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Phase coexistence of active Brownian particles
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We investigate motility-induced phase separation of active Brownian particles, which are modeled as purely
repulsive spheres that move due to a constant swim force with freely diffusing orientation. We develop on the
basis of power functional concepts an analytical theory for nonequilibrium phase coexistence and interfacial
structure. Theoretical predictions are validated against Brownian dynamics computer simulations. We show that
the internal one-body force field has four nonequilibrium contributions: (i) isotropic drag and (ii) interfacial drag
forces against the forward motion, (iii) a superadiabatic spherical pressure gradient, and (iv) the quiet life gradient
force. The intrinsic spherical pressure is balanced by the swim pressure, which arises from the polarization of
the free interface. The quiet life force opposes the adiabatic force, which is due to the inhomogeneous density
distribution. The balance of quiet life and adiabatic forces determines bulk coexistence via equality of two
bulk state functions, which are independent of interfacial contributions. The internal force fields are kinematic
functionals which depend on density and current but are independent of external and swim forces, consistent
with power functional theory. The phase transition originates from nonequilibrium repulsion, with the agile gas
being more repulsive than the quiet liquid.
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I. INTRODUCTION

The spontaneous occurrence of gas-liquid phase separation
into macroscopic bulk phases and the associated emergence
of a stable interface between the two different fluids is one
of the most striking phenomena in equilibrium statistical
physics. It was Johannes van der Waals who first developed
microscopic theories for both the bulk behavior [1] and the
interfacial structure [2]. Subsequently, Smoluchowski [3] and
Mandelstam [4] successfully described thermally excited cap-
illary waves as collective fluctuations that generate interfacial
roughness. The description of the free fluid interface con-
stitutes one of the most challenging problems in statistical
mechanics [5–7]. It is relevant for the demixing of liquid
mixtures [8,9], and it forms one of the most well-developed
cornerstones of theoretical physics [10–13]. Both advanced
computer simulations [14] and direct experimental observa-
tion, in, e.g., colloid-polymer mixtures [15], are means of
investigation.

Given this situation in equilibrium, it seems natural to
attempt to describe fluid interfaces in nonequilibrium on the
basis of similar concepts. Examples of this strategy include
the reduction of experimentally observed [16] interfacial
roughness via shear flow as an effective confinement effect
[17]. In the context of active fluids, which consist of self-
driven particles, integrating out the swimming was shown
to lead to an effective attraction between the particles [18],
which then can be input into an equilibrium treatment of
the interfacial structure, e.g., on the basis of classical density
functional theory [19].

Active Brownian particles have become a prototype for
the study of nonequilibrium phenomena [20,21]. In particular
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their “motility-induced” phase separation into high- and low-
density steady states continues to attract much current interest
[22–27]. Very significant efforts have been devoted to un-
derstanding this phase transition, which occurs without any
explicit interparticle attraction. This is a striking difference to
the equilibrium gas-liquid case, where the balance of short-
ranged repulsion and long-ranged intermolecular attraction
drives a transition between the gas with high entropy and high
energy and the liquid with low entropy and low energy. In con-
trast, for the motility-induced case, frequently a “feedback”
mechanism is invoked in which particles in dense regions
slow down [28]. The striking feature of the transition is the
very strong inhomogeneity in density between the dense and
the dilute phase. The challenge lies in understanding what
physical mechanism would oppose the strong tendency of the
liquid to expand and hence to homogenize the system. The
homogenization does not occur, at strong enough driving con-
ditions, such that nonequilibrium phase coexistence is stable.

That strong density inhomogeneities can spontaneously oc-
cur is well known in equilibrium situations. Examples include
adsorption of liquid or solid films on substrates and capillary
condensation and freezing inside of narrow pores as well as
nucleation phenomena [29]. In these equilibrium cases bal-
ancing forces have been identified that act against the interpar-
ticle repulsion, be it intermolecular attraction, such as in the
Lennard-Jones system, or via the influence of further species
that generate effective attraction via the depletion mechanism.
There are prominent cases, such as colloid-polymer mixtures,
where fluid-fluid phase separation occurs in purely repulsive
mixtures. In monocomponent system, the hard sphere fluid-
solid (freezing) transition is a further prototype for coexis-
tence of phases with differing spatial symmetries.

Often the interparticle repulsion is satisfactorily treated in
a local way, assuming that high local density is associated
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with a free energy penalty that is taken to be a function of the
local density. Nevertheless, much more sophisticated approx-
imations exist within the framework of classical density func-
tional theory, where a broad range of approximate functionals
is available, ranging from square-gradient semilocal function-
als to fully nonlocal fundamental-measure Rosenfeld theories.
When the system is driven out of equilibrium, then additional
force contributions arise. In nonequilibrium, construction of
the adiabatic state [30] allows us to systematically rationalize
the force field that is solely due to the inhomogeneous den-
sity distribution and subsequently analyze systematically the
additional nonequilibrium (superadiabatic) forces.

Active phase separation is considered to be such a very
striking phenomenon, as no apparent balancing mechanism,
which would counteract the repulsion and keep the dense
region compressed, has been identified. Nevertheless, a broad
variety of different theoretical methods have been employed
to study the phase separation phenomenon, which occurs very
prominently and in a robust and reproducible way in Brownian
dynamics (BD) computer simulations [22–27]. Among the
different theoretical approaches are theories based on modi-
fied forms of the Cahn-Hilliard equation [23,24,31], hydrody-
namic description [32], and more microscopic statistical me-
chanics treatments that start from the Smoluchowski equation
of motion for the many-body probability distribution func-
tion [22]. One closely related aim is to identify coexistence
conditions and to construct a thermodynamic description of
the system [33]. This is relevant as it allows us to judge
whether and if so which of the properties of equilibrium gas-
liquid phase separation carry over to the nonequilibrium case.
The most recent treatments conclude that interfacial effects
affect the bulk coexistence [22–24], in striking contrast to the
equilibrium case.

Here we study the bulk behavior and interfacial structure
of active Brownian particles in nonequilibrium steady states.
We develop an analytical theory for the free interface between
phase-separated bulk states of active Brownian particles. The
theory is fully resolved in both position and orientation.
The symmetry of the problem allows us to reduce the de-
pendence on one spatial coordinate (x) perpendicular to the
interface and one angle (ϕ) of particle orientation against
the x axis. The theory describes correctly the orientational
ordering at the interface, including dipolar and higher ori-
entational moments. We validate the theoretical results for
the force fields against (overdamped) BD simulation data of
the phase-separated system. Bulk phase coexistence occurs
on the isotropic level of the correlation functions, and the
coexistence conditions are independent of interfacial effects.
As an illustration, we show a BD simulation snapshot in
Fig. 1(a), obtained for the frequently used Weeks-Chandler-
Anderson (WCA) repulsive pair potential φ(r) [34], as plotted
in Fig. 1(b).

II. THEORY

A. Many-body dynamics

In the Langevin picture, the many-body dynamics of N
active Brownian particles are given by

γ ṙi = −∇i

∑
j( �=i)

φ(|ri − r j |) + γ sωi + χi, (1)

where γ is the friction constant against the static background,
ri(t ) indicates the position of particle i = 1, . . . , N at time
t , the overdot indicates a time derivative, ∇i indicates the
derivative with respect to ri, s = const is the speed of free
swimming (such that γ s is the magnitude of the swim force),
the unit vector ωi denotes the orientational degrees of freedom
(along which the swim force acts) of particle i, and χi(t )
is a stochastic white noise force term, which is bias free,
〈χi(t )〉 = 0, and delta correlated with itself, 〈χi(t )χ j (t

′)〉 =
2kBT γ δ(t − t ′)1δi j . Here the angles denote an average of
the noise, 1 denotes the d × d unit matrix, where d is the
space dimensionality, kB denotes the Boltzmann constant, and
T indicates absolute temperature; the translational diffusion
constant is then given by D = kBT/γ . In a system with
d = 2 space dimensions, as we consider below, the particle
orientations can be parametrized by the angle ϕi of particle
orientation ωi against the x axis, i.e., ωi = (cos ϕi, sin ϕi ). The
particle orientations diffuse freely, and hence

γ ωϕ̇i = χi, (2)

where γ ω is the rotational friction constant, χi(t ) is an
angular noise term with vanishing mean, 〈χi(t )〉 = 0, and
autocorrelation given by 〈χi(t )χ j (t ′)〉 = 2kBT γ ωδ(t − t ′)δi j .
(For a description of rotational diffusion in d = 3 see, e.g.,
Ref. [18].) For completeness, the rotational diffusion constant
is then Drot = kBT/γ ω. The BD simulations are based on the
(standard) Euler algorithm for the system of Eqs. (1) and (2)
with time discretization step �t .

B. Force density balance

We operate on the level of position- and orientation-
resolved one-body fields: the one-body density ρ(r,ω, t ),
the translational current J(r,ω, t ), and the rotational current
Jω(r,ω, t ), where r denotes position, the unit vector ω de-
notes the particle orientation along which the swimming force
acts, and t denotes time. The one-body fields are related by
the exact (translational) force density balance,

γ J = γ sωρ + Fint − kBT ∇ρ, (3)

where the arguments r,ω, t of the three one-body fields J, ρ

and Fint have been omitted for clarity. The force density
balance (3) expresses the equality of the friction force density
(left-hand side) with the sum of the driving that generates the
swimming (first term on the right-hand side), the internal force
density Fint (r,ω, t ) (second term), and the thermal diffusion
(third term); see Appendix A for a derivation from the many-
body dynamics. The rotational motion alone is simple: Due to
the free rotational diffusion (the particles are spherical), the
rotational current is simply Jω(r,ω, t ) = −Drot∇ωρ(r,ω, t ),
where Drot is the rotational diffusion constant, and ∇ω is the
derivative in the space of orientations. The continuity equation
is

∂ρ

∂t
= −∇ · J − ∇ω · Jω, (4)

with ∂ρ/∂t = 0 in steady state.
The internal force density field, as occurring in (3), was

proven to be a “kinematic” functional of the density and the
current [35,36], i.e., Fint (r,ω, t ) = Fint ([ρ, J, Jω], r,ω, t ).
No further “hidden” dependence occurs; the internal force
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FIG. 1. Overview of phase-separated active Brownian particles. (a) Snapshot from BD simulations. The particles (blue) separate into
regions with high and with low density. Due to periodic boundary conditions in x and in y, two interfaces form along the short dimension of
the simulation box with size 120σ in x and 24σ in y. (b) Particles with size σ at position r = (x, y) are driven in the (unit vector) direction ω

by the swim force with strength γ s. The particles interact with the (WCA) repulsion φ(r) with energy scale ε. (c) Illustration of the different
one-body force density contributions that add up to the total internal force density field Fint: the drag force density Fsup,0 acts against the local
current direction J, and its magnitude is small (large) in the dilute (dense) phase. The nonspherical drag correction Fsup,1 occurs at the interface,
and it acts in direction ω∗ (ω mirrored at the x axis). The swim pressure (orange arrow) is due to the polarization of the interface, and it is
balanced by the superadiabatic pressure (red arrow), which is low (high) in the dilute (dense) phase. The arrows indicate the direction of the
respective negative pressure gradient. The quiet life force field Fsup,3/ρ compresses the liquid and acts against the adiabatic force field Fad/ρ,
which is (solely) due to the density gradient and tends to expand the liquid. (d) Mean scaled forward swimming speed vf/s as a function of
the scaled position x/σ across the interface in a phase-separated system of active Brownian particles interacting with the WCA pair potential,
with particle size σ and energy scale ε. Simulation data are shown for kBT/ε = 0.5 and sτ/σ = 60, where the timescale is τ = σ 2γ /ε, which
corresponds to Pe = 120. The aspect ratio of the simulation box is 5, and the number N of particles per system volume V is N/V = 0.7σ−2

with N = 2000; the time step is �t/τ = 10−5. Sampling was performed over 108 time steps; see Ref. [38] for further simulation details that
also apply to the present study. The inset shows the theoretical result (38). The inset axis labels have been omitted for clarity; the scale is
identical to that of the main plot.

density field is in particular independent of external and swim
forces. This theorem applies in general overdamped Brownian
systems; see Refs. [37,38] for the generalization of power
functional theory [35] to rotator models, such as the current
one.

The internal force density field splits into a sum of adia-
batic and superadiabatic contributions,

Fint = Fad + Fsup, (5)

where Fad is the force density in a corresponding “adia-
batic” system. The adiabatic system is in equilibrium and
constructed in such a way that its one-body density profile
is identical to that of the true nonequilibrium system. The
Mermin-Evans theorem of classical density functional theory
[7] ensures that an external potential exists in the adiabatic
system that accomplishes this task. We give a brief sum-
mary of classical density functional theory in Appendix B.
Crucially Fad depends (functionally) only on the density
profile and not on the external force field. Furthermore Fad

is independent of the (translational and rotational) current.
The splitting (5) is exact; it is a consequence of the power
functional variational framework [35,38], and it was explicitly
demonstrated in computer simulation work [30]. In contrast
to the adiabatic contribution, the superadiabatic force density
profile Fsup is a functional of the current (in the present case
translational current and rotational current) as well as of the
density profile.

The excess adiabatic force density field can be expressed
as Fad = −ρ∇δFexc[ρ]/δρ, with the excess (over ideal gas)
Helmholtz free energy density functional Fexc[ρ] [7]; see
Appendix B. For the present spherically repulsive interparticle
interaction potential, Fad describes the repulsion that is solely
due to the inhomogeneous density distribution. The genuine
nonequilibrium contribution in (5) is the superadiabatic force
density profile Fsup. Power functional theory [35,38] ensures
that Fsup depends both on the density profile and on the
current distribution, but not explicitly on the external force
field.
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We proceed by splitting the total superadiabatic force
density distribution into four different parts,

Fsup = Fsup,0 + Fsup,1 + Fsup,2 + Fsup,3, (6)

where the contributions Fsup,0, Fsup,1, and Fsup,2 are obtained
via projection of Fint onto a corresponding relevant orientation
in the system and suitable averaging. The remainder is then
contained in Fsup,3, and hence (6) does not constitute an
approximation. The mathematical structure of each superadi-
abatic term in (6) is unique and characterizes a specific phys-
ical effect. The projections are performed by the correlator
expressions for Fsup,0, Fsup,1, and Fsup,2, which are given and
discussed below in (31), (34), and (41), respectively. Here we
first briefly discuss these individual terms before going into
more detail.

The drag force density Fsup,0 acts against the local flow
direction. It leads to slowing of the forward swimming due to
collisions of the particle at position r with surrounding parti-
cles. The strength of this effect increases the more crowded the
environment is. The interfacial drag force density Fsup,1 is an
orientation-dependent interfacial contribution with “tensorial”
character; i.e., this drag force is not directed strictly against
the forward motion but takes account of the gradient direction
in the system. This effect is induced by the inhomogeneous
environment at the interface.

The force density field Fsup,2 is the negative gradient of an
intrinsic spherical pressure �2. Characteristically �2 is inde-
pendent of orientation ω. As a result the corresponding force
density Fsup,2 = −∇�2 is also independent of ω. Similarly,
the quiet life force field Fsup,3/ρ is the (negative) gradient
of a spherical (nonequilibrium) chemical potential ν3, i.e.,
Fsup,3/ρ = −∇ν3. All superadiabatic contributions describe
repulsion and occur due to the nonequilibrium driving in the
system. We show below how these repulsive forces generate
stable phase coexistence. As we demonstrate, in particular
the quiet life force stabilizes the nonequilibrium bulk phase
coexistence. It tends to push particles into the liquid where the
mean velocity is low (towards the “quiet life”). Except for the
bulk contribution to Fsup,0, neither of the internal force density
contributions has been identified before. Figure 1(c) displays
a schematic overview of all forces that act in the system.

The motion in the system is characterized by the forward
current profile Jf (x), defined as an angular average of the
projection of the current J onto the particle orientation ω,

Jf = 1

2π

∫
dωJ · ω. (7)

The corresponding forward swimming speed profile vf (x) is
then obtained simply via

vf = Jf/ρ0, (8)

where the angular average of the density profile is defined as
ρ0 = ∫

dωρ/(2π ). As an illustration, we show in Fig. 1(d)
BD results for vf as a function of x across the interface in the
phase-separated system. The forward speed is high in the gas
and low in the liquid [39,40], and it crosses over smoothly
between these plateau values as x is varied from one phase to
the other.

The plateau values of the forward speed vf are described
with good accuracy by the well-known simple linear decrease

of the mean speed vb with mean density ρb [39–41], given by

vb

s
= 1 − ρb

ρjam
, (9)

where ρjam is a constant that controls the slope of the decrease
of the mean swim speed in bulk, as well as the upper limit
of density (“jamming”). Here we take the convention that ρb

indicates the number of particles per volume and per radians,
hence 2πρb is the number of particles per two-dimensional
volume.

In order to address the total force density balance (3),
we specify the internal force splitting (5) and (6) further by
requiring that

−kBT ∇ρ + Fad + Fsup,3 = 0, (10)

which yields upon inserting into (3) the relationship

γ J = γ sωρ + Fsup,0 + Fsup,1 + Fsup,2, (11)

containing the motion (left-hand side) and the contribution
due to the swimming (first term on the right-hand side).
We will below identify the superadiabatic force fields that
determine via (11) the flow that occurs in the system. Before
doing so, in the following we first address the structural force
density balance (10), which we will demonstrate to be a
gradient relation when written in force field form.

C. Phase behavior

In order to address nonequilibrium phase coexistence, we
turn our description from force densities to force fields. We
hence divide (10) by the orientation- and position-resolved
density distribution ρ, which yields

−kBT ∇ ln ρ0 + fad(r) + fsup,3(r) = 0, (12)

where the adiabatic and superadiabatic force fields are de-
fined by fad = Fad/ρ and fsup,3 = Fsup,3/ρ, respectively. For
simplicity, we have replaced in (12) the ideal diffusion
term −kBT ∇ ln ρ by the corresponding isotropic component
−kBT ∇ ln ρ0. This is a good approximation, as we find that
the difference between isotropic and anisotropic gradients
is a small correction for relevant conditions, typically one
or two orders smaller in magnitude compared to all other
contributions [42].

The adiabatic force field can be expressed as the negative
gradient of the local excess (over ideal gas) chemical poten-
tial, which within classical density functional theory [7,43]
(see Appendix B for a brief overview) is given via functional
differentiation of the excess Helmholtz free energy functional
Fexc[ρ0],

fad(r) = −∇ δFexc[ρ0]

δρ0
. (13)

Here the adiabatic state is an equilibrium system that pos-
sesses the same density distribution as the real system. The
real and the adiabatic system share the same interparticle
interaction potential. The orientational degrees of freedom
do not affect the internal forces in equilibrium, as the par-
ticles are simple repulsive disks. Hence, the free energy
functional requires only the average density profile ρ0 as
an input [44], and fad is independent of orientations. (This
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situation is different in a system of, e.g., swimming rods or
general anisotropic interparticle interactions.) An equivalent
alternative to the density functional theory expression (13)
is Fad = −〈∑i δ(r − ri )∇iu(rN )〉eq, where u(rN ) is the inter-
particle interaction potential. Here the equilibrium average is
performed under the influence of a (hypothetical) “adiabatic”
external potential Vad(r), chosen such that the resulting one-
body density distribution ρ is the correct one. In practice, this
method requires to perform the average in, e.g., Monte Carlo
simulations [30,36].

In order to describe the adiabatic force field, we use a
simple local density approximation, based on scaled-particle
theory [6] for two-dimensional hard disks (although more
accurate approximations exist [45]),

fad = −∇μad, (14)

where the chemical potential μad for a bulk fluid of density ρb

is given by

μad(ρb) = kBT

[
− ln(1 − η′) + η′ 3 − 2η′

(1 − η′)2

]
. (15)

Here we have introduced a rescaled packing fraction η′ =
0.8η in order to approximately take account of the repulsive
sphere character of the system; in our units η = ρb/ρjam.
Furthermore the bulk density ρ̄ = N/V = 2πρb indicates the
number of particles per unit volume. The corresponding
expression for the pressure can be obtained by integrating
the thermodynamical relation ∂Pad/∂ρb = ρb∂μad/∂ρb in ρb.
This yields

Pad(ρb) = kBT ρb

[
1

(1 − η′)2
− 1

]
. (16)

The pressure generates the adiabatic force density, via a
gradient operation, ρbfad = −∇Pad. The existence of the adia-
batic force field and its corresponding integrals μad and Pad

is not that of an approximation. Rather this constitutes the
part of the total nonequilibrium internal force density (and
its corresponding position integrals) that is independent of
velocity and hence dependent only on the density distribution
(i.e., is a density functional). The “genuine” nonequilibrium
contributions do also depend on the velocity field and are
referred to as superadiabatic. We address the superadiabatic
force fields in the following.

As fad is independent of orientation, fsup,3 also necessarily
needs to be independent of ω, in order to satisfy (12). Fur-
thermore, the adiabatic force field is a gradient field, due to
(13). Hence in order for the force balance (12) to hold, the
superadiabatic force field fsup,3 necessarily also needs to be of
gradient form,

fsup,3 = −∇ν3, (17)

where ν3(x) is the negative spatial integral of the force field.
We first address the value of ν3 for constant density ρb,

i.e., far from the interface, where all gradients vanish. Here
we postulate an explicit form, which is quadratic in velocity,
given by

ν3(ρb) = e1
γ

2Drot
v2

b
ρb

ρjam
, (18)

where e1 is a (dimensionless) constant that controls the
strength of the effect. Here our approximation (18) for ν3 de-
pends on density and velocity, but not directly on s, as is con-
sistent with the power functional framework [35]. We find that
using the form (18) we are able to satisfy the requirement that
Fsup,3 is the remainder in the superadiabatic force splitting (6)
in that no significant unexplained force contributions remain
as compared to the simulation data. The magnitude of the ob-
served numerical deviations is entirely consistent with the ap-
proximate nature of the expressions in our stand-alone theory.

Using the explicit expression (9) for vb(ρb) allows us to ob-
tain a corresponding pressure contribution �3 via integration
of ∂�3/∂ρb = ρb∂ν3/∂ρb. The result is

�3(ρb) = γ e1

4Drotρjam
v2

bρ
2
b

[
1 + ρb(3ρb − 4ρjam )

6(ρjam − ρb)2

]
. (19)

In order to obtain the quantities that determine nonequilib-
rium phase coexistence, we return to the force balance relation
(12), which we rewrite using the gradient expressions (14) and
(17) as

−∇(kBT ln ρ0 + μad + ν3) = 0. (20)

As the total gradient vanishes, the expression in brackets
needs to be equal to a constant, μ = const, which plays the
role of the total chemical potential. Similarly, the force density
balance relation (10) can be rewritten as

−∇(kBT ρ0 + Pad + �3) = 0, (21)

which again implies that the expression in brackets is constant,
where the constant, P = const, plays the role of the total
pressure. The three individual terms inside of the gradient on
the left-hand side of (21) depend in general on position x. As
before, ρ0(x) is the isotropic Fourier component of the density
profile.

We can now define bulk values of the total chemical poten-
tial μ and the total pressure P by summing up the individual
contributions,

μ(ρb) = kBT ln ρb + μad + ν3, (22)

P(ρb) = kBT ρb + Pad + �3. (23)

We show below that although further contributions to the
chemical potential exist, the sum of these additional contribu-
tions vanishes. Hence (22) indeed defines the total chemical
potential. The same holds true for the total pressure, where
we demonstrate below that although there is a swim pressure
contribution, this is identically canceled by a corresponding
superadiabatic (i.e., intrinsic nonequilibrium) pressure that the
system develops. Hence (23) represents the total pressure in
nonequilibrium bulk steady states.

Phase coexistence implies that the densities in the coexist-
ing gas and liquid phases, ρg and ρl, respectively, satisfy

μ(ρg) = μ(ρl ), (24)

P(ρg) = P(ρl ). (25)

Equations (24) and (25), together with (22) and (23), (15) and
(16), and (18) and (19), form a closed set of equations for
the determination of the binodal densities ρg and ρl, which
we solve numerically. Figure 2 presents the theoretical results
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FIG. 2. Nonequilibrium phase diagram as a function of scaled
density ρbσ

2 and Péclet number Pe. Shown are the nonequilibrium
binodal (solid line) and spinodal (dashed line) obtained from the
present theory, compared to results for the binodal (orange squares)
taken from Ref. [22], and for the gas side of the spinodal (blue
circles) taken from Ref. [40]. Also shown is the theoretical result
for the critical point (open circle).

for the phase diagram, and comparison to simulation data
from the literature. Here we have chosen e1 = 0.0865 and
ρjam2πσ 2 = 1.146. The phase diagram possesses a lower, in
Péclet number Pe ≡ 3s/(σDrot ) = γ sσ/(kBT ), critical point
(which is characterized by mean-field exponents within the
present approach; see Ref. [46] for a simulation study of
the critical scaling.) The binodal agrees very well with the
simulation data of Ref. [22]. We obtain the spinodal via the
condition ∂μ(ρb)/∂ρb = 0. The critical point is then obtained
by the additional condition ∂2μ/∂ρ2

b = 0. This necessitates
finding the appropriate root of a fourth-order polynomial in
the value of the critical density [47]. We perform this task
numerically.

We show in Fig. 2 the theoretical result for the spinodal
density, together with the simulation data for the gas side of
the spinodal by Stenhammar et al. [40]. Clearly, the agreement
between the theoretical results and the simulation data is very
satisfactory. The theory in particular captures correctly the
fact that the gas side of both the spinodal and the binodal
remain at relatively large density upon increasing Pe. This is in
striking contrast to typical equilibrium gas-liquid coexistence,
where the gas becomes rapidly very dilute upon increasing
distance (in temperature) from the critical point.

Having established the bulk phase diagram, in the fol-
lowing we develop a microscopic theory for the interfacial
structure between coexisting active gas and active liquid
states. This allows us to demonstrate (i) that the sum of all
further contributions to the state functions μ(ρb) and P(ρb)
indeed vanishes, and hence that (22) and (23) are complete,
and (ii) that bulk coexistence is unaffected by interfacial
contributions.

D. Fourier decomposition

We restrict ourselves to steady states of two-dimensional
systems, which are spatially inhomogeneous only in the x

direction; orientation is measured by the angle ϕ against the
x axis, i.e., ω = (cos ϕ, sin ϕ). We Fourier decompose the
kinematic fields ρ and J according to

ρ(x, ϕ) =
∞∑

n=0

ρn(x) cos(nϕ), (26)

Jx(x, ϕ) =
∞∑

n=1

Jx
n (x) cos(nϕ), (27)

Jy(x, ϕ) =
∞∑

n=1

Jy
n (x) sin(nϕ), (28)

where the Cartesian components of the one-body current are
(Jx, Jy) ≡ J and ρn, Jx

n , Jy
n are Fourier coefficients which

depend on position x. Terms that vanish due to symmetry in
ϕ have been omitted: the system is invariant under reflection
with respect to the x axis, i.e., under the joint coordinate
transformation y → −y and ϕ → −ϕ. Hence the density (26)
and the x component of the current (27) need to be even in ϕ;
the y component of the current (28) flips its direction under
the reflection, and hence it is odd in ϕ. Furthermore, as is
common, we restrict ourselves to cases where the isotropic
current component vanishes, Jx

0 = Jy
0 = 0. Using the low-

order Fourier coefficients n = 0, 1, we can express frequently
used standard observables: the orientation-integrated density
distribution is simply 2πρ0 and the polarization profile with
respect to the x axis is πρ1. Finally, we use the convention
that x = 0 indicates the position of the Gibbs dividing surface
[6].

In the present case the rotational derivative ∇ω is simply
∂/∂ϕ and the general continuity equation (4) reduces to

∂Jx

∂x
= Drot

∂2ρ

∂ϕ2
. (29)

Upon inserting the Fourier ansatz (26) and (27), this can be
cast into a relationship for the Fourier coefficients of the
density of order n � 1,

ρn = − 1

n2Drot

dJx
n

dx
, (30)

which we will use below in order to derive a set of (coupled)
differential equations for the Fourier coefficients.

E. Drag forces

In order to address the dynamical force balance (11), we
specify the superadiabatic contributions in (6) further, by
requiring that the drag force density Fsup,0 acts against the flow
direction, and is given by an orientational average, defined by
the correlator

Fsup,0 = J
2πJf

∫
dω′ω′ · Fint (r,ω′), (31)

where the local orientation-averaged forward current profile
Jf (x) is defined via (7) and ω′ is a new angular integration
variable. In the present two-dimensional system the integra-
tion over orientation space is simply

∫
dω ≡ ∫ π

−π
dϕ. The

force density field Fsup,0(r,ω) depends on orientation ω via
the dependence of J on ω on the right-hand side.
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In order to develop the theory, we assume the drag force
density (31) to have the form

Fsup,0 = − γ ρ0

ρjam − ρ0
[1 + ξ (∇ρ0)2]J, (32)

where ξ > 0 is a constant (with units of length2/density2) that
determines the strength of the square gradient correction. For
the case of constant density, ∇ρ0 = 0, the expression (32)
reduces to the previously formulated bulk fluid drag force
[37], which reproduces the well-known [39–41] linear de-
crease (9) of the mean speed with increasing average density
in bulk. Equation (32) constitutes a kinematic functional (i.e.,
the dependence is on ρ and J), as required [35,37].

In order to describe the orientation-averaged density profile
across the interface, we use the classic form

ρ0(x) = ρl + ρg

2
+ ρl − ρg

2
tanh(x/λ), (33)

where the length scale λ determines the width of the inter-
face. The corresponding mean densities, with units of particle
number per system volume, are 2πρg and 2πρl. Equation
(33) is widely used in the description of the present problem
[22,48], and it is considered to be an excellent approximation
to simulation results.

We next identify the nonspherical drag correction, defined
by

Fsup,1 = ω∗

2π

∫
dω′(F′

int − F′
sup,0) · ω′∗, (34)

where ω∗ = (cos ϕ,− sin ϕ) is the orientation ω reflected at
the x axis. (Note that when viewing the set of xy coordinates
as the complex plane, then ω∗ is the complex conjugate to
ω.) Furthermore, the primed force density fields inside of the
orientation integral are evaluated at direction ω′. In the theory,
we postulate the nonspherical drag to have the form [49]

Fsup,1 = −γ

4
ρ1vf

1 + ξ (∇ρ0)2ρ0/ρjam

1 − ρ0/ρjam
ω∗, (35)

which is linear in the forward speed vf , as is appropriate for a
drag term, and contains a square density gradient contribution
to its amplitude. The direction of the nonspherical drag is
against the ω∗ direction.

We next insert (32) and (35) into (11) and express the
kinematic fields using their Fourier forms (26), (27), and (28).
(The contribution Fsup,2 will be considered in Sec. II F.) The
factor ω = (cos ϕ, sin ϕ) that occurs in the swim force density
couples the different modes. Using trigonometric identities
allows us to rearrange all expressions into a single Fourier
series. Satisfying the force density balance (11) is then equiv-
alent to requiring that the prefactor of each mode n vanishes.
Together with Eqs. (7) and (8) this leads to the coupled set of
algebraic relations

Jx
1 = vf

(
ρ0 − ρ1

4
+ ρ2

2

)
, Jx

n>1 = vf

2
(ρn−1 + ρn+1), (36)

Jy
1 = vf

(
ρ0 + ρ1

4
− ρ2

2

)
, Jy

n>1 = vf

2
(ρn−1 − ρn+1). (37)

Here the prefactor vf is the forward speed profile, given as

vf = s
1 − ρ0/ρjam

1 + ξ (∇ρ0)2ρ0/ρjam
. (38)

As a special case, in the homogeneous isotropic bulk, the
density gradient vanishes, and (38) reduces to (9).

We are now in a position to compare results for the
structure from simulation and from theory quantitatively.
Figure 1(d) shows results for the forward speed obtained
from simulations via (8) against the representation (38) (see
inset). We have set the parameters ξ = 700σ 6 ≈ (3σ )6 [cf.
(38)] and ρjam2πσ 2 = 1.4 in order to best match theoretical
and simulation data; we keep these values for all further
comparisons. (Here we have readjusted the value of ρjam,
because the control parameter in our simulations are different
from those of Ref. [22].) Here the theoretical result is taken
at nonequilibrium coexistence, and the average density profile
ρ0 is in steady state. The theory correctly describes the smooth
crossover from the fast motion in the gas to the slow motion
in the liquid.

Replacing Jx
n via (36) in the relationship of density and

current coefficients (30) yields a closed set of coupled first-
order ordinary differential equations for the coefficients ρn,
given by

−Drotρ1 = d

dx
vf

(
ρ0 − ρ1

4
+ ρ2

2

)
, (39)

−Drotρn = d

dx

vf

2n2
(ρn−1 + ρn+1), n > 1. (40)

Once the ρn are known, one can (trivially) determine the Jx
n

and Jy
n via (36) and (37). As an aside, note that the sum rule

2vfρ0 = Jx
1 + Jy

1 , which can be derived from inserting (27)
and (28) into (8), is satisfied by (36) and (37). Note also that
the coupling of the orientational and the translational motion
occurs now (only) via the shifted indices n ± 1 in (36) and
(37). We are now at the stage that the force density balance
(11) is satisfied at all positions across the interface and for
all orientational modes that are present in the system (i.e., for
n � 1).

In order to construct an approximative explicit solution, we
neglect both ρ2 in (39) and ρn+1 in (40). This then allows us to
obtain all ρn(x) numerically by simple iteration, starting with
ρ0(x) given by (33). We show a comparison of the agreement
of the Fourier coefficients obtained from this theory and from
simulations in Fig. 3(a) for ρn, in Fig. 3(b) for Jx

n , and in
Fig. 3(c) for Jy

n . The theory captures all qualitative features of
the simulation data with a slight tendency for overstructuring.
We attribute the small overshoot effects to the truncation of
the full recursion relation. The theory in particular describes
the polarization of the interface (peak in ρ1), as well as the
oscillating structuring of the “nematic” order as measured
by ρ2. The x component of the current shows a decay of
the primary component, Jx

1 , when traversing from the gas to
the liquid phase. Again the next higher Fourier component,
Jx

2 , is peaked at the interface (as is Jy
2 ). The y component

of the current, Jy
1 measures flow parallel to the interface.

This component has the same bulk plateau values as the
corresponding x component but shows a pronounced peak at
the interface. In particular this effect is well described by the

052604-7



SOPHIE HERMANN et al. PHYSICAL REVIEW E 100, 052604 (2019)

FIG. 3. Representative Fourier coefficients obtained from BD
simulation (left panels) and theory (right panels). Shown are Fourier
components of order n = 0, 1, 2 (as indicated) as a function of x/σ
for (a) the density ρnσ

2, (b) the x component of the current, Jx
n στ ,

and (c) the y component of the current, Jy
n στ , where the “molecular”

timescale is τ = γ σ 2/ε. The simulation parameters are identical to
those of Fig. 1.

theory. Furthermore, within the approximative solution the
strict equality Jx

n = Jy
n holds for n � 2. The simulation data

[compare left panels of Figs. 3(b) and 3(c)] indicate that this is
indeed a reasonable approximation for n = 2. See Appendix
C for a description of the influence of the box geometry on
the simulation results. Appendix D describes the effects of
changing the value of the square gradient parameter ξ .

Figure 4(a) displays results for the spherical drag force
density profile Fsup,0 as a function of distance x across the
interface and angle ϕ with respect to the interface normal
(recall that ϕ = 0 corresponds to the direction towards the
liquid). We show simulation results from using the correlator
(31) applied to the “raw” simulation data for Fint. In Fig. 4(b)
we show results obtained from the kinematic expression (32)
and using the simulation results for ρ0 and J as input. The
agreement with the results from the correlator expressions
shown in Fig. 4(a) is impressive and validates the form (32) of
the spherical drag force. We also compare against results from
the stand-alone theory, where we use the kinematic expression
(32), the ansatz for the density profile (33), the result of the
truncated hierarchy of Fourier coefficients, and the kinematic
expression (38) for vf . These theoretical results are shown at
bulk coexistence, which fixes the values for the coexisting
densities ρg, ρl and for the interfacial width λ. Although some
artifacts occur, the stand-alone theory describes the isotropic
drag force field quantitatively correctly; cf. Fig. 4(c).

Results for the nonspherical drag force density field Fsup,1

are shown in the third and in the fourth column of Fig. 4.

We use the same three types of approaches as above. In
Fig. 4(a) results are shown from the correlator (34) applied to
the simulation data. Figure 4(b) presents the results from the
kinematic expression (35) applied to the simulation data. Fig-
ure 4(c) presents results from the stand-alone theory using the
kinematic expression (35) with approximated Fourier coeffi-
cients. The agreement between all three approaches is again
excellent, with small artifacts displayed by the stand-alone
theory. The spherical drag force (first and second column)
indeed opposes the motion. Its magnitude is small in the
gas and large in the liquid, and it crosses over continuously
between these limits. The nonspherical contribution (third and
fourth columns) is qualitatively similar but acts only in the
interfacial region. Its magnitude is smaller by more than a
factor of 5 than that of Fsup,0.

F. Spherical superadiabatic pressure

We specify the superadiabatic force density field via

Fsup,2 = ex

2π

∫
dωFint · ex. (41)

Per construction Fsup,2 is independent of orientation. Hence
considering the isotropic mode, n = 0, of the force density
balance (11) allows one to identify Fsup,2 as a gradient expres-
sion,

Fsup,2 = −∇�2, (42)

where �2 is a superadiabatic spherical one-body pressure con-
tribution, which originates from the (repulsive) interparticle
interactions. From observing the gradient structure in (42) we
find its form to be

�2 = −γ vfvloc

2Drot

ρ0 − ρ1/4 + ρ2/2

1 − ρ0/ρjam
, (43)

where we have defined

vloc = vf

[
1 + ξ

ρ0

ρjam
(∇ρ0)2

]
, (44)

with the forward speed vf being given by (8). (Here we
have neglected the ideal diffusion term [42].) The spherical
pressure depends on the density and velocity fields and is
hence a kinematic functional, as expected from (41) and (42).
As we demonstrate below, the spherical pressure is negative,
and its magnitude is high in the liquid and low in the gas.

Furthermore, there occurs a swim pressure contribution
Pswim, which is due to the polarization of the interface. The
corresponding force density Fswim and the swim pressure
Pswim are defined, analogously to (41) and (42), as

Fswim = ex

2π

∫
dωργ sω · ex, (45)

Fswim = −∇Pswim, (46)

where the integrand in (45) is the projected swim force
density; cf. (3). From inserting the Fourier series (26) for ρ

into (45) and using (38) and (39) we obtain the swim pressure
as

Pswim = γ s2

2Drot

(
ρ0 − ρ1

4
+ ρ2

2

)
1 − ρ0/ρjam

1 + ξ (∇ρ0)2ρ0/ρjam
. (47)
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FIG. 4. Spherical drag force density Fsup,0 and nonspherical drag force density Fsup,1, obtained from (a) simulations via correlators, (b) via
kinematic functionals using simulation data as input, and (c) stand-alone theory. Shown are the x and y components of the respective force
density field: F (x)

sup,0 (first column) F (y)
sup,0 (second column), F (x)

sup,1 (third column), and F (y)
sup,1 (fourth column) in units of ε/σ 3 and as a function

of distance x/σ across the interface and angle ϕ with respect to the interface normal (pointing towards the liquid). The plus and minus signs
indicate the sign of the force density fields.

As expected from (45) the swim pressure (47) depends on
the free swim speed s and on the density distribution (via
its angular Fourier coefficient profiles). A priori there is no
dependence of Pswim on the velocity field, and hence Pswim

constitutes a density functional, which parametrically depends
on s. The absence of a dependence on the velocity field
is again consistent with power functional theory, as only
intrinsic (superadiabatic) force density fields, and hence their
integrals, possess this dependence.

We can algebraically simplify the expression (47) for Pswim

by using (38) in order to replace one factor of s. This yields
the more compact form

Pswim = γ svf

2Drot

(
ρ0 − ρ1

4
+ ρ2

2

)
. (48)

For bulk fluids the Fourier components ρ1 = ρ2 = 0, and
(48) reduces to the previously obtained [24,41,50,51] result
Pswim = γ svf (ρ0)ρ0/(2Drot ). This is an important result and
demonstrates that our strategy of working on the level of force
balance relationships does indeed describe the correct physics.

By inserting the expression for the local speed (44) into
(43) and using (38) we can obtain an expression for �2,
which is up to a minus sign identical to the right-hand side of
(48). Hence we find that the swim pressure and the spherical
superadiabatic pressure cancel each other,

Pswim + �2 = 0. (49)

As the sum of the additional pressure contributions vanishes,
there is no effect on the total pressure (23), and hence no
influence on phase coexistence.

Eliminating the remaining dependence of vf in favor of
dependence on ρb via the same procedure yields for bulk fluid
states

�2(ρb) = − γ s2

2Drot
ρb

(
1 − ρb

ρjam

)
, (50)

ν2(ρb) = γ s2

2Drot

(
2ρb

ρjam
− ln ρb

)
, (51)

where ν2 acts as a bulk chemical potential contribution corre-
sponding to �2. It is straightforward to obtain the correspond-
ing chemical potential for the swim contribution, and

μswim + ν2 = 0. (52)

Again, the total chemical potential (22) and hence the phase
behavior is unaffacted by adding both additional chemical
potential contributions, as their sum (52) vanishes. Clearly
both �2 and ν2, as well as Pswim and μswim, constitute nonequi-
librium bulk state functions for the system.

Figure 5(a) displays results for the intrinsic spherical pres-
sure profile and for the swim pressure profile across the
interface. Here we apply the correlator (41) for Fsup,2 to the
simulation data for the density distribution ρ. Integrating (42)
in position then yields benchmark results for the pressure
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FIG. 5. (a) Superadiabatic spherical pressure profile �2(x), swim pressure profile Pswim(x), and the sum �2(x) + Pswim, in units of ε/σ 2

as a function of distance x/σ across the interface. Results are obtained from the correlator expressions using simulation data as input (blue
dotted lines), from the kinematic functionals with simulation data input (black dashed lines) and from the stand-alone theory (red solid lines).
(b) Superadiabatic spherical chemical potential profile ν3(x), the sum of adiabatic excess and ideal chemical potential profile μid (x) + μad(x),
and the total chemical potential, i.e., the sum ν3 + μad + μid in units of ε and as a function of x/σ . Here the ideal chemical potential is
μid = kBT ln(η′) with the local rescaled packing fraction η′ = 0.8ρb/ρjam. For clarity the results for the sum have been shifted upwards by
two units. The superadiabatic results are obtained using the kinematic functional with either the simulated (dashed black lines) or stand-alone
(solid red lines) Fourier coefficients.

profile �2(x). Furthermore, we apply the kinematic expres-
sion (43) to the simulation results for the Fourier coefficients
ρ0, ρ1, and ρ2. Third, using the approximate form of the ρn

provides stand-alone theoretical results for �2(x).
We apply the same concept to the swim pressure. Here the

benchmark results are obtained by applying the correlator (45)
for Fswim to the simulation data and integrating (46) in position
in order to obtain Pswim. Furthermore we take the expression
(48) with either simulation data as input or with stand-alone
Fourier coefficents as input.

In the stand-alone theory the total pressure profile vanishes
identically. Using the correlator expressions on the simulation
data confirms this result within the numerical precision. The
functional expressions generate a small (positive) artifact at
the interface. This is due to the (small) disagreement of vf , as
given by the analytical expression (38), with the simulation
result; cf. Fig. 1(d). The defect of the theory giving nonvan-
ishing values of Pswim + �2 in the interfacial region can be
traced back to the approximate nature of the relation (38) of
the forward speed vf with the density profile. The insufficient
cancellation can be (formally) avoided by replacing s in (47)
by (38), such that the error cancels, and the sum of the
pressures (43) and (47) hence vanishes.

Note that the superadiabatic contributions (32), (35), and
(42) render the force density balance (11) to be satisfied at all
positions x, irrespective of the values of ρg, ρl , and λ.

G. Quiet life force profile

We have by now established both that the motional force
density balance (11) is satisfied and that the asymptotic be-
havior far away from the interface of the structural force
balance (12) is satisfied. It remains to be shown that the entire
structural force balance profile is satisfied across the interface.
This implies (i) that there is no further missing superadiabatic
force contribution (within the current approximations) and

(ii) that there is no additional macroscopic force exerted by
the interface which could affect phase coexistence. In other
words, the interface is decoupled from the bulk.

Hence in order to proceed, we generalize the bulk expres-
sion (18) for ν3 to inhomogeneous situations by choosing an
approximation that closely parallels the expression (43) for
�2, namely,

ν3 = γ

2Drot

[
e1

ρjam
v2

locρ0 − e2

ρ2
jam

∇ · v2
loc

(1 − ρ0/ρjam )2
∇ρ0

]
,

(53)

where we have kept the bulk constant e1 and we have intro-
duced an interfacial constant e2. Furthermore vloc is defined
via (44), such that fsup,3 is a kinematic functional. Here the
second term on the right-hand side of (53) is akin to the
semilocal contribution in the van der Waals square gradient
interfacial theory [5], generalized to possess a kinematic
dependence on the flow via vloc.

Figure 5(b) presents results from theory and simulation
that illustrate the behavior of both the adiabatic chemical
potential μad, the ideal contribution μid = kBT ln η′, and the
superadiabatic quiet life potential ν3. We use the approximate
equation of state (15) in a local density treatment for μad;
i.e., we replace ρb by ρ0. Furthermore we use the kinematic
expression (53) with (44) and (38). We keep the same value
of the bulk parameter e1 = 0.0865 as before and have set
the interfacial parameter e2 = 0.0385. We can now search for
the value of the interfacial width parameter λ that leads to
an optimal profile (as judged by minimal deviation from a
constant value). The total chemical potential profile, as the
sum of ideal, adiabatic excess, and quiet life contributions, is
indeed constant to a very satisfactory degree, and the theo-
retical result for the interfacial profile matches the simulation
data very well [cf. the blue solid and dashed lines in Fig. 3(a)].

052604-10



PHASE COEXISTENCE OF ACTIVE BROWNIAN … PHYSICAL REVIEW E 100, 052604 (2019)

That the theoretical result for the total chemical potential
deviates slightly from a constant value is entirely consistent
with the fact that the theoretical solution is based on an ansatz
for the density profile. The functional expressions on the
other hand constitute approximations, which we expect to lack
corrections as compared to the exact result. In summary, we
have demonstrated that the force balance equation is satisfied
across the interface.

III. CONCLUSIONS

In conclusion, we have developed a microscopic theory for
bulk and interfacial behavior of active Brownian particles. The
basis of our treatment is the position- and orientation-resolved
force density balance. We have split the nonequilibrium con-
tribution to the internal force density into three contributions:
(i) The drag force, which acts in the opposite direction of the
local flow direction. This is strongly dependent on the local
average density and possesses a square-gradient correction,
which models further drag due to motion in an inhomoge-
neous density field. (ii) The intrinsic spherical pressure, which
acts in a similar way as the equilibrium pressure in that it
provides additional repulsion, as generated from the internal
repulsive interactions. The intrinsic spherical pressure has
negative values. In the phase-separated state, the dilute (dense)
phase has high (low) magnitude of the intrinsic spherical pres-
sure. The internal pressure is canceled by the swim pressure
that the polarized interface exerts on the liquid. (iii) The quiet
life internal force field is of gradient form and it is independent
of orientation. It opposes the adiabatiatic force field, which
arises solely due to the density inhomogeneity and is defined
via the adiabatic reference system. The quiet life potential de-
scribes again additional repulsion. Its magnitude comes from
a moderate (linear) density dependence and strong (quadratic)
dependence on the local forward speed. The prominent effect
is that due to the fast motion in the dilute phase, the quiet
life potential is high. In the slow dense phase the quiet life
potential is low. Hence the force field that emerges as the
negative gradient of the quiet life chemical potential points
towards the “quiet” liquid, as if the particles were aiming at a
“quiet life.” Although in both phases there occurs additional
repulsion, the net effect is a potential gradient, which leads
to a force acting from the gas into the liquid. For stable
phase-separated states, this force is balanced by the adiabatic
force. The balance constitutes a nontrivial condition, as the
adiabatic force solely depends on the density field (i.e., it is a
density functional) and the quiet life potential also depends
on the flow (i.e., it is a kinematic functional). As the flow
is already determined by (ii) and (iii) above, the nontrivial
conditions (24) and (25) for stability of phase coexistence
emerge. Technically, this can be analyzed with the standard
tools of Maxwell construction.

The number of fit constants in our approach is low and
comparable to what one needs in a square gradient theory of
bulk and interface behavior in equilibrium gas-liquid phase
separation. Summarizing, we have used the definition of the
effective packing fraction η′ (containing the number 0.8), the
jamming density ρjam, the strength of the quiet life chemical
potential term e1 [cf. (18) and (53), where the same value
of e1 is used]. Then the bulk forward speed vb [cf. (9)]

follows without further adjustable freedom. This makes three
parameters for bulk coexistence (and the assumption of the
scaled-particle equation of state in the description of the
adiabatic reference system). In the interfacial treatment we
introduce the parameter ξ that determines the strength of the
effect of spatial inhomogeneity on the average swim speed,
and the strength e2 of the interfacial contribution to the quiet
life term; cf. (53). Overall this makes 3 + 2 = 5 parameters
for the microscopic description of both bulk and interface.
There are no further hidden length, time, or energy scales. Any
such dependence has been scaled out.

We successfully rationalized all occurring bulk and inter-
facial effects on the basis of a description which decouples
the interfacial contributions from the bulk coexistence con-
ditions within the range of parameters considered. Hence we
conclude that within this range and within the gradient and
power series approximations no coupling from interface back
to the bulk is required in order to describe the physics. This
situation though does not rule out that such a coupling exists
[23,24]. Our theory should provide a convenient starting point
for the investigation of such interface-to-bulk coupling, as
corresponding physical effects can be incorporated. Besides
the formal observations of such effects, this would surely
benefit from identifying physical mechanisms that would gen-
erate the coupling. Note that the polarized interface alone
does not necessitate any coupling. As we have shown, the
corresponding external pressure is balanced by the internal
spherical pressure, and both do not contribute to the stability
conditions. We leave the implications for general conditions
for phase coexistence [37] to future work. Furthermore, taking
full account of (small) ideal diffusion contribution [42] to
the dynamics is an interesting problem, as is adding the
description of shear viscous forces [52], and relating to the
concept of structural force fields in more detail [53]. Con-
nections to work in driven lattice systems [54], in particular
on phase coexistence far from equilibrium [55,56], and to
the more general case of interacting dissipative units [57] are
worth exploring. It would also be interesting to investigate the
effects of adding further external forces, such as those due to
ramplike external potentials considered in Refs. [22,58]. As
the force balance without such a perturbation is already a del-
icate one, we expect profound changes upon such alterations,
possibly similar to the changes that occur to equilibrium phase
separation in confinement by external fields.

Further interesting connections to be made in future work
include relating our approach to stochastic thermodynamics,
as has been formulated for active particles by Speck [59] and
to the interfacial findings of Bialké et al. [60]; work along
the latter lines is in progress [61]. Furthermore investigating
within our theory the relationship to the Gibbs-Thomson
relation, as considered by Lee [62], could be worthwhile, as
would be to consider curvature dependence, as performed by
Patch et al. [63], and depletion forces in nonequilibrium [64].
A finite-size analysis in the present paper has to remain open.
It would be interesting to study in future simulation work the
finite-size dependence of the superadiabatic force fields. For a
study of finite-size effects in the critical region see Ref. [46];
for an investigation of finite-size effects on the pressure see
Ref. [65]. The correlator expression developed in this work
could provide the backbone of such work.
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APPENDIX A: ONE-BODY EQUATION OF MOTION

We derive the force density balance (3) from the under-
lying Fokker-Planck equation of motion for the many-body
probability distribution function �(rN ,ωN , t ), where rN ≡
r1, . . . , rN denotes the set of all position coordinates and
ωN ≡ ω1, . . . ,ωN denotes the set of all particle orientations;
the corresponding momenta are irrelevant degrees of freedom
due to the overdamped nature of the dynamics. This (Smolu-
chowski) equation of motion is analogous to the Langevin
picture (1) and (2), and given by a many-body continuity
equation of the form

∂�

∂t
= −

∑
i

∇i · vi� −
∑

i

∇ω
i · vω

i �, (A1)

where the sums run over all particles. Here the translational
configurational velocity vi(rN ,ωN , t ) and the rotational con-
figurational velocity vω

i (rN ,ωN , t ) of particle i are many-body
functions given, respectively, by

γ vi = −∇iu + γ sωi − kBT ∇i ln �, (A2)

γ ωvω
i = −kBT ∇ω

i ln �, (A3)

where u(rN ) = ∑
j

∑
k( �= j) φ(|r j − rk|)/2 is the total internal

potential energy, and ∇ω
i denotes the derivative with respect

to orientation ωi.
The microscopic definitions for the one-body distribu-

tion functions are as follows. The density distribution is
ρ(r,ω, t ) = 〈∑i δi〉, where δi = δ(r − ri )δ(ω − ωi ) with the
Dirac distribution δ(·), and the angles denote a statisti-
cal average, which in the Smoluchowski picture is defined
as 〈·〉 = ∫

drN dωN · �(rN ,ωN , t ). The one-body current is
J(r,ω, t ) = 〈∑i δivi〉, where vi is the translational velocity of
particle i at time t . The internal one-body force density field
is Fint (r,ω, t ) = −〈∑i δi∇iu〉.

In order to obtain the one-body dynamics, we differentiate
in time the (definition of the) one-body density distribution,

∂ρ

∂t
=

∫
drN dωN

∑
i

δi
∂�

∂t
. (A4)

Next we replace the time derivative of the many-body distri-
bution function with the right-hand side of the Smoluchowski
equation (A1) and integrate by parts in both positions and
orientations. By using the identities ∇iδi = −∇δi and ∇ω

i δi =
−∇ωδi, it is straightforward to rewrite (A4) in the form of
the continuity equation (4) with the translational current given
by (3) and the rotational current being that of free rotational
diffusion.

Some more details, also about power functional theory for
active Brownian particles, and more generally orientation-
dependent models can be found in Ref. [38]; an overview
of different methods to sample the one-body current in BD
simulations is given in Ref. [36].

APPENDIX B: CLASSICAL DENSITY
FUNCTIONAL THEORY

In a one-component equilibrium system of spheres, accord-
ing to classical density functional theory [7], the equilibrium
one-body density distribution ρ(r) is obtained from the solu-
tion of

kBT ln ρ(r) + δFexc[ρ]

δρ(r)
= μ − Vext (r). (B1)

Here the irrelevant thermal de Broglie wavelength has been
set to unity. Equation (B1) represents a self-consistency re-
lation for the density profile ρ(r). The equation results from
the minimization principle for the grand potential functional
�[ρ], which states that � has its minimal value at the physical
equilibrium density. Here the functional maps the position-
dependent function ρ(r) onto the number �. The grand po-
tential functional is given as a sum of intrinsic and external
contributions, according to

�[ρ] = kBT
∫

drρ(r)[ln ρ(r) − 1] + Fexc[ρ]

+
∫

drρ(r)[Vext (r) − μ]. (B2)

FIG. 6. Isotropic Fourier component of the scaled density profile, ρ0σ
2, as a function of x/σ obtained from BD simulations for sτ/σ = 60

and kBT/ε = 0.5. (a) For different values of the average density Nσ 2/V = 0.5, 0.7, and 0.9 (as indicated) with simulation box aspect ratio
A = 5. (b) For different aspect ratios A = 2.5, 5, and 10, with average density Nσ 2/V = 0.7.
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FIG. 7. Fourier coefficients ρnσ
2 of the density distribution as a

function of x/σ across the interface. Shown are the theoretical results
for n = 0, 1, 2 (dashed lines, as indicated) for different values of the
parameter ξ = 0 (a) and 2100 (b). As a reference the results for ξ =
700 are also shown (solid black lines); these results are identical to
the data in the right panel of Fig. 3(a).

Here the first term on the right-hand side is the Helmholtz free
energy functional of the ideal gas, the second term Fexc[ρ] is
the excess (over ideal gas) intrinsic contribution due to the in-
terparticle interactions u(rN ), and the third term represents the
external potential energy and includes the chemical potential
contribution. This framework is formally exact, and both �[ρ]
and Fexc[ρ] have a microscopic definition [7] that renders
them uniquely defined mathematical objects. Equation (B1)
follows from (B2) by the condition of vanishing first deriva-
tive, i.e., calculating the functional derivative δ�/δρ(r) = 0,
as is appropriate at the minimum. In the present study we
use this framework to describe the adiabatic reference state.
Hence in our application we set ρ(r) = 2πρ0(r), where ρ0(r)
is the angular average of the orientation-resolved density
distribution of the active Brownian particles.

APPENDIX C: SIMULATION BOX GEOMETRY

In order to illustrate the dependence of the simulation
results on the simulation box geometry, we show in Fig. 6(a)
the isotropic component of the density profile, ρ0(x), for
different values of the average density Nσ 2/V with sτ/σ =
60, kBT/ε = 0.5 and the aspect ratio A of the length of the
simulation box in the x and in the y directions, A = 5 being
fixed. For overall density Nσ 2/V = 0.5 the system does not
separate into two phases, and ρ0(x) = const = Nσ 2/V . There
is a very small increase in local density near the center of
the simulation box, which is an artifact introduced by fixing

the center of mass of the entire system, which is a means
to stabilize the interface position(s). Increasing the average
density leads to phase separation. The coexisting densities are
rather independent of the value of the bulk density, but the rel-
ative fraction of the dense phase increases upon increasing the
overall density. Note that the total volume of the simulation
box decreases with increasing the average density Nσ 2/V , as
we keep N fixed.

In Fig. 6(b) we display the dependence of ρ0 on the
simulation box aspect ratio A. The other parameters are kept
fixed: kBT/ε = 0.5, sτ/σ = 60, and Nσ 2/V = 0.7. For A =
2.5 and A = 5 the density profiles share the same overall
shape and the coexisting bulk densities in the gas and in the
liquid are the same. However, for A = 2.5 the liquid slab is
already very thin and the two interfaces become very close to
each other and not as well decoupled from each other as in
the case A = 5. Increasing the aspect ratio further to A = 10,
i.e., making the simulation box narrower, the shape of ρ0 is
not fully retained, and a minimum develops at the center of
the simulation box. We assume that finite size effects due to
the short length of the simulation box in the y direction are
responsible for this artifact. Inspection of snapshots reveals
that typical configurations also involve the nucleation of an
additional gas region at the center of the box. Hence a (peri-
odic) succession of gas-liquid-gas-liquid-gas regions appears.
For such states again the localization of the interface fails.
Nevertheless, the plateau values of the density profile suggest
that the bulk densities in the gas and in the liquid phases are
similar for all aspect ratios considered.

APPENDIX D: SQUARE GRADIENT STRENGTH ξ

We display in Fig. 7 the Fourier coefficients of the density
profile, ρn(x), for two further values of the strength of the
square density gradient term: ξ = 0 [Fig. 7(a)], which is
identical to omitting the square gradient term in Eq. (38),
and as a further representative case ξ = 2100 [Fig. 7(b)]. As
a reference the results for our (optimal) parameter choice
ξ = 700 are also shown (black solid lines); these data are
identical to that shown in Fig. 3(a).

It is clear that very large values of ξ introduce artifacts,
such as the double hump in the polarization profile ρ1. For
very small values of ξ (with zero being an extreme case
thereof), the overall amplitudes become exaggerated. The
chosen value ξ = 700 represents a compromise where neither
of the two effects is dominant.
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