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The effects of quenched disorder on a single and many active run-and-tumble particles are studied in one
dimension. For a single particle, we consider both the steady-state distribution and the particle’s dynamics subject
to disorder in three parameters: a bounded external potential, the particle’s speed, and its tumbling rate. We show
that in the case of a disordered potential, the behavior is like an equilibrium particle diffusing on a random force
landscape, implying a dynamics that is logarithmically slow in time. In the situations of disorder in the speed
or tumbling rate, we find that the particle generically exhibits diffusive motion, although particular choices of

the disorder may lead to anomalous diffusion. Based on the single-particle results, we find that in a system with
many interacting particles, disorder in the potential leads to strong clustering. We characterize the clustering in
two different regimes depending on the system size and show that the mean cluster size scales with the system

size, in contrast to nondisordered systems.
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I. INTRODUCTION

Self-propelled or active particles consume and dissipate
energy in order to move persistently. The breaking of time-
reversal symmetry by the drive, especially in the vicinity of
external boundaries, leads to a plethora of interesting phenom-
ena, distinct from those in equilibrium systems. For example,
Escherichia coli bacteria swim in circles near planar surfaces
[1], and the motion of active particles is generally rectified by
asymmetric objects [2,3]. The latter effect generates currents,
which in turn lead to long-range interactions between objects
immersed in an active fluid [4]. Closely related is the fact
that, in general, the mechanical pressure exerted on confining
boundaries does not follow an equation of state and, on the
contrary, depends on the details of the interactions with the
boundary [5-7] and its curvature [8,9].

So far, the bulk of studies have focused on the physics of
active systems in the absence of disorder, namely in uniform
environments. However, natural environments of many active
agents, such as bacteria in the gut or enzymes in the intracellu-
lar medium [10], are nonuniform. While several recent studies
have considered the effects of disorder on models of flocking
[11-14], comparatively less is known for the simpler case
of nonaligning active particles subject to different types of
quenched disorder. Such systems are realized experimentally
[15] (and of course numerically [16]) using, for example,
optical speckle fields or nonsmooth substrates.

To this end, in this paper we consider run-and-tumble
particles (RTPs) in a one-dimensional (quenched) disordered
environment. This model of active particles has the advantage
of allowing for exact calculations since one can write explicit
expressions for the steady-state distributions and first-passage
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times of noninteracting RTPs [5,17]. We discuss three types
of quenched disorder: in the external potential V (x) which is
assumed to be bounded, in the speed of the particles v(x), and
in their tumbling rate «(x). The main results are summarized
in Table I.

Most interestingly, a RTP in a bounded random potential
is akin to a passive Brownian particle in a random force field.
This leads to a strongly localized steady-state probability dis-
tribution, with the location of the maximum of the distribution
depending on the exact shape of the potential throughout the
system. Moreover, it exhibits the so-called Sinai diffusion [18]
(reviewed in Ref. [19]) with logarithmically slow spreading in
time. Interestingly, similar behavior has also been predicted
for molecular motors which are stalled by an external force
[20,21]. We remind the reader that in stark contrast, a pas-
sive particle in a bounded random potential shows normal
diffusion with a steady-state probability distribution which is
uniform on large length scales.

The strong clustering of the probability distribution also
has a striking effect on interacting RTPs in the presence of a
disordered potential. It is known that in one dimension RTPs
with repulsive interactions form clusters of finite size [22,23].
Here we argue using simplified models that the picture is very
different. We analyze the problem in two regimes, defined
below, which we refer to as weak and strong disorder. In the
weak disorder case, we show that the density-density correla-
tion function decays linearly in space with an amplitude which
is linear in the system size. In the strong disorder regime we
argue for a power-law distribution of cluster sizes, with the
average cluster size scaling as the square root of the system
size.

When the disorder enters through the particle’s speed, the
steady-state probability distribution is generically uniform on
large length scales and the spreading is diffusive in time. An
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TABLE I. Summary of results for the single-particle problem: For each form of disorder, the steady-state distribution is given for a specific
realization, along with the scaling of the variance of the probability density in time. The mean-squared displacement is averaged both over
histories of the dynamics, denoted by (-), and over all realizations of the disorder, denoted by ~.

Disordered Steady-state distribution,
parameter for a given realization of disorder Mean-squared displacement
[ U X2y ~ log*
V) RO () ~ log (1)
o , sV
X €Xp [ - TIZI fx dx 1,(5)2(3),‘/)2]
v(x) 5 p(v) = 0: W2) ~1
p(v) ~Ov*’3,0<ﬁ<1: (x2) ~ t1F
v—>
a(x) const pla)y ~ 0: @ ~t
oa—> 00
pla)y ~ oMW 0<p<1: o2y ~ 1T

interesting exception occurs when the speed distribution is
singular near zero (see Table I). Then the steady-state distribu-
tion is peaked at a specific location, with a height which grows
as a power law in the system size. The probability distribution
in this case spreads with anomalous time exponents.

Finally, for a disordered tumbling rate, the steady-state
probability distribution is flat and the spreading is generically
diffusive. Similarly to the speed disorder, the spreading is
anomalous when the tumbling distribution decays to zero with
fat tails for large values of « (see Table I).

The paper is organized as follows: We first consider a sin-
gle particle in Sec. II, deriving the steady-state distributions in
Sec. IT A and dynamical properties in Sec. II B. The results of
Sec. II are summarized in Table I. Next, we turn to the many-
body case, which we study using simplified models in Sec. III.
The discussion is carried for weak disorder in Sec. IIT A and
strong disorder in Sec. I1I B. Finally, we conclude and discuss
the expected results of the disorder on higher-dimensional
systems and other active models in Sec. IV.

II. SINGLE-PARTICLE PROBLEM

We consider an RTP in one dimension. The particle moves
either to the right or to the left with a speed v(x) and switches
direction (tumbles) at rate «(x)/2. We allow both the speed
and tumbling rate to depend on the position x of the particle.
Finally, the particle experiences an external potential V (x).
The probability density P, (x, 1) [P—(x, ¢)] to find a right (left)
moving particle at position x at time ¢ is determined by the
Fokker-Planck equation [23-25],

0Py (x, 1) = — 0x[v(0)Py(x, 1) — (V)P (x,1)]

a(x)
- [P 1) = P-(x. 1)),
P_(x,1) = — 0 [—v(x)P_(x, 1) — u(3:,V)P_(x,1)]
a(x)

with p the mobility of the particle. To avoid trivial trapping,
we assume that v(x) > |ud,V|. This condition can be avoided
if, in addition, the particle is subject to Brownian noise. The
noise can assist the particle in hopping over potentials of

arbitrary slope [26]. However, as we discuss in Sec. IV, we
do not expect fundamentally new physics in this case, and we
thus consider only the technically simpler noiseless situation.

We next consider the effect of disorder on the steady-state
distribution in Sec. IT A and on the dynamics in Sec. I B. In
each case, we focus on the three different types of disorder: in
the potential, the speed and the tumbling rate.

A. Steady-state distributions

For the dynamics of Eq. (1), the steady-state distribution
can be computed analytically [5,17]. One starts by defining
the total probability density p(x,t) = Py (x,t) + P_(x,t) and
the polarity A(x,t) = Py (x,t) — P_(x,t). Using Eq. (1), we
have

0 A(x, 1) = — 0 [v(x)p(x, 1) — n(3:V)A(x, 1)]
— a(x)Ax, 1),
0 p(x, 1) = — O [v(x)Ax, 1) — n(@:V)pkx,0)].  (2)

Assuming that the system is confined, so that there is no
particle current in the steady state, one finds for a given
realization of @ (x), v(x) and V (x) that the steady-state density
ps(x) is given by

Nv(x)

T G

O auY)
exp |:_/0 dx v2(x/)—u2(afo)2]’ ©

where N is a normalization constant set by f dx pg(x) = 1.
Equation (3) allows for variations in the potential V (x), the
speed v(x), and the tumbling rate a(x). Figure 1 shows the
resulting density if each component acts individually. It is
easy to see from the figures that different types of disorder
lead to very different behaviors: Disorder in the potential has
the strong effect of localizing the probability distribution to
several locations in space; disorder in the velocity leads to a
local modulation of the density which depends on the local
velocity; while disorder in the tumbling rate leads to a flat
steady-state distribution. In the following, we discuss these
three cases in more detail.
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FIG. 1. Steady-state distributions (right column) for the disorder profiles shown in the left column (for system size L = 200). Top row:

v = 2, @ = 40; middle and bottom rows: V = 0.

1. Disordered potential

We first consider a disordered potential V (x) while main-
taining positive constant speed v(x) = v and tumbling rate
a(x) = «. As stated above, we choose the potential such that
|10,V | < v so that the particle can cross any potential barrier.
Let us first rewrite Eq. (3) in terms of V (x) = uV (x)/v (so
that the force 3,V is dimensionless), and the inverse run length
g=a/v,as

N, x 8,V
X) = —————=—=exp|— dy ————= |, 4
ps(x) ENTRGD p[ g/O yl—(ayV)2:| “4)
with V,, ensuring normalization. We further assume that V (x)
has only short-range correlations and denote its correlation
length by £. We can then approximate the integral in Eq. (4)

as a sum of independent and identically distributed random
variables

v Lx/£]
* o,V
dy ——— =~ 1. ®)
/o 1—@V)? ;

The full justification of the above approximation can be found,
e.g., in Ref. [27]. To discuss the resulting stationary distri-
bution, it is instructive to rewrite Eq. (4) as an equilibrium
distribution py(x) oc e~V ™® with the quasipotential

Lx/&]
U@)~In[l— @V 1+¢ ) . 6)

i=1
Since the sum in Eq. (6) is over independent and identi-
cally distributed random variables, the quasipotential scales
as U(L) o +/LJE by virtue of the central limit theorem, given
that the system is large enough L > &. For such systems,
the quasipotential is dominated by the sum over the random

variables and the logarithmic local term is negligible. At the
level of the steady-state distribution, the behavior is thus
identical to that of a passive particle in a random force field,
with gn;/& as the random force. For any realization of such a
random force, as in Fig. 1 (top row), the particle is strongly
localized to the minima of the quasipotential, which are of
order +/L.

The difference between the passive and active cases is
therefore dramatic: An active particle in a bounded random
potential is equivalent to a passive particle in a random force
field. By contrast, a passive particle in a bounded random
potential V(x) does not show localization. The difference
due to the activity can be understood intuitively as follows:
Since RTPs break time-reversal symmetry, the particle exerts
a net force on a potential lacking inversion symmetry (this
effect was used experimentally to propel asymmetric objects
through a bacterial bath [28,29]). Conversely, the external
potential exerts a net force on the RTP so that a random
potential will effectively lead to a net random force [9].
For example, if we choose a particularly simple realization
of the potential, where ratchet potentials of opposing direc-
tionality are drawn with equal probability, as illustrated in
Fig. 2, then the orientation of each ratchet biases the active
particle in a particular direction acting as a local force. We
note that similar physics applies for other ratchetlike systems
[20,21].

FIG. 2. A realization of the ratchet potential used in the numer-
ics. The two possible orientations of each ratchet are chosen with
equal probability.
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The model of a random walker subject to random forcing
is known as the Sinai diffusion problem and has been studied
extensively in the past with many applications [18,19,30,31].
In Sec. IB 1 we show that the equivalence between active
particles in a random potential and passive particles in random
force field also extends to the particle’s dynamics.

2. Disordered speed

We now consider systems where the disorder enters only
through a space-dependent speed v(x), while the tumbling rate
o is constant and positive, and there is no external potential.
We take v(x) to be a random field taking values in the
range 0 < v(x) < oo, with only short-range correlations and a
probability distribution independent of space.' For a particular
realization of the disorder, Eq. (3) becomes

N,
ps(x) = G )

where N, insures the normalization of the distribution. We
note that such systems have been extensively studied in the
past [23,25] and used experimentally to draw patterns using
photokinetic bacteria [32,33].

Evidently, the active particle density is enhanced in places
where the speed of the particles is smaller. However, in
contrast with the case of a random potential discussed above,
the steady-state distribution of the random speed model is
a local function of v(x) [whereas Eq. (4) shows that the
density is a nonlocal functional of the potential]. The resulting
distribution (7), while nonuniform, is therefore not strongly
localized in general. The particles show similar statistics as
an equilibrium system subject to a random potential, U (x) =
— In v(x), with a finite variance.

An exception occurs when v(x) takes values arbitrarily
close to zero. In particular, consider a probability distribution
for v that vanishes as p(v) U:O v close to 0. When 0 < B <

1 the mean of v~! diverges. Then, using standard arguments
from Lévy statistics, the largest value of v~ in a system
of size L scales® as L™7. The particle becomes localized at
the position of the maximal value of v~!, with a probability
scaling in the same way. Note that the nonuniformity of p,(x)
is due to the singular distribution of velocities, and is not a
cumulative effect of a nonlocal dependence on v(x).

3. Disordered tumbling rate

Finally, we consider quenched disorder only in the tum-
bling rate. We take o(x) to be a random field which takes

J

()

_[ldx fydy [} dzQ(00()Q() expl—W (x) = W) + W(2)]

values in the range 0 < a(x) < oo with short-range correla-
tions, independent of space. Then, using Eq. (3) with 9,V = 0,
v(x) = v > 0 we immediately get

ps(x) = const = % (8)

Disorder in « leaves the steady-state distribution flat.

B. Dynamics through the mean first-passage time

We now turn to analyze the effects of disorder on the dy-
namics of active particles. This is most easily accomplished by
considering the typical, disorder-averaged, mean first-passage
time (MFPT) for a particle to travel a distance L in either
direction starting at an arbitrary point. As we show below, the
insights gained by studying the steady-state distribution can
also be extended to the dynamics. Specifically, disorder in the
potential leads to behavior similar to a random walker on a
random forcing energy landscape. We show in Sec. II B 1 that
the typical MFPT grows exponentially with L. This leads to
an ultraslow diffusive dynamics of the particle with a typical
mean-squared displacement growing in time as In*(z).

In contrast, disorder in the speed or tumbling rate generally
leads to a behavior similar to equilibrium dynamics of a
random walker in a bounded random potential. The MFPT
averaged over the disorder follows a standard diffusion law
and grows as L?. As discussed in Sec. I A2, an exception
occurs for a disordered speed distribution in which the mean
inverse speed, v—!, over disorder realizations diverges and
for disordered tumbling rates when the mean tumbling rate
o diverges. These cases exhibit anomalous behavior, with the
disorder-averaged mean-squared displacement scaling with a
nontrivial power of time.

Finally, in Sec. II B4 we briefly discuss the dynamics due
to mixed disorder types.

1. Disordered potential

We now evaluate the typical MFPT for an active run-and-
tumble particle in a random potential with uniform speed
and tumbling rate. We consider a particle starting at an ar-
bitrary point, taken to be x = 0, and exiting either at x = L

or x = —L. Similarly to the calculation for the steady-state
distribution, we define the quasipotential
wo [* 0,V
Wx)=— dy —>5—=. 9
&= /_L TT-E2a,v )2 ©

Using the derivation presented in Appendix A 1, one finds that
in the large-L limit the MFPT, up to exponentially smaller
corrections in L, is given by

L—oo

[ du Q) exp[—W (u)]

(10)

"Note that for the following results to hold, the correlations in v(x) need not be short ranged. This demand will play a important role only for

the dynamics.

’This can be seen by evaluating fou i{—}; ~ %, with v* the largest value of v that is observed.
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Here (t) is the MFPT for a given realization of disorder [34],
with the angular brackets denoting an average over histories,
Q(x) is a nonvanishing function whose expression is given in
Appendix A 1 and, as will become clear, does not influence
the leading order behavior.

Since the potential V(x) is assumed to have short-range
correlations, W(x) is a sum of independent and identically
distributed random variables. Note that since the integrand
in W (x) is antisymmetric with respect to inverting 9,V (x) to
—0,V(x), the average of W(x) over the realizations of the
disorder vanishes. The central limit theorem then gives the
behavior of W (x) in the large-L limit: The distribution of W (x)
converges asymptotically to a Gaussian distribution, whose
variance scales as 4/L/&, with £ being the correlation length
of V(x), as before. In the large-L limit, the MFPT is therefore
dominated by the exponential term and can be evaluated using
a saddle-point approximation. One then finds

1 ~ = w W) —W
n{r) ~ XG[_L.O],Q[I(E}L]’ZGM][ () + W) (2]
+ min [Ww)]. (11)
ue[—L,L]

Even if the MFPT (11) has a nontrivial dependance on the
potential, it is clear that its asymptotic behavior in the large-L
limit is of the order of the largest difference of the effective
potential W (x) in the [—L, L] interval.?

Note that for a given realization of the disorder, the MFPT
is controlled by an exponentially large quantity in the potential
difference. Therefore, there is a difference between the aver-
age MFPT and the typical one. The latter is of interest and
is encoded in the disorder average of In(t) given in Eq. (11).
This gives

In{c) ~ AVL, (12)
L—o0
where A is a constant that depends on the details of the
potential W (x).
The above result indicates that the mean-squared displace-
ment of an active particle on a random potential behaves as

(x2(1)) x In*(1), (13)

where x(¢) is the displacement at time ¢. This indicates that the
dynamics of the active particle on a one-dimensional random
potential energy landscape is an ultraslow Sinai diffusion.
Indeed, at the exponential level, the MFPT of the two models
is identical. We verify this prediction numerically in Fig. 3 for
the random ratchet model illustrated in Fig. 2: The disorder-
averaged mean-squared displacement as a function of time for
active RTP on a disordered random ratchet potential agrees
with Eq. (13) in the long-time limit.

3The result is easier to interpret if one computes the simplified
MFPT, obtained by imposing reflecting boundary condition at the
origin. Then a calculation similar to the one presented here shows
that the logarithm of the MFPT is dominated by the largest difference
in the effective potential W (x). As the scaling with L is the same, the
discussion that follows is identical.

10* L
T 10%)
B
o VE =07V,
= . VE =075V, |
-~ P , V=08V,
/ | v V* =085V},
1020+ | L VE=09VE

] ! ! !
1072 10° 10° 10* 10°
t/to(V")

FIG. 3. Dynamics of active particles on random ratchet poten-
tials of varying strength. Different plots correspond to ratchets which
differ only by their maximal height, V*, with a slope ratio of 1:4.
Heights are given relative to the maximal ratchet height V>, which
imposes a slope |19,V | = v. Such slope prevents the particle from
moving. For each V*, 100 RTPs are simulated on a potential of 10*
ratchets for 107 time steps, with unit mobility and speed. The time
and mean-squared displacement are rescaled by constants so that the
data collapse for long times. The dashed line marks the theoretical
prediction of Eq. (13) (x2(¢)) o In*(¢), showing good agreement
on long times with the numerical data. The dotted line shows the
diffusive scaling (x?(¢)) o<, valid for short times. For stronger
V*, the numerical curves approach the disorder dominated regime
earlier.

It is interesting to ask when the effects of a weak random
potential become important. To study this question we appeal
to the equilibrium random forcing analogy. In this case, a nat-
ural length scale [19] for the crossover is given by £* ~ D? /o
with D the diffusivity of the particle and o> the variance of
the random force, namely f(x)f(x') = 028(x — x'), with f(x)
the force at position x. In the active case D = v?/a, while o
depends on the details of the potential distribution. The value
of o2, which depends in a nontrivial way on the parameters
of the model and cannot be easily evaluated, is a measure
of the strength of the ratchet effect for a given disorder
distribution. Therefore, as expected, the stronger ratchets lead
to shorter crossover lengths (see Fig. 3). Note that the same
length scale can be obtained from Eq. (4) by considering
the quasipotential. In analogy with a Boltzmann weight, the
temperature scale T is set by the ratio o+/L/D, where D =
v?/a. The low-temperature regime then corresponds to the
strong disorder limit L >> £* while the high-temperature limit
corresponds to systems where L < £* and the density profile
is to leading order uniform.

2. Speed disorder

We now turn to the dynamics of active particles in the
presence of a spatially varying speed. The difference in
steady-state distributions between this case and that of random
potentials was already emphasized in Sec. Il A 2. To proceed,
we note, using the results from Appendix A 2, that when the
disorder enters through the speed, the MFPT is asymptotically
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FIG. 4. Dynamics of active particles with varying speed, ran-
domly drawn at each point from a uniform distribution in the interval
[0.9v, 1.17]. The plots are for 100 particles and 10® time steps,
1000 realizations of disorder, six mean speeds, and a unit tumbling
rate. The disorder-averaged variance of the probability distribution,
rescaled according to Eq. (15), is plotted as a function of time. The
dashed line is fitted to diffusive motion, (x2(¢)) ~ ¢.

given by

af’ dx M dy [Pdzv v v (@)

o ffL dzv—(w)

L—o0

(14)

This expression will be analyzed in two distinct cases. In the
first, the speed probability density vanishes near v = 0, while
in the second the probability density diverges near v = 0.

a. Case I: Vanishing probability density near v = 0. In this
case, the dynamics is diffusive. The denominator of Eq. (14) in
the large-L limit is well approximated, due to the law of large
numbers, by 2Lv—1. Then, the disorder average of () can
readily be evaluated. The leading order term in the numerator
is given by the product of the disorder averages of the inverse
speed, scaling as L3, with corrections scaling as L>. To see
this, one defines v—! = v—! + Sv~! and assumes short-range
correlations of the deviations sv~! in space. This leads to
diffusive behavior,

o~ Y22

@, > 0L (15)
as verified numerically in Fig. 4. We note that a recent work
[35] analyzing the numerical spectrum of a related model
discovered a more complex dynamics, as opposed to the
diffusive dynamics reported here.

b. Case II: Diverging probability density near v = 0. Here
we assume that the probability density near v = O takes the
form p(v) ~ v=#, with 0 < B < 1. It is well known that slow
bonds can lead to anomalous diffusive behavior [36], and a
similar phenomenon also occurs here. To evaluate the MFPT
(14), we note that the dependence of the denominator on L can
be obtained using standard properties of Lévy distributions

FIG. 5. The disorder-averaged spreading for randomly dis-
tributed speed (case II), rescaled with time as suggested by Eq. (16).
The dynamics of active particles is simulated with speeds varying in
space, drawn from the distribution p(v) ~ v~# in the interval [0,1],
for 100 particles 103 time steps, 1000 realizations of disorder, and
unit tumbling rate.

[19]. The integral of the denominator of Eq. (14) is dominated
by the largest value of v~' on the interval of length L,
1
denoted by (v*)~!, which scales as (v*)~! ~ L™ . Similarly,
the numerator is dominated by the largest contribution to each
3

of the integrals, scaling as L™#. The resulting MFPT is then
given by

_— o 2

—LTF, 1

@, % > (16)

This anomalous diffusion is verified numerically in Fig. 5.4

Finally, we note that the results suggests that when 8 = 0, one
should expect (1) L%/ log(L).

3. Tumbling rate disorder

Let us consider the dynamics of the active particle in the
presence of a tumbling rate that varies in space. This was
shown in Sec. IIA3 to have no effect on the steady-state
distribution, leading to a flat density profile.

Using the results of Appendix A 2, to leading order in L the
MFPT is given by

1[0 dx fydy (6 = pa@a)
JE, dza(w) '

a7

L—o0 1)2

As in the case of the speed disorder, we distinguish here
between two limits.

“For the largest value approximation to be valid, the extreme value
must exceed the average contribution from the integral, which is
proportional to L. The corrections to the scaling of the numerator
as a function of L behave as L%. Therefore, in numerics, one has
to look at system sizes such that Lé > L% or L% > 1, which
becomes difficult as § — 0.
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FIG. 6. Dynamics of active particles with a random tumbling
rate varying in space (case I). The tumbling rate is drawn from a
uniform distribution in [0, 2a], for 100 particles, 10® time steps,
1000 realizations of disorder, five mean tumbling rates, and a unit
speed. The disorder-averaged variance of the probability distribution,
rescaled according to Eq. (19), is plotted as a function of time. The
curves are fitted with diffusive dynamics, i.e., (x?(¢)) ~ ¢.

a. Case I: Probability density with a finite mean. Here we
can use an integration by part to transform Eq. (17) into
1

T ~ J—

L—o00 v2
Lax fy dv[ew [ dze@ +a0) [* dzata)]
[ dza(w)

(18)

Then using the law of large numbers and arguments almost
identicals to those leading to Eq. (15), we find that the MFPT
is given by
o o~ 22 (19)
L—o0 2U2
Namely, the dynamics is diffusive, as verified numerically in
Fig. 6.

b. Case II: Probability density with a diverging mean.
To evaluate the expression for the MFPT (17), we use the
arguments presented in Case II of the speed disorder, taking
pla) ~ a~1*1 forlarge o with 0 < u < 1. Doing so, we find
that the denominator scales as L'/# while the numerator as
L'*2/1_This leads to

1 1+1/
L%omL K, (20)

()
a result verified numerically in Fig. 7.

4. Mixed disorder

Finally, we turn to address the question of multiple dis-
ordered parameters. As shown in Sec. II B 1, disorder in the
potential manifests itself as an exponential dependence of the
MFPT in this potential. Because of its exponential nature,
any subexponential addition would not be able to alter the
dynamics. Moreover, even if the exponential factor is changed

109 L L vvmvvm—J
[ ] ;v
L 4t
S
> '
—~ v
B ¢ « 1=0.6
= u=0.7
. pw=0.8
1072 10° 10?
t

FIG. 7. The disorder-averaged spreading for a disordered tum-
bling rate (case II), rescaled by time according to Eq. (20). Here
v =2u/(1+ w), and the rescaling factor g(v) is chosen so that the
curves asymptotically approach the same value. The dynamics of
active particles is simulated with a random tumbling rate varying in
space, drawn from the distribution p(a) ~ a~1*® for a € (0, 00),
for 100 particles, 10° time steps, 200 realizations of disorder, and
unit speed.

by such an addition, keeping the exponential dependence will
lead to Sinai diffusion nonetheless. Therefore, a potential dis-
order mixed with other types of disorder will lead to ultraslow
diffusion.

The other possibility of mixing disorder types considers a
model with disorder in both the speed and tumbling rate. In
this case, the dynamics will generally be different for corre-
lated and uncorrelated random parameters. If the distributions
are uncorrelated, as emphasized in Sects. IIB2 and IIB 3,
the dynamical regime depends on two quantities—the mean
inverse speed v=1 and mean tumbling rate @. If both quantities
are bounded, then the dynamics will be diffusive; if one is
unbounded, then it will dictate the anomalous diffusion of
the system; if both are unbounded, then the dynamics will be
determined by the largest inverse speed and largest tumbling
rate. The largest of the two will govern the dynamics and
determine anomalous diffusion dynamical exponent. All the
results above are simply derived from the expression of the
MFPT, given explicitly in Appendix A 2.

Note that if the speed and the tumbling rate random vari-
ables are correlated, different dynamical regimes are possi-
ble. To obtain the dynamics, one should then consider the
probability distributions of the speed random variable along
with the distribution of the ratio . The latter will play the
role of the tumbling rate in the analysis carried above for the
uncorrelated variables.

III. MANY RTPS IN A DISORDERED POTENTIAL

As shown in the previous section, a RTP in a disordered
potential behaves as a random walker on a random-forcing en-
ergy landscape. This implies that the particle feels an effective
potential whose depth grows as +/L with the system size L. In
this section we consider the consequences of this fact for the
many-body problem with a finite density of particles, for both
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interacting and noninteracting RTPs. Recall that for a single
RTP in a disordered potential, there is a length scale £* (see
Sec. IIB 1), below which the motion is diffusive and above
which the motion is logarithmically slow. Accordingly, the
discussion that follows is carried out separately for systems
for which L < £*, referred to as weak disorder, and with
L > ¢*, referred to as strong disorder.

Most strikingly, we find that the presence of disorder
promotes order in these systems. In the case of weak disorder,
the two-point correlation function is shown, using numerics
and a simplified theory, to decay linearly in space with an
amplitude scaling linearly with the system size L. In the
case of strong disorder with no interactions, as expected, the
particles accumulate around a single minimum leading to a
correlation function which decays over a finite distance. For
the interacting case, it is well known that in the absence of
disorder RTPs in one dimension only exhibit clusters of finite
extent [22,23]. In contrast, here we find that the cluster size
distribution is distributed as a power-law with a mean cluster
size which scales as /L.

A. Weak disorder

As explained above, we start by considering systems for
which L < £*. In this limit, the density profile of the system is
expected to be approximately uniform with small fluctuations.
Recalling that RTPs on a random potential are equivalent to
Brownian particles on a random forcing energy landscape, we
consider the simplified free-energy functional

K L)
F= /dx [5(3&) + §¢ (X)+¢(x)U(X)]. 21

Here the field ¢(x) represents the density fluctuations from
the mean value, K accounts for interactions, u contains both
the leading order interaction and entropic contributions, while
U(x) is a random potential with the statistics of a random
forcing energy landscape,

Ux)=0
- 0'2
UU(y) = 7(x+y— lx —yD. (22)

Throughout this section, we use the convention f, =
LL fOL dx f(x)e~"% for the Fourier transform of any function
f(x) defined on the interval [0, L], e.g., with ¢, as the Fourier
component g of the density deviation field.

To characterize the effects of disorder, we focus on the
disorder-averaged structure factor

S(q) = (pgd—4). (23)

with the overline, as before, denoting the average over dis-
order realizations and the brackets indicating averages over
the probability distribution governed by the Boltzmann weight
from Eq. (21). Since this weight is Gaussian, one can easily
calculate exactly the disorder-averaged structure factor: The
partition function Z for a given realization of the disorder is
given by

A
nZ=Y"|-—— —In(kq 24
s [2u(1+’5q2) nka +M)}’ “

where U, are the Fourier modes of the random potential. To
compute the structure factor we first evaluate

(Pg®—q)c InZ, (25)

T80, 8U_,

with (¢,P_g)c = (Pg0—y) — (Py) (¢d—,) the connected correla-
tion function. Then, noting that

1 U,
@) = ;(14-5 2)’

wq
we arrive at the two-point correlation function for a given
realization of disorder as

(26)

1 yUu, |
R ke
+ (1+%p) (27)

After averaging over realizations of disorder, we obtain

1 G,U,
u(l+44%)

N 1

S(q) = W ] (28)

Using Eq. (22) to compute the correlation U,U_,, we finally
getforg #0

202

S(g) = :
' i1+ 5’

i+ 5q) " @)

To leading order in the g — 0 limit, one finds S(g) o g2
signaling that there are long-range correlations in the system.
Note that this behavior is a consequence of the correlations in
the potential, which are manifested even in the noninteracting
case K = 0, with u accounting for purely entropic contribu-
tions. In real space, Eq. (29) gives the asymptotic behavior for
large r,

- 1
S(r):Z/O dx(¢>(x)¢(x+r))o<L(l—A£), (30)

with A an amplitude. The (7) decay of Eq. (30) shows that
the correlations decay linearly with a scale proportional to
the system size—a result reminiscent of a phase separated
system. This suggests that a macroscopic number of particles
accumulate around the deepest part of the potential.

Note that for » = 0, we find that % fOL dx ¢p%(x) o< L. This
relation suggests a nontrivial scaling of the typical magnitude
of the density fluctuations. To understand this scaling we note
that the interaction term %(ﬁz(x) in the free-energy accounts
for repulsion between the particles and is balanced by the term
¢(x)U (x), which tends to gather particles at the minimum of
the potential. This minimum scales as +/L, and so the typical
magnitude of the density fluctuations in the dense phase scales
in the same way.

We now compare the field-theoretic result with numerical
simulations of RTPs in the ratchet potential of Fig. 2. We
simulate, at the same average density of oy = 0.25, both non-
interacting particles and particles interacting via a short-range
pairwise harmonic repulsion U,(A) = 4(1 — A)* if A <1
and U, = 0 otherwise, with A the interparticle separation. The
results are presented in Fig. 8. As predicted by the field theory,
we find, for both interacting and noninteracting particles, that
the structure factor diverges as ¢~ at small ¢. For each case,
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1 S(q) —e— L = 400 non-interacting
1077 —o— [ = 800 non-interacting
—=— [ =400 interacting
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1072
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FIG. 8. Structure factor in the weak disorder case, with ratchets
of height V* = 0.58V> . V.= is defined as the potential height which
creates a slope |ud,V| = v which stops the particle. Interacting
particles experience a short-range interaction of strength of k = 10.
The average density (p) = 0.25 is simulated on a ring of length

L = 800, with particles of unit speed, tumbling rate, and mobility.

two different sizes are plotted in Fig. 8 to check that the
scaling of the structure factor with L is consistent with the
one given in Eq. (29).

B. Strong disorder

Here we consider the strong disorder limit where the
system size obeys L > £*, with £* the crossover length
scale between the standard and ultraslow diffusive regimes.
Since numerical simulations proved prohibitively slow in this
regime, we employ simple heuristic arguments building on
the analogy between RTPs in a random potential and Brow-
nian particles in a random forcing energy landscape. As we
argue, unlike the weak disorder limit, the phenomenology
is now very different between interacting and noninteracting
particles.

For the noninteracting case, there is no bound on the
maximal density at each point in space. At low-enough tem-
peratures T < oLz, noninteracting particles can all collapse
around the location of the global minimum of U [as defined in
Eq. (6)], and the fluctuations are expected to be confined to a
finite region around it. This leads to the expected behavior of
the density-density correlation function,

- 1 -
S(F)ZZ/O dx {(p(x)p(x +r)) ~ Lf(r), (3D

where p(r) is the density at r and f(r) is a function that decays
on a length scale independent of the length L. As stated above,
in the strong disorder regime, the convergence to the steady
state proved too slow to obtain numerical results. We therefore
use the analogy derived in Sec. IT A 1 between active particles
in a random potential and passive particles in a random
forcing energy landscape. To this end, we use a potential
defined on a lattice, such that the energy difference between
adjacent sites is a random variable taking the values %1 (in
arbitrary units) and therefore corresponds to a random force.
For noninteracting Brownian particles in a random-forcing
energy landscape, the steady-state distribution is then given

« L=10"]
s L=10°
0.8 ]
- v L=10*
\C[—)/ 0.6 ........ T fr—g
& \ —T=1/2
=041 S --T=1 |
02/ A, *
. *.* 7
0L i I e
0 ) 10 15 20
T
FIG. 9. The disorder-averaged two-point function

S(r)=L" [ dx(p(x)p(x+r)) divided by the system size L
in real space, with periodic boundary conditions. To verify the
scaling of Eq. (31), the correlation function is rescaled by L and
plotted for different system sizes and temperatures of the random
forcing equilibrium model. Since for noninteracting particles the
overall density po enters as a trivial pg factor, we take N such that
NL7'S(r) so that it is unity at » = 0. Note that the oscillations in the
T = 0 curves are due to degenerate minima.

by the usual Boltzmann distribution p(x) o< e Y®/T and can

readily be evaluated. [Recalling the discussion at the end of
Sec. II B 1 we note that the strong disorder regime corresponds
to low temperatures, and thus the Gaussian form emerging
from Eq. (21) is no longer applicable in this limit.] Evaluating
the steady-state distribution numerically, we find that as long
as the temperature is low enough, the correlation functions
indeed behave as expected from Eq. (31) (see Fig. 9). This
implies that essentially all the particles collapse near the
minimal energy.

We again employ the analogy to Brownian particles in a
random forcing potential to understand the case of interacting
RTPs. For simplicity we assume that the particles are on a lat-
tice with hard-core interactions. Such particles can be treated
as noninteracting Fermions with a chemical potential p setting
their overall number. Clusters are defined as sequences of
particles with no vacancies and the distribution of cluster
sizes is shown in Fig. 10 (left). (Since the overall energy
scale, set by the chemical potential, is much larger than the
effective temperature we consider the zero temperature limit
of this model.) Interestingly, the domain size distribution,
P(¢), behaves as a power law,

P(L) ~ (32)

o
implying that the average domain size in the system grows as
() ~ VL, (33)

as verified in Fig. 10 (right). The origin of the power-law
distribution of cluster sizes can be understood by considering
Fig. 11, in which the chemical potential, controlling the filled
locations on the lattice, is marked explicitly for a given
realization of the disorder. It is clear that the size of a cluster
is dictated by the statistics of first return of a random walk,
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FIG. 10. (a) Distribution of cluster sizes for for interacting RTPs, with the same mean density as Fig. 9 and different system sizes. The
distribution is extracted from 10° disorder realizations of the random forcing energy landscape. The curves are fitted with a probability
distribution, scaling as £~ 2. (b) Average cluster size as a function of the system size, plotted along with the theoretical prediction of Eq. (33),

) & /L.

starting and ending at the chemical potential, which is indeed
governed by Eq. (32).

We end this section by noting that it is straightforward to
numerically obtain the two-point correlation function, %
(see Fig. 12). Simple theoretical arguments using the self-
similarity of the Brownian motion show that for a fixed parti-
cle density, the two-point correlation function is a function
of (7). However, we have not been able to obtain explicit
analytical expressions for this functional form. The problem
is related to statistics of extrema of random walks (see, for
example, Refs. [37,38] where the problem is properly defined
but still unsolved) and is beyond the scope of this manuscript.

IV. SUMMARY

In this paper we studied active particles in disordered one-
dimensional environments. Considering the effects of three
types of disorder (in the external potential, the speed, and the
tumbling rate), we derived the steady-state distributions and

VI

0 L L
2

FIG. 11. Particles with hard-core repulsion filling a realization of
the random forcing energy landscape, at 7 = 0. The particles occupy
all energies up to the chemical potential, i, which controls the mean
density, here set to (p) = 0.4.

dynamical properties for a single run-and-tumble particle. In
the case of potential disorder, we also consider the many-body
case with either interacting or noninteracting particles.

In the single-particle problem, the most striking manifes-
tation of disorder was obtained for random potentials: The
active particles were shown to exhibit ultraslow Sinai diffu-
sion at long times, a behavior analogous to passive random
walkers on a random forcing energy landscape. In the paper,
we considered run-and-tumble particles with no translational
diffusion and were therefore restricted to potentials with
limited slope. If translational diffusion is allowed, the particles
can hop across steep local barriers, as recently analyzed in
Ref. [26]. Using these results, it is easy to see that a local
forcing is still present in this case when the barrier lacks an
inversion symmetry. Therefore, the conclusion drawn from the
case analyzed in the bulk of this paper remains unchanged.

0.5 ‘

0.4+

FIG. 12. The disorder-averaged two-point function S(r)=
L fdx dx (p(x)p(x + r)) in real space, with periodic boundary con-
ditions. The curves correspond to different average densities, (p).
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Similarly, any one-dimensional active particle model where
ratchet currents are generated should exhibit the same phe-
nomenology.

For disordered speed and tumbling rate, we have shown
that, as long as the mean tumbling rate and the mean inverse
speed are finite, the active particles exhibit ordinary diffusion.
If, on the other hand, these averages diverge, the diffusion of
the particles becomes anomalous.

In the many-body problem, we also found that a ran-
dom potential leads to striking effects. The disorder-averaged
structure factor was evaluated in the weak disorder regime
using a field theory and was shown to diverge as g~ at small
wave vectors. In the strong disorder regime, the phenomenol-
ogy is different. Using the passive random forcing model,
we found that while noninteracting particles all aggregate
at a particular locus, interacting particles form much wider
clusters, with the average cluster width scaling as the square
root of the system size.

It should be noted that while the paper deals only with
one-dimensional disordered systems, it offers a hint on the
dynamics in higher dimensions. As the arguments presented
above are rather general, we expect that our results can be
extrapolated to higher dimensions. In two-dimensional ran-
dom potential models, for example, circulation currents would
appear [39] due to the effective random forces induced by
the potential. In this case, the disorder-averaged spreading
should follow the random forcing diffusive scaling, (x2) ~
t/1In (¢). Furthermore, in the case of a disordered speed or
tumbling rate, we expect results similar to those found for one
dimension to persist in higher dimensions.
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APPENDIX A: COMPUTATION OF THE MEAN
FIRST-PASSAGE TIME

The MFPT (t) of particles absorbing at a distance L from
the origin can be computed exactly. In Appendix A1 the
calculation is done for the random potential, and for both the
cases of random speed and tumbling rate in Appendix A 2. For
completeness, the derivation is presented without assuming
much background.

1. Random potential

In this section, the MFPT is computed for a quenched-
disordered potential [34], as defined in Sec. IIA 1. We in-
troduce the MFPT 7, (x) [respectively, T_(x)] of a particle
initially located at position x and moving in the right (respec-
tively, left) direction. As expected, the long timescale behavior
of the two expressions, which is of interest, will be the same,
resulting in a single expression for the MFPT irrespective of
the initial condition.

The calculation is done by employing the backward
Fokker-Planck equation [27]. To this end, we consider the
backward evolution of the probability density P.(x', t; x, 0) of

particles reaching X = x’ at time ¢, initially starting at X = x
moving respectively to the right or to the left [40],

O PL(x',1;x,0) = [v — (V)] Pp(x', 1:x,0)
- %[&(x/, £:x,0) — P_(x', 1:x, )],
P_(x',t;x,0) = [—v — u(0,V)]0,P_(x, t;x,0)
+ %[P+(x’, £5x,0) — P (x, £3x, 0)].
(A1)

These equations are solved with the absorbing boundary con-
ditions, P, (x',#;L,0) = P_(x',¢;—L,0) = 0. For compact-
ness, time can be rescaled using the inverse tumbling rate and
length can be rescaled by the factor %*. In these nondimen-
sional units, we denote (—ud,V ) by ¢(x). Equations (A1) can

then be written in the dimensionless form
0P (x,1;x,0) = [1 + @(x)]0.Pr(x', £;x, 0)
—[Py(x',1;x,0) = P_(x', 1;x,0)], (A2)

P_(x',1;x,0) = [—1 4+ ¢(x)]0P_ (X, 1;x, 0)
+[Py (X, 13x,0) — P_(x', ;x,0)]. (A3)

The probability that a particle is not absorbed in a time
interval 7, G(x, t), conditioned that it was initially positioned
at X = x, is given by the spatial integral over its final position
[27]

L
Gi(x,t) = / dx' Py(x',1;x,0), (A4)

-L
with the initial condition G4+(x,0) =1 for —L < x < L. In-
tegrating Eq. (A3) over x' shows that G4 (x,t) satisfy the
backward Fokker-Planck equations

9G4 (x, 1) = [1+90)]0:G4 (x, 1) =[G4 (x, 1) = G_(x,1)],

0,G_(x,1) = [-14+0(x)]0,G_(x,t) + [G(x,t) — G_(x,1)].
(AS5)

The functions G+ (x,t) give the probability that absorption

of the particle happens after time ¢ and are related to the
probability densities p4 () of the first-passage time through

Gi(x,t)Z/ dt p=(7), (A6)

which gives after differentiation py(#) = —9,G+(x,t). The
latter relation can be eventually used to compute the MFPT
through

T+(x) = —/ dt19;,Gi(x,t)
0

:/oodt Gi(x,1). (AT)
0

Thus, integrating Eq. (AS) over time, the MFPTs 7. (x) are
shown to obey the following backward stationary Fokker-
Planck equations:

[+ o))ty (x) — [14(x) — T-()] = —1,

[+ ()]0t (x) + [t (x) —-()] = 1. (A)
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Equation (A8) can be solved using the boundary con- 74 (x). As we are interested in the time required for a
ditions 7, (L) = 7_(—L) = 0, which mean that a particle  particle to travel a distance of L, we only consider par-
starting on the boundary with its velocity pointing outward ticles starting at x = 0, with equal probability of moving
is immediately absorbed. We choose to skip the lengthy to the left or to the right. For convenience we define the
calculations and give directly the general expressions for  function

J

_ ! ()
v = e [/L Dz wzcy)] (A%
The mean first-passage time (7) is then computed as
() = %[u(o) + T—(O)], (A10a)
t ¥ (2)
= Al
("”O)[/Ld - 2@} (A1)
—w(L)[fL A2 ][/0 dz Y } (A10¢)
LvMI-e*M L)L 1-¢*@)
1 boosen(y) 2 M/L ¥ (2) ]
0 dz A10d
¥ )U "o -l T T (A1
1 B sgn() [ / v 2 “
— =¥ d — A10
O [ 2 o - [ Gt (Al0e
! b sen(®) [ / V@ 2 “
Oy (L dy ——— — d7 — ——— A10
VO ){/_L ool L e T-e0 (A10D
Lodz 2 °© dy YooY 2
+ Y (O)y (L / [ —/ d ——:“ A10
B ATy | Bt Rl Bt Troverre (A0
el Tl Leve o))
— U (0 (L - dz —= A10h
B e | | et Gl B Trov e (AT
X {W(O)[w(L)[fL 2 + 1] + 1“_1 (A10i)
LY@ 1 —¢*(u) '
[
Note that the seemingly asymmetric expression of (t) is oz(x) ay) [*
due to the definition of ¥ (x) in Eq. (A9). + /_Ld 200 y——= ') ). @ ):| (Al2¢)
2. Random speed and tumbling rate N |:2 N /L Jw a(w)]—l AL
To compute the MFPT for models of random speed or -L v(w)
tumbling rate, we follow the method detailed in the random As there are no exponential terms in this result, the domi-

potential case in Appendix A 1. AS v(x) or oz(.x ) ar¢ no nating term in the large length scale limit is found by analyz-
longer constants, the computation is done with dimensional ing the large L behavior and is that of Eq. (A12c). This result

quantities, leading to the following set of equations: is used in the main text for random speed in Sec. IIB 2 and
a(x) random tumbling rate in Sec. II B 3.
v(xX)0x T4 (x) — T[T+(X) —T@]=-
( APPENDIX B: SIMULATION METHOD

a(x)
—v(x)0, T_(x) + —[to(x) —1_(x)] = —1. All
2 ) 2 [2+(x) )] a1l The molecular dynamics simulations mentioned in the

Solving these equations, the MFPT reads text integrate the following general Langevin equation, corre-
sponding to the Fokker-Planck equation (1) in the main text,

1
(1) = ST (0) + 7-(0)] (Al2a)
Ly 0 aw L dy fq = 00 (xg) — i,V — pdy, Y U —x). (B
= — 4 dx —= — b#a

—1 v(x) L v Jy v(y) . . ... .
Equation (B1) describes the position x, of the ath particle
n L & (x) [* dy (A12b) moving in the o, direction with a spatially varying speed v(x).
0 v(x) J_, v(y) o, is a random variable switching between the values +1
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stochastically with a spatially varying tumbling rate «(x). The
particle has mobility u and is influenced by a spatially varying
potential V (x) and a pairwise interaction U, depending on the
distance between the particles

k
Uxg —xp) = E[l — (= %)°] =) < 1. (B2)

The different parameters are set to be constants in space in
different parts of the text.

The disordered parameters are first drawn from the appro-
priate probability distribution using Monte Carlo methods.
After computing the relevant quantities, including multiple
histories, they are averaged over many realizations of the
disorder.

For each realization of the disorder, the Langevin equation
(B1) is simulated using Euler’s time discretization scheme, in
which the locations of the particles at time t;1; = t; + At are

given by
Xa(tiv1) = x4(t;) + oa(t)v[xa (1)) — w0, (1)V — MOk,

X Y U Lxa(ti) — xp(1:)]). (B3)
b#a

To take care of the orientations o,(¢;+1), a continuous-time
Monte Carlo method is used when the tumbling rate « is uni-
form in space, drawing the time interval between consecutive
tumbles from a distribution with mean «~!. In this case, Ar
is chosen such that At < a~!. If a tumble occurs within a
time step, then the evolution is divided into two steps—before
and after the tumble. If the tumbling rate «(x) varies in space,
then Euler’s discretization scheme is employed once again,
switching the orientation of the ath particle at each time step
t;+1 with probability o[x,(¢;)]Az. In this case At is chosen
such that Ar < max, [a~!(x)].
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