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Inspired by protein folding, we smooth out the complex cost function landscapes of two processes: the tuning
of networks and the jamming of ideal spheres. In both processes, geometrical frustration plays a role—tuning
pressure differences between pairs of target nodes far from the source in a flow network impedes tuning of
nearby pairs more than the reverse process, while unjamming the system in one region can make it more difficult
to unjam elsewhere. By modifying the cost functions to control the order in which functions are tuned or regions
unjam, we smooth out local minima while leaving global minima unaffected, increasing the success rate for
reaching global minima.
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I. INTRODUCTION

Many problems from physics to computer science involve
the minimization of some free energy, loss, or cost function in
a high-dimensional space defined by the degrees of freedom
(phase space). Such problems generally fall into the class
of constraint-satisfaction problems, with cost functions given
by the sum of penalties for unsatisfied constraints, so that
global minima correspond to the satisfaction of all constraints.
For example, unjammed sphere packings are global minima
of an energy that penalizes overlaps between spheres [1,2],
self-assembled structures are global minima of a free en-
ergy composed of competing energies and entropies [3,4],
functional networks are global minima of cost functions that
penalize the lack of function [5,6], while neural networks that
correctly categorize data are global minima of cost functions
that penalize incorrect identifications [7].

In all of these problems, the set of solutions (flat regions of
the landscape corresponding to global minima) shrinks and
divides as more constraints are added, until it completely
disappears at the SAT-UNSAT transition [8]. In the ideal
case of an optimal algorithm, one always finds a solution up
to the SAT-UNSAT transition. In actual practice, however,
algorithms searching for solutions often encounter a transi-
tion below the SAT-UNSAT transition in which the problem
changes from being easy to being hard to solve. The landscape
becomes rough (see, e.g., [9,10]) with many local minima.
One approach in the “hard” phase is to choose an algorithm
that can better avoid being trapped in local minima [11–14].
Here we explore an alternate approach, where we transform
the landscape to decrease the number of local minima without
altering regions corresponding to global minima, to make the
problem easier to solve for any practical algorithm.

We draw inspiration from protein folding [15], where a
specific protein evolves from an initial (denatured) configura-
tion to the functional (native) state. Levinthal first noted [16]
that an extensive entropy of local minima (undesired configu-
rations) would prevent the protein from finding its native state
in reasonable time. However, nature provides many proteins
with cost functions (free energies) with landscapes that are

partially smoothed out and tilted as a funnel toward the native
state [15,17].

In constructing cost functions, the penalties for unsatis-
fied constraints are usually equivalent. For example, in the
jamming problem the pairwise energy costs for overlaps of
spheres are identical. The protein-folding problem suggests
that by imposing nonequivalent penalties on unsatisfied con-
straints, we can construct a cost function with a funneled
landscape, in which the basin of attraction of global minima
is increased at the cost of the existence or size of basins of
local minima. In general, it is not obvious how the topography
of the global energy landscape is modified by changes in
local interactions [18,19]. Here we study two systems with
rough landscapes (Fig. 1), namely tuned flow networks [5]
and sphere packings [1,2,20]. In both systems, we show that
we can smooth out local minima, increasing the ability to
reach global minima. An essential element of our approach
is that we modify interactions in such a way as to leave
global minima unaltered. As a result, it is not necessary to
map back to the unweighted landscape, in contrast to previous
approaches for smoothing energy landscapes [21–23].

II. TUNING OF FLOW NETWORKS

A flow network is a set of nodes, each with a scalar
pressure, and links (edges) between them that carry currents.
The current through each edge is given by the product of
the conductance and the pressure difference between the
two nodes connected by the edge. Here we assume that all
edges have the same conductance. We refer the reader to the
Supplemental Material (SM) [24] for details of the ensemble
of networks studied and the calculation of the pressure field.
For a given initial network [e.g., the one in Fig. 1(a)], we
drive flow through the network via a source edge with a unit
pressure drop. The initial network is tuned, by removing and
reinserting edges, to have pressure drops {�Pi} such that the
fractional pressure drop change (�Pi − �P0

i )/�P0
i is at least

of magnitude η across a set of randomly chosen target edges
{i}; �P0

i are the initial pressure drops. To tune the system, we
define a cost function to measure how far the system is from
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FIG. 1. (a) Tuning function into flow networks. Blue nodes in the center denote a “source” edge with an externally specified pressure
difference; randomly placed pairs of red nodes denote the “target” edges, where we specify desired pressure drops. Edges may be removed or
reinserted to change pressure drops across target edges. If all target pressure drops reach their desired values, the system reaches the global
minimum of a cost function. (b) Jamming of ideal spheres. Overlaps are minimized between bidisperse spheres with a diameter ratio of 1.4
that are initially placed randomly. If all overlaps are eliminated, the system reaches the global minimum of the total energy and is unjammed.

performing the task [5]:

F =
NT∑
i=1

r2
i �(−ri), (1)

where ri = �Pi−�P0
i

�P0
i

− η is the deviation of the actual frac-
tional change in the target pressure drop from the desired
value η for edge i. Here, NT is the number of target edges
that we aim to tune for a system of N nodes. The Heaviside
function (�) in F ensures that F = 0 if we have achieved
at least a fractional change of pressure drop of η for each
target edge. Since F � 0, F = 0 corresponds to the global
minima of the cost function. This cost function has a complex
landscape [25].

The system is tuned using the greedy algorithm by remov-
ing or reinserting edges from the initial network and always
choosing the edge that reduces the value of F the most. If
F = 0 the process is successful, and we say that the system
can be tuned. If there are no bond deletions or reinsertions that
would reduce the cost function and the value of F is greater
than 0, then the system is stuck in a local minimum and cannot
be tuned successfully.

In Ref. [5] it was shown that tuning of a complex flow
or mechanical network exhibits a transition as the number of
targets increases, where the problem becomes hard to solve.
Moreover, the maximum density of targets (NT /N) that can
be tuned successfully tends to zero as N → ∞ (Fig. 3). One
would expect the maximum number of targets that can be
tuned successfully to scale linearly in N . The observation of
sublinear scaling cannot be explained by local geometrically
frustrated motifs (such as having to tune three edges of a trian-
gle), since the probability of such configurations for randomly
chosen targets decreases with decreasing target density. What
is the source of frustration that prevents us from tuning the
system in the thermodynamic limit?

Figure 2 suggests an answer. Here there is only one target
edge (with target nodes labeled in red), and we color each

edge by the magnitude of the pressure drop change at the
target edge if the colored edge is removed. In principle, every
edge contributes, but not all edges contribute equally. Edges
are colored on a blue to yellow scale, where yellow edges
give the largest changes in the target edge pressure drop
�P. Figure 2(a) shows that if the target edge is close to the
source edge, only a few edges change �P significantly (only
a few edges are yellow). By contrast, Fig. 2(b) shows that if
the target edge is far from the source edge, many different
edges affect the �P. Evidently the source breaks translational
symmetry for targets significantly. In particular, (i) if a target
distant from the source is tuned first, subsequent tuning of
a nearby target could significantly affect the distant target,
causing failure in the tuning process; (ii) if a nearby target
is tuned first, there are still many edges available for tuning a
distant target without affecting the nearby one, suggesting that
the distant target can also be tuned successfully. These obser-
vations suggest that tuning targets in order of their distance
from the source could help. We transform the landscape using
this information by modifying the cost function in Eq. (1) to

F̂ =
NT∑
i=1

r2
i

Rβ
i

�(−ri), (2)

where Ri is the distance of the i target to the source, and β is an
exponent that we can vary. For β � 1, the cost of incorrectly
tuned nearby targets is much higher than that of incorrectly
tuned faraway targets. Note that global minima in (1) and (2)
are the same.

Results for different exponents β in Eq. (2) are shown in
Fig. 3. Here PSAT is the fraction of networks that can be tuned;
this is the success rate of reaching the global minima (F = 0).
We plot PSAT as a function of the number of target edges
NT . Figure 3(a) shows that the curves collapse for all β, η,
and system sizes N studied by introducing Nc

T , the number of
targets that can be tuned when PSAT = 0.5, and the width w

of the PSAT curve corresponding to the spread in NT between
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FIG. 2. Networks with one source edge and one target edge, with corresponding nodes labeled in blue and red, respectively. The color of
each edge reflects the change in the pressure drop along the target edge if the given edge is removed. The target edge is close to the source in
(a) and far from it in (b). See the Supplemental Materials for an analytical approach to these cases [24].

PSAT = 0.25 and 0.75. The inset to Fig. 3(a) shows that the
PSAT curves shift to the right (more target edges can be tuned)
as β increases. As in Ref. [5], we find power-law scaling:
Nc

T ∼ Nγc and w ∼ Nγw with γc ≈ γw ≈ 0.7 for β = 0. As
we increase β, γc and γw increase, saturating to unity [insets
to Figs. 3(b) and 3(c)] so that Nc

T /N → const as N → ∞. The
scaling Nc

T ∼ N is consistent with tuning being limited only
by local frustration that increases with target density but is
independent of system size, suggesting that we have pushed
the easy-to-hard transition up to the upper bound, the SAT-
UNSAT transition, where the set of solutions disappears [8].
Finally, in Fig. 3(d) we plot the value of F [Eq. (1)] and
F̂ [Eq. (2)] during the minimization of F̂ for one network.
While F̂ decreases monotonically to zero, F exhibits many
local minima and energy barriers and stays approximately
flat until it falls to zero precipitously, dropping more than
15 orders of magnitude in the last few steps. This behavior
demonstrates that we have indeed eliminated local minima,
increasing the basin of attraction of global minima, showing
that the landscape of F̂ is funneled. For more information,
see [24].

III. JAMMING OF IDEAL SPHERES

Jamming of ideal spheres has been a useful starting point
for studying disordered solids [1,2,26]. We conduct numerical
simulations on 50 : 50 mixtures of spheres with a diameter
ratio of 1.4 in d = 2, 3 spatial dimensions at a fixed number
density with periodic boundary conditions (see Fig. 1). In the
standard procedure, one starts from T = ∞ with completely
random particle positions and minimizes the total energy of
the system:

F = 1

2α

∑
i �= j

(
1 − |�ri − �r j |

Ri + Rj

)α

�

(
1 − |�ri − �r j |

Ri + Rj

)
, (3)

where �ri is the position of the center of particle i, and Ri is
its radius. If F > 0 at the end of the minimization process,
then the system is jammed and has not reached its global

minimum, while if F = 0 (within a numerical tolerance) the
system reaches its global minimum, an unjammed state. We
take α = 2, corresponding to harmonic repulsions between
overlapping particles, and we use the FIRE algorithm [27].
We are interested in the effect that a transformation of the
landscape topography has over the properties of the jamming
transition. We propose the new interparticle interaction:

F̂ = 1

2α

∑
i �= j

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + β
∑

2D : s=x, y
3D : s=x, y, z

[
1 − cos

(
2π

L
sCM

)]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

×
(

1 − |�ri − �r j |
Ri + Rj

)α

�

(
1 − |�ri − �r j |

Ri + Rj

)
, (4)

where �rCM = (�ri + �r′
j )/2, and �r′

j is the periodic image of �r j

closest to �ri. The case β = 0 corresponds to the original jam-
ming landscape, and β > 0 makes the interactions stronger at
the center of the box and weaker at the corners . As the energy
F̂ is minimized, we expect particles to rearrange from the
center outward in order to eliminate overlaps, in contrast to the
usual case of β = 0, where rearrangements occur everywhere
in the system at the same time.

Figure 4 shows results for the d = 3 case; for d = 2,
see the SM [24]. Figure 4(a) shows that the probability of
jamming PJ versus packing fraction φ shifts to the right
as β is increased from β = 0 (black) to β = 10 (red) for
each system size studied. The curves for PJ versus φ can
be collapsed [28,29] by introducing the position φc and the
width w of the jamming transition for each N . Figure 4(b)
shows (φc − φ∞

c ) versus N ; here, we assume that the position
of the jamming transition in the thermodynamic limit, φ∞

c ,
is unaffected by β. (Alternatively, we could assume that φ∞

c
depends on β; that analysis is shown in the SM [24].) The
scaling steepens with β and the prefactor of the scaling of
the transition width decreases, suggesting this is a smoother
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(a) (b)

(c) (d)

FIG. 3. Tuning flow networks in a funneled landscape. (a) Collapse of PSAT (the fraction of networks for which the system reaches the
global minimum of F = 0) vs the number of target edges, NT , for β = 0, 2, 7, η = 0.1, 1, and system sizes N = 16, 32, 64, 128, 256, 512,
and 1024. Inset: PSAT vs NT for η = 0.1 and N = 16, 64, 256, and 1024, labeled by squares, circles, triangles, and diamonds, respectively.
Black and red curves correspond to β = 0 and 7. (b) Dependence on N of the location of the transition, Nc

T , and (c) the transition width w for
η = 0.1 and β = 0, 2, 7 (black, blue, and red points, respectively). Insets: exponents γc and γw for the power-law fits of (b) and (c) plotted vs
β; error bars represent three times the standard deviation. (d) F̂ vs minimization step as F̂ is minimized for N = 512 nodes, NT = 200 targets,
η = 0.1, and β = 7 (red); we simultaneously calculate F (β = 0) and show it for comparison (black). For analogous results for η = 1, see the
SM [24].

landscape. Figure 4(d) shows this explicitly; during one min-
imization, we plot F̂ , the quantity that we actually minimize,
and simultaneously show F . As before, F̂ decreases mono-
tonically while F exhibits energy barriers.

Our results show that Eq. (4) reduces the ratio of the
volume occupied by basins of local minima compared to
the volume corresponding to global minima. This shows that
the landscape is funneled. It would be interesting to quan-
tify the structure of the new landscape [9,10], possibly by
measuring the distribution of basin volumes of local min-
ima [30,31]. While the shifts in the critical packing fraction
are not large compared to those achieved by Monte Carlo
swap methods [32], indicating that the implementation of the
funnel is less effective than for the tuning problem, our results
nevertheless show a significant increase in the probability
of reaching an unjammed state (1 − PJ ) at a given packing
fraction φ at a given system size N .

IV. DISCUSSION

In this paper, we have transformed the landscapes of two
completely different systems, smoothing out local minima
and increasing the basins of attraction of global minima. This
conserves global minima but modifies the topography of the
landscape away from them, thus shifting the transition where
the problem becomes hard to solve. We emphasize that in both
cases, the transition from easy- to hard-to-solve depends not
only on the structure of global minima, corresponding to zeros
of the cost function [8], but also on nonzero values of the cost
function (particularly local minima). In flow networks, all the
constraints involve all of the edges of the network, but for
constraints near the source, fewer edges contribute heavily.
Thus, the source breaks translational symmetry and provides
a natural geometrical choice for the constraint weightings. In
jamming, on the other hand, the system is isotropic on average
and each constraint involves only one pair of particles, so it
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(a)

(b)

(c)

(d)

FIG. 4. Jamming of d = 3 soft spheres in a smoother landscape. (a) Probability of jamming, PJ , vs packing fraction φ for system sizes
N = 64 (squares), 512 (circles), and 2048 (triangles). Black and red lines correspond to β = 0 and 10, respectively. Inset: collapsed PJ vs φ

curves for β = 0, 10 and sizes 32, 64, 128, 256, 512, 1024, and 2048. (b) Critical packing fraction [defined by PJ (φc ) = 0.5] vs system size
N . For φ∞

c = 0.645, we find exponent values −0.70 ± 0.05 for β = 0 and −1.73 ± 0.05 for β = 10. (c) Power-law behavior for the width
w of the distribution vs N ; the straight lines have similar exponents (−0.36 ± 0.02 for β = 0 and −0.41 ± 0.02 for β = 10). (d) Energy vs
minimization step for N = 32 particles with φ = 0.63 and β = 30. We use the modified potential energy F̂ (red) and also plot F along the
minimization trajectory for comparison (black).

is less clear how to choose a useful weighting of constraints.
We break this invariance arbitrarily by introducing a trans-
formation that picks out a region in actual physical space to
minimize first. This smoothes out the landscape, but not to the
same degree as for flow networks.

We can think about the tuning of flow networks in a dif-
ferent way, in terms of how the satisfaction of each constraint
affects the satisfiability of other constraints. If the degrees of
freedom that contribute heavily to a constraint also contribute
heavily to a different constraint, we say those two constraints
are correlated with each other—the satisfaction of one affects
the ability to satisfy the other. This correlation is directional if
the satisfaction of one constraint affects the ability to satisfy
another one more than in the reverse case (as in Fig. 2).
Flow networks teach us that it is useful to weight constraints
that share heavily contributing degrees of freedom together,
and that a broken symmetry (like the one introduced by the
source) can indicate a preferred order between these groups.
More generally, however, it suggests a strategy of weighting
together constraints that are highly correlated with each other,
even in cases in which there is no preferred order. This
strategy can be used for jamming or other cases in which
there is parity, or approximate parity, in how many degrees
of freedom contribute heavily to the constraints.

This insight is potentially generalizable to other processes
driven by landscape optimization, such as self-assembly [3,4],
machine learning [7,33], discrete constraint-satisfaction prob-
lems in computer science [34], or signal reconstruction [35].
The introduction of funnels, or other transformations to cost
functions, may lead to more effective ways of reaching global
minima and to a better understanding of the role played by
landscape topography when tackling constraint satisfaction
problems.
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