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Uniform distortions and generalized elasticity of liquid crystals
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Ordinary nematic liquid crystals are characterized by having a uniform director field as ground state. In
such a state, the director is the same everywhere and no distortion is to be seen at all. We give a definition of
uniform distortion which makes precise the intuitive notion of seeing everywhere the same director landscape.
We characterize all such distortions and prove that they fall into two families, each described by two scalar
parameters. Uniform distortions exhaust R. Meyer’s heliconical structures, which, as it has recently been
recognized, include the ground state of twist-bend nematics. The generalized elasticity of these new phases is
treated with a simple free-energy density, which can be minimized by both uniform and nonuniform distortions,
the latter injecting a germ of elastic frustration.
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I. INTRODUCTION

More often than not, a fresh look into an established theory
reveals unexpected scenarios. This is certainly the case of a
paper by Selinger [1] on the reinterpretation of Frank’s elastic
theory for liquid crystals [2].

A unit vector, the nematic director n, is the sole player of
this theory, which hinges on a free-energy density expressed
by the most general quadratic form in ∇n invariant under
change of observer and enjoying the nematic symmetry
(which reverses the sign of n). Frank’s formula is the
following:

FF = 1
2 K11(div n)2 + 1

2 K22(n · curl n)2

+ 1
2 K33|n curl n|2 + K24[tr(∇n)2 − (div n)2], (1)

where K11, K22, K33, and K24 are Frank’s elastic constants.
As noted by Ericksen [3], the K24 term, which is called the
saddle-splay energy, has a special status, which also justifies
the way invariants are grouped in (1). That term is a null
Lagrangian, which can be integrated over the domain B
occupied by the material, contributing nothing to the total
energy whenever n is appropriately prescribed on ∂B.1 The
other contributions to FF are genuine bulk terms; they are the
splay, twist, and bend energies, respectively.

The starting point of Ref. [1] is a decomposition of ∇n
already found in Ref. [5], which, however, had a different
pursuit. Letting the scalar S := div n be the splay, the pseu-
doscalar T := n · curl n be the twist, and the vector b := n ×
curl n be the bend, and denoting by W(n) the skew-symmetric
tensor2 associated with n and by P(n) := I − n ⊗ n the pro-
jector on the plane orthogonal to n, one proves the identity [1]

∇n = −b ⊗ n + 1
2 T W(n) + 1

2 SP(n) + D, (2)

*eg.virga@unipv.it
1For example, when n is strongly anchored on ∂B, see also Ref.

[4, chap. 3].
2W(n) acts on any vector v as a cross product, W(n)v = n × v.

where D is a symmetric tensor such that Dn = 0 and tr D =
0.3 These properties guarantee that when D �= 0 it can be
represented as

D = q(n1 ⊗ n1 − n2 ⊗ n2), (3)

where q is the positive eigenvalue of D. This choice of sign
for q identifies (to within a sign) the eigenvectors n1 and n2

orthogonal to n. We set q = 0 when D = 0. Since tr D2 = 2q2,
a useful identity follows from (2),

2q2 = tr(∇n)2 + 1
2 T 2 − 1

2 S2. (4)

Selinger [1] has given compelling reasons to call q the
biaxial splay; we shall adopt this name as well. He also
convincingly argued that T should be called the double
twist; however, here we shall stick to tradition and use the
conventional name for it. Whenever q > 0, the eigenvectors
(n1, n2, n) of D identify the distortion frame. The four com-
ponents of ∇n in (2) are independent from one another; they
identify four independent measures of distortion, which we
collect in (S, T, b, D).

The first advantage of the novel decomposition of ∇n in
(2) is rewriting FF as the sum of four independent quadratics,

FF = 1
2 (K11 − K24)S2 + 1

2 (K22 − K24)T 2

+ 1
2 K33B2 + 2K24q2, (5)

where B2 := b · b. This form of FF makes it immediate prov-
ing when FF is positive definite,

K11 − K24 > 0, K22 − K24 > 0, K33 > 0, K24 > 0,

(6)
also known as Ericksen’s inequalities [6].

The second advantage of (2) is to suggest an intriguing
question [1]: Is it possible to fill space with a combination
of uniform splay, twist, bend, and biaxial splay? In two
space dimensions, the answer to this question depends on the
Gaussian curvature of the surface on which the field n lies. For

3What here is D was � in Ref. [5] and Ref. [1]. I dislike mixing
Latin and Greek alphabets in (2).

2470-0045/2019/100(5)/052701(12) 052701-1 ©2019 American Physical Society

https://orcid.org/0000-0002-2295-8055
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.100.052701&domain=pdf&date_stamp=2019-11-15
https://doi.org/10.1103/PhysRevE.100.052701


EPIFANIO G. VIRGA PHYSICAL REVIEW E 100, 052701 (2019)

a flat surface, apart from the trivial case of a constant n, where
both splay and bend are zero,4 it is impossible to construct a
director field with nonzero uniform splay or nonzero uniform
bend [7, p. 320]. But this is possible for a surface of (constant)
negative Gaussian curvature [8].

Here we answer this question in three space dimensions.
In Sec. II, we introduce a definition of uniform distortions
and prove that they are exhausted by only two families of
fields. The explicit construction of such fields in Sec. III shows
that they are Meyer’s heliconical distortions [7], which have
recently been identified experimentally in the ground state of
twist-bend nematic phases [9]. In Sec. IV, we take advantage
of the ground-state role played by uniform distortions in these
phases to propose a simple elastic free-energy density that
extends FF and has the potential to explain how the still mys-
terious twist-bend nematics can germinate out of ordinary ne-
matics. Section V contains the conclusions of this work. Three
closing appendices host some extra mathematical details.

II. UNIFORM DISTORTIONS

We have introduced in Sec. I the distortion frame
(n1, n2, n), which can be defined for any sufficiently regular
director field n. Actually, the distortion frame is itself a field
of frames, as in general it changes from place to place and so
do the components (b1, b2) of the bend vector b expressed in
the form

b = b1n1 + b2n2, (7)

as well as S, T , and q. Seen from the distortion frame,
the director field is locally characterized by the scalars
(S, T, b1, b2, q), which we call the distortion characteristics.

Suppose that there is a director field n such that its dis-
tortion characteristics are the same everywhere, although the
distortion frame may not be. For such a field, we could not
tell where we are in space by sampling the local nematic dis-
tortion: We could not distinguish points with higher distortion
(such as defects) from points with lower distortion. It is thus
natural to call uniform any such distortion.

Clearly, the class of uniform distortions is not empty:
We know that any constant field n ≡ n0 would obviously be
uniform (but with no distortion). The very question is whether
constant fields are indeed the only uniform distortions. This
question is answered for the negative in this section, where
we characterize all possible uniform distortions. This issue
is intimately related to the possible nature of ground states
for liquid crystals, as shown in Sec. IV below. Here we
assume q > 0. The case q = 0, for which the distortion frame
(n1, n2, n) is undefined, will be treated in Sec. II C.

A. Connectors

The unit vectors in the distortion frame (n1, n2, n) must
satisfy the identities

(∇n1)Tn2 + (∇n2)Tn1 = 0, (8a)

(∇n2)Tn + (∇n)Tn2 = 0, (8b)

(∇n)Tn1 + (∇n1)Tn = 0, (8c)

4The twist is zero for all planar fields.

which stem from the mutual orthogonality of the vectors in a
frame, and the identities

(∇n1)Tn1 = (∇n2)Tn2 = (∇n)Tn = 0, (8d)

which stem from having scaled to unity the length of the
eigenvectors of D. Identities (8) combined together amount
to represent the gradient of the vectors in the distortion frame
as follows:

∇n = n1 ⊗ c1 + n2 ⊗ c2, (9a)

∇n1 = −n ⊗ c1 + n2 ⊗ d, (9b)

∇n2 = −n ⊗ c2 − n1 ⊗ d, (9c)

where c1, c2, and d are vectors, which we call the connectors.
Both c1 and c2 are readily identified by the basic decom-
position formula for ∇n in (2), which we reproduce here
combined with (3) for the ease of the reader,

∇n = −b ⊗ n + 1
2 T W(n) + 1

2 SP(n)

+ q(n1 ⊗ n1 − n2 ⊗ n2). (10)

A direct comparison between (9a) and (10) yields

c1 = (
1
2 S + q

)
n1 − 1

2 T n2 − b1n, (11a)

c2 = 1
2 T n1 + (

1
2 S − q

)
n2 − b2n, (11b)

where, according to (7), b1 and b2 are the components of
the bend vector b along n1 and n2, respectively. The third
connector d remains undetermined and will be derived in
the following section to ensure that (10) can be extended
uniformly to the whole space.

B. Compatibility conditions

According to the definition given above, a uniform director
field has all scalar distortion characteristics (S, T, b1, b2, q)
constant in space. For that to be the case, there must exist a
connector d such that both second gradients ∇2n and ∇2n1 be
symmetric in the last two components to ensure integrability
in the whole space for both fields n and n1. Requiring the same
condition for n2 would not be necessary, as once n and n1

are determined by integration of (9a) and (9b), n2 is uniquely
determined by setting n2 = n × n1 and (9c) is entailed as a
consequence.

It follows from (9a) that

∇2n = n ⊗ ∇c1 − n ⊗ c1 ⊗ c1 + n2 ⊗ c1 ⊗ d + n2 ⊗ ∇c2

− n ⊗ c2 ⊗ c2 − n1 ⊗ c2 ⊗ d. (12)

This is a third-rank tensor, which is symmetric in the last two
entries whenever the three second-rank tensors, n1 · ∇2n, n2 ·
∇2n, and n · ∇2n, obtained saturating the first entry of ∇2n
with n1, n2, and n, respectively, are all symmetric. Now (12)
readily implies that

n1 · ∇2n = ∇c1 − c2 ⊗ d, (13a)

n2 · ∇2n = c1 ⊗ d + ∇c2, (13b)

n · ∇2n = −c1 ⊗ c1 − c2 ⊗ c2. (13c)
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The last of these tensors is automatically symmetric, and so
the integrability requirement for n amounts to the symmetry
of the first two tensors. Keeping all distortion characteristics
constant in (11), we see that

∇c1 = (
1
2 S + q

)∇n1 − 1
2 T ∇n2 − b1∇n, (14a)

∇c2 = 1
2 T ∇n1 + (

1
2 S − q

)∇n2 − b2∇n, (14b)

where ∇n, ∇n1, and ∇n2, via (9) and (11), are meant
to be expressed again in terms of (S, T, b1, b2, q) and the
still-unknown components (d1, d2, d3) of d in the frame
(n1, n2, n). Like the components of the connectors c1 and c2,
d1, d2, d3 are also taken to be uniform in space.5

Requiring the first two tensors in (13) to be symmet-
ric leads us to six scalar equations in the eight unknowns
(S, T, b1, b2, q, d1, d2, d3). After some rearrangements, they
read as follows:

2qd1 = b1T, (15a)

b2d1 = b2
1 − 1

4 (T 2 − S2) + q(S + q), (15b)

2qd3 − b2d2 = 1
2 ST − b1b2, (15c)

2qd2 = −b2T, (15d)

2qd3 + b1d1 = −b1b2 − 1
2 ST, (15e)

b1d2 = −b2
2 + 1

4 (T 2 − S2) + q(S − q), (15f)

where we have isolated the terms linear in the d’s. Since q >

0, it readily follows from (15a) and (15d) that

d1 = b1T

2q
and d2 = −b2T

2q
. (16a)

Inserting these into the remaining equations (15), we obtain
the following expression for d3:

d3 = − 1

4q

[
2b1b2 + T

2q

(
b2

1 + b2
2

)]
, (16b)

supplemented by the equations

b1b2T

2q
= 1

2

[
b2

1 + b2
2 − 1

2
(T 2 − S2) + 2q2

]
(17a)

and

S = 1

2q

(
b2

1 − b2
2

)
. (17b)

By combining together Eqs. (17), we finally solve for T ,
arriving at the following two roots:

T1 = 1

2q
(b1 − b2)2 + 2q, (18a)

T2 = − 1

2q
(b1 + b2)2 − 2q. (18b)

Making use of the latter in (16) and (17b), we conclude that
the symmetry requirement for the tensors in (13a) and (13b)
are satisfied by letting S and T be related to (b1, b2, q) through
(17b) and (18). Thus, there are two families of distortion char-
acteristics compatible with the symmetry of ∇2n: They differ

5Clearly, like the other two connectors, d fails in general to be
uniform in space.

by the sign of the twist T , being T1 > 0 and T2 < 0 (since
q > 0), and are parameterized by (b1, b2, q), which remain
free; the components of the connector d are correspondingly
delivered by (16).

Starting from (10), we have ensured that ∇2n is symmetric,
but this is not enough to guarantee that the complete frame
(n1, n2, n) can be extended through the whole space keeping
(10) valid. To do this, starting from (9b), we also need to
ensure that ∇2n1 stay symmetric when the connectors obey
(11) and (16).

Retracing our steps above, with the aid of (9), we now write

∇2n1 = −n ⊗ ∇c1 − n2 ⊗ c1 ⊗ c2 − n1 ⊗ c1 ⊗ c1

− n2 ⊗ ∇d − n1 ⊗ d ⊗ d − n ⊗ d ⊗ c2 (19)

and find the analogs of (13),

n1 · ∇2n1 = −c1 ⊗ c1 − d ⊗ d, (20a)

n2 · ∇2n1 = −c1 ⊗ c2 + ∇d, (20b)

n · ∇2n1 = −∇c1 − d ⊗ c2, (20c)

where c1 and c2 are as in (11) and the components of d in the
frame (n1, n2, n) are to be given by (16). Clearly, the tensor
in (20a) is already symmetric. The symmetry condition for
the tensors in (20b) and (20c) amounts to the following set of
scalar equations,

d2
1 + d2

2 + T d3 = − 1
4 T 2 − 1

4 S2 + q2,

(21a)

d3(d2 + b1) − (
1
2 S + q

)
d1− 1

2 T d2 = b2
(

1
2 S + q

)− 1
2 b1T,

(21b)

d3(d1−b2) − 1
2 T d1 + (

1
2 S−q

)
d2 = b1

(
1
2 S − q

) + 1
2 b2T,

(21c)

2qd1 = b1T, (21d)

b2d1 = b2
1 + (

1
2 S + q

)2 − 1
4 T 2,

(21e)

2qd3 = − 1
2q b2

2T −b1b2 + 1
2 ST,

(21f)

where again the terms in the d’s (though no longer all linear)
have been isolated from the others.

We see that (21d) is nothing but (15a), and (21f) reduces
to (16b), as soon as we make use of (17b). Similarly, use of
(16a) and (17b) in (21e) turns the latter into an identity. As for
the remaining equations (21), (16) transforms (21a) into[

T 2

(2q)2
− 1

][
2q2 + 1

2

(
b2

1 + b2
2

)] = 0, (22)

which implies that

T 2 = (2q)2. (23)

This, combined with the two variants in (18), leaves us with
the alternative

b1 = b2 or b1 = −b2. (24)
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In both instances, (17b) implies that S = 0, and direct inspec-
tion of (21b) and (21c) shows that they are then identically
satisfied.

Recapitulating, we conclude that there exist only two fam-
ilies of uniform director fields, according to the definition
given in this work. They are classified as follows:

S = 0, T = 2q, b1 = b2 = b, (25a)

S = 0, T = −2q, b1 = −b2 = b, (25b)

where q > 0 and b are arbitrary scalar parameters. Corre-
spondingly, the connectors (c1, c2, d ) are given by

c1 = c2 = qn1 − qn2 − bn, d = bn1 − bn2 − b2

q n,

(26a)

c1 = −c2 = qn1 + qn2 − bn, d = −bn1 − bn2 + b2

q n.

(26b)

The connection between Eqs. (25) and (26) and the heli-
conical director distortions is illustrated in the following sec-
tion. Our development above has shown that they are the only
possible families of uniform distortions, each distinguished by
the sign of the twist.

C. Case q = 0

In the above analysis q was positive. When q = 0, the
distortion frame (n1, n2, n) is no longer defined, because D =
0, but the notion of uniform distortion still makes sense. Here
we show how to extend its definition to this case.

First, let also B = 0. Then (10) reduces to

∇n = 1
2 T W(n) + 1

2 SP(n). (27)

A distortion is uniform only if there is a solution of (27) with
both S and T constant in space. It readily follows from (27)
that

n · ∇2n = − 1
4 (S2 + T 2)P(n), (28a)

e · ∇2n = 1
4 (T 2 − S2)n ⊗ e + 1

4 ST W(e)

+ 1
4 ST (e⊥ ⊗ n + n ⊗ e⊥), (28b)

where e is any unit vector orthogonal to n, e⊥ := n × e, and
W(e) is the skew-symmetric tensor associated with e. While
the tensor in (28a) is always symmetric, the tensor in (28b)
is so only if T 2 − S2 = 0 and ST = 0, which imply ∇n ≡ 0,
that is, n is itself trivially uniform.

If B �= 0, then we can formally define a distortion frame
(n1, n2, n) by letting b = Bn1 and n2 = n × n1. Then the
analysis in Secs. II A and II B go through unchanged, provided
we set b1 = B, b2 = 0, q = 0 in (15). It is a simple matter to
check that Eqs. (15) would then turn incompatible in (S, T, B),
for arbitrary (d1, d2, d3).

The conclusion is that for q = 0 the only uniform distortion
is the trivial uniform field.

III. HELICONICAL DISTORTIONS

In this section, we show how to integrate (10) when the
distortion characteristics are specified as in either of Eqs. (25).
This will allow us to establish that the most general uniform

distortion is a heliconical director field. We shall also show
how the free parameters (q, b) in (25) are related to the pitch
P and the conical angle α that identify a heliconical director
field.

First, we consider a trajectory C in space parameterized
in its arc-length s and imagine to follow the distortion frame
(n1, n2, n) as its origin progresses along C . In complete
analogy with rigid body dynamics, if we interpret s as time,
then we can say that there must be a vector ω such that

n′
1 = ω × n1, n′

2 = ω × n2, n′ = ω × n, (29)

where a prime (′) denotes differentiation along the path C
(that is, with respect to s). Letting e denote the unit tangent
vector to C , we have that

n′
1 = (∇n1)e, n′

2 = (∇n2)e, n′ = (∇n)e, (30)

and comparing (29) and (30) with (9), we easily see that ω

depends linearly on e, ω = �e, where � is a tensor that can
be expressed in terms of the connectors as

� = n2 ⊗ c1 − n1 ⊗ c2 + n ⊗ d. (31)

Second, we ask the following question: Is there any eigen-
vector e of �? The answer to this question is relevant to
the geometric interpretation of uniform distortions. Were e an
eigenvector of �, e′ = ω × e = 0; as a consequence, e would
be constant along C and the latter would be a straight line.
Thus, the eigenvectors of �, if they exist, identify directions in
space around which the distortion frame (n1, n2, n) precesses
with a winding rate (pitch) prescribed by the corresponding
eigenvalue λ.

It follows from (31) that an eigenpair (λ, e) of � must
satisfy the equation

(c1 · e)n2 − (c2 · e)n1 + (d · e)n = λe. (32)

For c1, c2, and d given by (26a), corresponding to the first
family of uniform distortions obtained in Sec. II B, Eq. (32)
reduces to the following three scalar linear equations:

qe1 − qe2 − be3 = λe2, (33a)

qe1 − qe2 − be3 = −λe1, (33b)

be1 − be2 − b2

q e3 = λe3, (33c)

for the components (e1, e2, e3) of e in the frame (n1, n2, n).
Requiring the system (33) to have zero determinant (which is
the solvability condition for e), we obtain the secular equation
for λ,

λ2

(
λ + 2q + b2

q

)
= 0, (34)

which has three real roots,

λ1 = λ2 = 0 and λ3 = −2q − b2

q
. (35)

The (unoriented) eigenvector e corresponding to λ3 has com-
ponents

e1 = ∓ q√
b2 + 2q2

, e2 = e1, e3 = ± b√
b2 + 2q2

, (36)
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whereas the components (̂e1, ê2, ê3) of the eigenvectors ê
corresponding to the eigenvalues λ1,2 are the solutions to the
equation

q̂e1 − q̂e2 − b̂e3 = 0. (37)

Contrasting (37) with (36), we immediately see that ê is any
unit vector orthogonal to e.

Geometrically, this means that the distortion frame
(n1, n2, n) precesses counterclockwise (because λ3 < 0)
along e (whatever orientation we take for the latter), turning
completely round over the length of a pitch,

P = 2π

|λ3| = 2πq

b2 + 2q2
, (38)

whereas it remains unchanged in all directions orthogonal to e.
The nematic field thus described is nothing but the heliconical
distortion first hypothesized by Meyer [7, p. 320] and recently
recognized as being the fingerprint of the twist-bend liquid
crystal phase, the newest nematic phase, discovered only in
2011 [9].6 The nematic director n makes a fixed cone angle α

with the rotation axis e, which is also called the helix axis. A
glance at (36) suffices to see that the least determination of α

satisfies the equation7

cos α = |b|√
b2 + 2q2

. (39)

In Appendix A we show in detail how to construct the
heliconical nematic fields n corresponding to the eigenvalues

6We shall say more about twist-bend nematics in Sec. IV A below.
7Incidentally, both formulas (38) and (39) agree with the explicit,

geometric representation of a heliconical field, such as that embodied
by Eqs. (2) through (4) of Ref. [10].

and eigenvectors of �. There, it will also become apparent
why the orientation of the eigenvector e is immaterial to this
construction.

Although e can be chosen with either of the signs in (36),
it may be useful to select conventionally an orientation that
would guide the eye and avoid unnecessary confusion. Our
choice is to orient the helix axis e in such a way that the
director n makes an acute angle with it. By (36), we see that
this orientation depends uniquely on the sign of b,8

e1 = − sgn(b)
q√

b2 + 2q2
, e2 = −e1, e3 = |b|√

b2 + 2q2
.

(40)
The family of uniform distortions in (25b) can be treated

in precisely the same way. The only difference with respect to
the one in (25a) is that λ3 is now positive,

λ3 = 2q + b2

q
, (41)

so that the distortion frame (n1, n2, n) precesses clockwise
along the helix axis e′, which differs from e: Its components
are

e′
1 = ± q√

b2 + 2q2
, e′

2 = e′
1, e′

3 = ∓ b√
b2 + 2q2

. (42)

Adopting for the orientation of e′ the same convention intro-
duced for e, we replace (42) with

e′
1 = sgn(b)

q√
b2 + 2q2

, e′
2 = e′

1, e′
3 = |b|√

b2 + 2q2
.

(43)

8Of course, this choice relies on having chosen an orientation also
for n, which for uniform fields turns out to be always possible.

FIG. 1. The heliconical nematic fields with negative (blue) and positive (brown) eigenvalue λ3, as delivered by (35) and (41), respectively.
Panels (a) and (b) also illustrate the symmetries of the helix axes embodied by (40) and (43). The blue field (for which λ3 = −3q) precesses
counterclockwise around the helix axis, whereas the brown field (for which λ3 = 3q) precesses clockwise around the helix axis.
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Comparing (43) with (40), we see that the oriented helix
axes of the two families of uniform distortions (with opposite
twists) are such that

e1e′
1 + e2e′

2 = 0, e3e′
3 = b2

b2 + 2q2
� 0. (44)

This shows that the projections of e and e′ on the plane
orthogonal to n are perpendicular to one another. Moreover,
on reversing the sign of b both these projections get reversed.
Finally, both pitch P and cone angle α are delivered by the
same formulas (38) and (39), respectively.

Figure 1 illustrates a three-dimensional representation of
the heliconical fields in the two families (25). In Fig. 1, the
frame (ex, ey, ez ) is chosen so as to coincide with the distortion
frame (n1, n2, n) at the origin (where also s = 0).9 Both b and
q have the same physical dimensions (the inverse of a length).
For representative purposes, here we rescale b to q.

It is perhaps worth recalling that for b = 0 the heliconical
fields in Fig. 1 reduce to the two variants of the single twist
characteristic of the ground state of chiral nematics, for which

α = π

2
and P = π

q
= 2π

|T | . (45)

In (45), as in the general cases (25), it is not only the sign of
T that distinguishes the two chiral variants of the uniform dis-
tortions. They also have different helix axes. It follows from
(36) and (42) that their components in the frame (n1, n2, n)
are given by

e1 = − 1√
2
, e2 = 1√

2
, e3 = 0,

e′
1 = 1√

2
, e′

2 = 1√
2
, e′

3 = 0,
(46)

so that, in accordance with (44), e · e′ = 0. This limiting case
is illustrated in Fig. 2.

IV. GENERALIZED ELASTICITY

We have already seen how two families of heliconical
distortions with opposite twists (including the limiting case
of zero bend) represent the totality of uniform director dis-
tortions that can fill the whole space. Any other director field
would be geometrically frustrated and become by necessity
nonuniform if requested to occupy the whole space. It is
interesting to see whether one could easily construct an elastic
theory that penalizes the departures from a selected uniform
field in one of the families (25).

Thus we would generalize (in one of many possible ways)
the classical elastic theory of Frank by replacing the ground
state where n is the same in the whole space with one or more
members of the uniform families (25). Since only one of the
distortion characteristics (S, T, b1, b2, q) vanishes generically
in the uniform families, namely S, a quadratic theory, such as
Frank’s, is no longer sufficient.

9See Appendix A for more details.

FIG. 2. The same heliconical director fields as in Fig. 1 but
for b = 0. The two helix axes are perpendicular to one another, as
prescribed by (46), and the cone angle takes on the limiting value
α = π/2.

As lucidly recalled in Ref. [1], there are essentially two
avenues toward a higher-order theory, that is, to allow either
for higher spatial derivatives of n in the elastic free-energy
density or for higher powers of its spatial gradient.10 Here we
shall follow the latter approach.

In this section, we shall only consider an achiral scenario,
as it seems that phases with such a ground state have already
been identified experimentally. We shall rely on the construc-
tion of an appropriate double-well elastic free-energy density.
Before doing so, we sketch the basic ingredients of the theory
and the invariance properties that we require.

As made clear by the decomposition of ∇n in (2), for a
given n, the measures of distortions are (S, T, b, D), namely,
a scalar, a pseudoscalar, a vector, and a tensor, respectively. A
further pseudovector and a further vector can be built starting
from the measures of distortions; these are n × b and Db,
respectively.

The nematic symmetry requires that any physically signif-
icant scalar must be invariant under the transformation of n
into −n. Here is how the measures of distortion and their
derived vector and pseudovector behave under this transfor-
mation:

S → −S, T → T, b → b, D → −D,

n × b → −n × b, Db → −Db. (47)

10A hybrid approach has been proposed in Ref. [11] on the basis
of a molecular derivation of the phenomenological free energy.
There, the order of spatial derivatives and their powers are balanced
according to a criterion motivated by a molecular model.
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Similarly, the central inversion of space produces the follow-
ing changes:

S → S, T → −T, b → b, D → D,

n × b = −n × b, Db → Db. (48)

Thus, keeping in mind that tr D = tr D3 = 0, we collect all
generating monomials (to be multiplied up to the fourth power
in ∇n) in the list

{S2, T 2, B2, tr D2, Sb · Db, T b · D(n × b)}, (49)

which, being invariant under the combined action of (47) and
(48), applies to achiral nematics.

Lists such as (49) are not completely new in the literature.
The first three members of (49) feature, for example, in
the recent papers [11,12], but the mixed quartic invariants
involving three out the four measures of distortion appear to
be new.

By use of (3) and (7), we easily see that

b · Db = q
(
b2

1 − b2
2

)
, (50a)

b · D(n × b) = −2qb1b2. (50b)

Similarly, we obtain

(n × b) · D(n × b) = q
(
b2

2 − b2
1

) = −b · Db, (51)

which shows how the invariant (n × b) · D(n × b) would be
redundant in (49).

While tr D2 = 2q2 can be directly expressed in terms of
the invariants of ∇n via (4), slightly more labor is required
for the quartic invariants in (49). Use of (50), (B6), and (B7)
(see Appendix B) leads us to the following expressions:

Sb · Db = T b · (∇n)b − 1
2 S2T 2, (52a)

T b · D(n × b) = T curl n · (∇n)b + 1
2 T 2B2. (52b)

In the remaining of this section, we shall consider an elastic
free-energy density built from the members of (49).

Generalized achiral nematics

Twist-bend nematics (NTB) have been intensely studied
in the past decade. This paper is not focused on these new
phases, but we can hardly escape from them, as their ground
state happens to be the uniform distortion that a director field
can generically have.

A great deal of theories and models have been put forward
to explain how a twist-bend phase germinates out of ordinary
nematics. Allegedly, the first elastic theory was proposed
by Dozov [13], who used higher derivatives in the free en-
ergy to counterbalance the instability produced in Frank’s
energy by a negative bend constant K33. Other elastic theo-
ries, with different features and perspectives can be found in
Refs. [10–12,14]. Phenomenological Landau theories [15–18]
and molecular field theories [19–22] are also available, as well
as accurate reviews [23,24].

The twist-bend ground state is twofold; it consists of two
members (with opposite twist) taken from the heliconical
families (25). Since the nematogenic molecules that comprise
a NTB phase are not chiral, the two variants with opposite
macroscopic chirality are equally present in the phase and

must be accounted for by an elastic theory. This is indeed
the only example of spontaneous chiral symmetry breaking
known in a fluid in the absence of spatial order [25].11

Many experimental studies have claimed the existence
of the NTB phase in a number nematogenic systems with
various molecular motifs [26–33]. These studies agree in
showing that the pitch of the modulated nematic structure,
which indeed exhibits both chiralities, fall in the nanometric
range. Strictly speaking, this would make it questionable to
use a phenomenological elastic theory to explain the NTB

phase. We shall, however, entertain the theoretical possibility
that an elastic free-energy density quadratic in ∇n could be
minimized by both chiral variants of the uniform families (25).

We shall not consider the most general elastic free en-
ergy with the desired property; we shall be contented with
a minimalistic approach that produces the simplest instance
of such an energy. Since the putative minimizers in (25) are
characterized by having b1 = b2 for T = 2q > 0 and b1 =
−b2 for T = −2q < 0, by (50b), the ideal coupling term
is T b · D(n × b); it takes on the same value on both chiral
variants and favors both (if preceded by a positive constant).

The elastic free-energy density that extends Frank’s with
the objective of describing the NTB phase is thus posited as
follows:

FTB(S, T, b1, b2, q) := 1
2 k1S2 + 1

2 k2[T 2 + (2q)2] + 1
2 k3B2

+ 1
4 k4[T 4 + (2q)4] + 1

4 k5B4

− k6(2q)T b1b2, (53)

which, for convenience, is written in terms of the distortion
characteristics.12 The function FTB in (53) is deliberately built
with the symmetry of the intended ground state. Thus FTB

is invariant under the exchange of T 2 and (2q)2 and the
simultaneous transformations

(2q)T → −(2q)T, b1b2 → −b1b2. (54)

This choice makes FTB depend only on six elastic constants,
only two more than in Frank’s formula.13 It is perhaps worth
noting that unlike Frank’s constants, which have physical
dimensions of force, the elastic constants of the added quartic
terms, that is, k4, k5, and k6, have physical dimensions of force
times length square. Thus a length scale is hidden in the theory
from the start; it will reappear in the equilibrium pitch.

A comparison of the quadratic components of (53) with
Frank’s formula (5) readily identifies the constants

k1 = K11 − K24, k2 = K22 − K24 = K24, k3 = K33,

(55)
so that two Frank’s constants should be related,

K24 = 1
2 K22 > 0. (56)

11The modulated arrangement in a NTB phase is not accompanied
by a mass density wave [26].

12Use of (4) and identity (B7) in Appendix B easily converts (53)
into a formula featuring only the invariants of (n, ∇n).

13An extra quartic term, T 2(2q)2, which also obeys (54), could be
added in (53). But this would not alter the qualitative conclusions of
the analysis that follows.
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We shall also assume that k1 > 0, so that FTB is minimized by
S = 0, as desired, and k2 > 0, to simplify our analysis.14

The leading homogeneous form in FTB, the only that needs
to be positive definite, is the quartic polynomial

� := 1
4 k4[T 4 + (2q)4] + 1

4 k5B4 − k6(2q)T b1b2, (57)

where we shall take k4, k5, and k6 all positive. As shown
in Appendix C, under this assumption, � is positive definite
whenever

k2
6 < 2k4k5. (58)

Let S = 0 and set c := 2qT . We see that for c = 0 FTB

attains its minimum for

T = 2q = b1 = b2 = 0, if k3 � 0, (59)

and for

T = 2q = 0 and B2 = b2
1 + b2

2 = −k3

k5
, if k3 � 0.

(60)
The former is the trivial uniform state, whereas the latter is a
nonuniform bend state. Similarly, we see that, for given c �= 0,
FTB attains its minimum in (b1, b2) at b1 = b2 = b0 if c > 0
and at b1 = −b2 = b0 if c < 0, where

b2
0 = max

{
0,

1

2k5
(k6|c| − k3)

}
. (61)

For either sign of c, FTB attains the same minimum in (b1, b2).
Making use of (61) in (53), we reduce FTB to a function
fTB(c, q), even in c, which we need study only for q � 0,

fTB(c, q) := 1

2
k2

[
c2

(2q)2
+ (2q)2

]
+ 1

4
k4

[
c4

(2q)4
+ (2q)4

]
− H (k6|c| − k3)

1

4k5
(k6|c| − k3)2, (62)

where H is Heaviside’s step function.15

A simple, but tedious, analysis shows that fTB attains its
minimum on a uniform distortion when the elastic constants
(k2, k3) fall in two of the three regions depicted in Fig. 3,
namely, the red and blue regions. The blue region is delimited
by the straight line

k3 = −2
k5

k6
k2. (63)

Below this line, FTB is minimized by

T 2 = (2q0)2 := −k3k6 + 2k5k6

2k4k5 − k2
6

� 0 and

b2
1 = b2

2 = b2
0 := −k2k6 + k3k4

2k4k5 − k2
6

� 0. (64)

In the red region the minimizer of FTB is the trivial uniform
state (59), while in the white region it is the nonuniform pure
bend (60). The uniform minimizers (64) of FTB come in pairs,
with opposite signs of T , confirming its double-well nature.

14Letting k2 < 0 would only prompt an annoying number of case
distinctions, adding little to the variety of phases described by (53).

15That is, H (x) = 0 for x � 0 and H (x) = 1 for x > 0.

FIG. 3. Phase diagram for the minimizers of FTB in the half-plane
(k2, k3) with k2 � 0 (arbitrary units). The blue (lower) region is
delimited by the straight line (63). In this region, FTB is minimized
by the uniform state (64). In the white (middle) region, the state of
minimum energy is the nonuniform pure bend (60). In the red (upper)
region, the minimum energy is attained at the uniform state (59).

For given k2 > 0, on decreasing k3 from the red region
toward the blue region, as soon as we hit k3 = 0, the ground
state of FTB starts growing a preferred bend vector, whose
length is prescribed according to (59), while both twist T and
biaxial splay q remain zero, as long as we stay in the white
region. On crossing the border of the blue region, both T 2 and
(2q)2 start growing away from zero, while keeping equal to
one another. Two separate ground states develop, which have
the same energy; they are characterized by the uniform heli-
conical fields, with different helix axes, described in Sec. III.
The bend vector, whose length grows with no discontinuity
across the blue region’s border, acquires, for both variants,
the appropriate components (b0, b0, 0) and (b0,−b0, 0) in the
distortion frame (n1, n2, n).

A theory based on the elastic free-energy density FTB in
(53) would thus predict that the NTB phase arises from the
standard nematic phase for sufficiently negative values of k3

through an intermediate nonuniform bend phase.

V. CONCLUSIONS

It was asked in Ref. [1] which are all uniform nematic
distortions that fill the whole space. This question was an-
swered here by showing that the totality of such fields live
in two families, each parameterized by two scalars. These
fields exhaust the heliconical structures first envisaged by
Meyer and recently recognized as possible ground states for
twist-bend nematics.

Taking full advantage of the symmetries enjoyed by uni-
form distortions, we proposed a simple elastic model whose
free energy can admit as ground state either of two conjugated
heliconical fields with opposite chirality, depending on the
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choice of two model parameters. This is our theory of gen-
eralized elasticity for nematics.

We showed that the proposed elastic free-energy density
is not only minimized on uniform distortions: Two regions
in parameter space where it is are separated by one where it
is not. In the latter, a pure bend is preferred, which cannot
fill space uniformly, and so it is likely to produce elastic
frustration, possibly relieved by defects.
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APPENDIX A: CONSTRUCTION
OF UNIFORM DISTORTIONS

Here we provide the details needed to construct the he-
liconical nematic field that corresponds to a given uniform
distortion. In essence, we integrate (10) in a fixed frame, once
the distortion characteristics have been chosen according to
(25).

Our analysis builds heavily on the properties of the tensor
� in (31), especially on its having a set of eigenvectors that
span the whole space. Let (λ, e) be one eigenpair of �. Along
the ray

p(s) = o + se, (A1)

which passes through the origin o for s = 0,

n′(s) = λe × n(s), (A2)

where a prime (′) denotes differentiation with respect to s. As
shown in Sec. III, along the ray (A1), the whole distortion
frame precesses at the rate λ around e, so that the latter keeps
constant components in that specific mobile frame (as it does
in all fixed frames).

Choosing a fixed Cartesian frame (ex, ey, ez ) so that it
coincides with the distortion frame at s = 0, we thus obtain
that

n(s) = R(λs)ez, (A3)

where R(λs) is the rotation of angle λs about e. This rotation
can explicitly be represented as (see, for example, Ref. [4,
p. 95])

R(λs) = I + sin(λs)W(e)ez + [1 − cos(λs)]W(e)2ez, (A4)

where I is the identity and W(e) is the skew-symmetric tensor
associated with e. Since the components (e1, e2, e3) of e in
the mobile distortion frame (n1, n2, n) as obtained in Sec. III
(for the different families of uniform distortions) are the same
as the components in the fixed frame (ex, ey, ez ), we can
represent W(e) as

W(e) = −e1(ey ⊗ ez − ez ⊗ ey) + e2(ex ⊗ ez − ez ⊗ ex )

− e3(ex ⊗ ey − ey ⊗ ex ). (A5)

Combining (A3), (A4), and (A5), we readily arrive at

n(s) = {e2 sin(λs) + e3e1[1 − cos(λs)]}ex − {e1 sin(λs)

− e2e3[1 − cos(λs)]}ey + {cos(λs)

+ e2
3[1 − cos(λs)]}ez. (A6)

It should be noted that n, as delivered by (A6), is invariant
under the simultaneous reversion of s and e.

The illustrations in Figs. 1 and 2 in Sec. III have been
obtained by applying formula (A6) to the relevant eigenpair
(λ, e) of �.

APPENDIX B: THREE IDENTITIES

This Appendix is devoted to the proof of three identities
involving the distortion characteristics. Two of these identities
are cubic in those characteristics, whereas the third is sextic.
The first two have indeed been used in the main body of this
paper, whereas the third one has not. All three identities are
considered together because their proof is very similar.

We recall two classical identities valid for any smooth unit
vector field n (see, for example, Ref. [4, p. 115]),

(∇n)n = −n × curl n = −b, (B1a)

| curl n|2 = (n · curl n)2 + |n × curl n|2 = T 2 + B2,

(B1b)

where, representing b as in (7), we have set

B2 = b · b = b2
1 + b2

2. (B2)

Moreover, from (7) and the definition of T , we obtain two
equivalent expressions for n × b:

n × b = b1n2 − b2n1 = n × (n × curl n)

= T n − curl n,
(B3)

which, in particular, entail that

|n × b|2 = |curln|2 − T 2. (B4)

Our starting point here is again the decomposition of ∇n in
(10). Since b · n = 0, it readily follows from (10) and (7) that

(∇n)b = 1
2 T n × b + 1

2 Sb + q(b1n1 − b2n2). (B5)

Taking the inner product of both sides of the latter equation
with b, we obtain the first identity,

q
(
b2

1 − b2
2

) = b · (∇n)b − 1
2 SB2. (B6)

Taking the inner product of both sides of (B5) with n × b
and making use of both (B3) and (B4), we obtain the second
identity,

2qb1b2 = −n × b · (∇n)b + 1
2 T B2

= curl n · (∇n)b + 1
2 T B2,

(B7)

whose second form follows from (B4) and the identity
(∇n)Tn = 0.

Our last identity is a consequence of a trivial algebraic fact,(
b2

1 − b2
2

)2 = B4 − 4b2
1b2

2. (B8)
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Multiplying both sides of (B8) times q2 and making use of
both (B6) and (B7), we arrive at

q2B4 = [
b · (∇n)b − 1

2 SB2
]2 + [

n × b · (∇n)b − 1
2 T B2

]2
,

(B9)

which, letting b̂ := b/B be the unit vector of b, can also be
rewritten as

q2 = [̂
b · (∇n)̂b − 1

2 S
]2 + [

n × b̂ · (∇n)̂b − 1
2 T

]2
, (B10)

which expresses q in terms of invariants derived only from n
and ∇n. We made no use of either (B9) or (B10) in the main
text; I record them here because they could be of future use.

In principle, once q > 0 is obtained from (B10), Eqs. (B6)
and (B7) could be given the compact form

b2
1 − b2

2 = γ ,

b1b2 =β,
(B11)

where γ and β are assigned scalars. In the plane (b1, b2),
Eqs. (B11) represent two hyperbolas, whose intersections with
the circle represented by (B2) determine both b1 and b2, to
within a simultaneous change of sign. That the pair (b1, b2)
can only be determined intrinsically to within a sign also
follows from (7), as reversing the sign of both n1 and n2 does
affect neither the definition of D nor the orientation of the
distortion frame, expressed by n1 × n2 · n.

APPENDIX C: QUARTIC POTENTIAL

In this Appendix, we determine the condition under which
the quartic form

� = 1
4 k4T 4 + 1

4 k′
4(2q)4 + 1

4 k5B4 − k6(2q)T b1b2, (C1)

which includes (57) as a special case, is positive definite. To
address this issue, we digress slightly and recall the definition
of nonlinear eigenvectors and eigenvalues for a fully symmet-
ric tensor A of rank m over Cn.

Let Ai1...im be the components of A in an orthogonal frame
(e1, . . . , en). Following a rich, albeit quite recent literature
[34–38], which has also been summarized in a book [39], we
say that a vector v, with components vi, is an eigenvector of
A if there is a λ ∈ C such that

Ai1...imvi1 . . . vim−1 = λvim , (C2)

where it is understood that repeated indices are summed. If
we normalize the eigenvectors of A so that they have unit
length, it is easily seen that for every eigenpair (λ, v) there
is an equivalent eigenpair (tm−2λ, tv) for any t ∈ C with
|t | = 1. Over Rn, the only choices for t are t = ±1, and
only two equivalent eigenpairs are possible, with equal or
opposite eigenvalues, depending on whether m is even or odd,
respectively.

It was shown in Ref. [34] that if a tensor A of rank m � 3
over Cn has a finite number of equivalence classes of eigen-
pairs, then their number (counted with algebraic multiplicity)
is

E (m, n) = (m − 1)n − 1

m − 2
. (C3)

For the case that interests us here, E (4, 4) = 40. Thus, a real
tensor A of rank 4 over R4 will at most have 80 eigenvectors
if they are finite, as there is no guarantee that all eigenvectors
are real. More details about eigenvectors and eigenvalues of
higher-rank tensors can be found in Refs. [40,41].

As shown in Ref. [40], the eigenvectors and eigenvalues
of A over Rn can be identified with the critical points of a
homogeneous potential,

�A(x) := Ai1...im xi1 . . . xim , (C4)

constrained over the unit sphere Sn−1. Finding the critical
points of

	A(x) := �A(x) − m

2
λx · x (C5)

in the whole of Rn amounts to finding the real eigenvectors
of A. The corresponding eigenvalues are precisely the values
of the Lagrange multiplier λ needed to obey the constraint
x · x = 1. These latter values are, as is easily seen, the values
that �A takes on its constrained critical points.

Now it is easy to connect the general theory of eigenvectors
and eigenvalues for higher-rank tensors with our search for a
condition of positivity for � in (C1). The latter would simply
be the request that the least real eigenvalue of a specific
fully symmetric fourth-rank tensor A be positive.16 Taking
advantage of the inequalities

k4 > 0, k′
4 > 0, and k5 > 0, (C6)

assumed in the main text, we set

x1 := T, x2 := 4

√
k′

4

k4
2q, x3 := 4

√
k5

k4
b1, x4 := 4

√
k5

k4
b2,

(C7)

so that � in (C1) reduces to � = 1
4 k4�A, with

�A(x) = x4
1 + x4

2 + (
x2

3 + x2
4

)2 − κx1x2x3x4, (C8)

where we have set

κ := 4
k6√
k4k5

4

√
k4

k′
4

. (C9)

The equilibrium equations associated with the potential 	A
defined as in (C5), with m = 4, are

−κx2x3x4 + 4x3
1 − 4λx1 = 0, (C10a)

−κx1x3x4 + 4x3
2 − 4λx2 = 0, (C10b)

4
(
x2

3 + x2
4

)
x3 − κx1x2x4 − 4λx3 = 0, (C10c)

4
(
x2

3 + x2
4

)
x4 − κx1x2x3 − 4λx4 = 0. (C10d)

The real solutions (λ, x) to these equations and the constraint

x2
1 + x2

2 + x2
3 + x2

4 = 1 (C10e)

16This generalizes the connection between the positivity of a
quadratic form in Rn and the positivity of the least (standard)
eigenvalue of a symmetric second-rank tensor.
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represent all critical values and critical points of �A. It would
be tedious to list all of them; we just remark that Eqs. (C10)
enjoy a rotational symmetry, and so there are two conjugated
orbits of critical points with

x1 = x2 = 0, x4 = ±
√

1 − x2
3, −1 � x3 � 1, (C11)

and so the estimate in (C3) does not apply here. All other
critical points are discrete.

Figure 4 represents all critical values of �A in (C8) as
functions of κ . Circles mark there the bifurcation points,
which are located at κ = 0, κ = ±4, and κ = ±8. The real
eigenvalues are

λ1 = 1, λ2 = κ2 + 32

κ2 + 64
, and λ3 = 1

2
, (C12a)

λ4 = 32 − κ2

16κ + 96
, for κ � −8 or κ � −4, (C12b)

λ5 = κ2 − 32

16κ − 96
, for κ � 4 or κ � 8. (C12c)

It is clear from (C12b) and (C12c) that all eigenvalues
λ of �A in (C8) are positive whenever −4

√
2 < κ < 4

√
2

or κ2 < 32. Setting k′
4 = k4 in (C9), we thus conclude that

the quadratic form � in (57) is positive definite whenever
inequality (58) is satisfied.

FIG. 4. The critical values of �A in (C8) as functions of the
parameter κ . They are given by (C12) and are all positive for
−4

√
2 < κ < 4

√
2. All but λ = 1 correspond to discrete critical

points on the unit sphere (C10e). The points marked by (red) circles
are bifurcations points, where different eigenvalues meet and their
number may change; they are located at κ = 0, κ = ±4, and κ = ±8.
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