∞

0
e�(λ′ )x+ω(λ′ )[z+(L/2)] G2(λ′)

λ′ − λ
dλ′, (A27)

which holds for λ ∈ C+. On the other hand, from the compo-
nent dx of the linear problem (A2) or from the solution (A8)
in the limit λ → 0, one obtains

θ = −ı lim
λ→0

[
�̃1(x, z; λ) − 1

2

∫ +∞

x
θz(ξ, z)dξ

]
. (A28)

Comparing the last two relations, one obtains the solution of
the modified Helmholtz BVP (32) by the final formula,

θ+(x, z) = −1

2π

[ ∫ 0

−∞
e�(λ)x+ω(λ)[z+(L/2)]G1(λ)

dλ

λ

+
∫ 0

∞
e�(λ)x+ω(λ)[z−(L/2)]G1(λ)

dλ

λ

+
∫ −ı∞

0
e�(λ)x+ω(λ)[z+(L/2)]G2(λ)

dλ

λ

]
. (A29)

One can check that the solution (A29) certainly satisfies the
boundary conditions in (32).

Now, if one sets z = − L
2 + ε with 0 < ε < L

2 , it can be
verified that the integrands in (36) are bounded and analytic
functions in CIV. Thus, performing as above, the change in
variable λ → − 1

λ
on the first term, we are led to an integrand

split into an analytic part plus a meromorphic contribution
−ı e�(λ)x

2λ

(1−λ2 )
(1+λ2 )

(1−e−ω(λ)ε )
(eLω(λ)+1) , containing all poles in the family

P−
G = {λ∈PG, �λn < 0}. Thus, the solution is given in terms

of the series of its residues. Noting that

λ−(n+1) = −λn − 2ı
√

1 + (2n + 1)2π2,

�(λ−(n+1)) = �(λn),

ω(λ−(n+1)) = −ω(λn), (A30)

Res(eLω(λ) + 1)−1|λ−(n+1) = −Res(eLω(λ) + 1)−1|λn − 2,

one can first sum up the contributions coming from the
poles λn and λ−(n+1), collecting the exponential x dependence
and the trigonometric z dependence. This manipulation leads
directly to the formula (34).
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