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Combining Poiseuille flow with an external electric field is a demonstrated method to drive transverse
migration in capillary electrophoresis. Despite both computational and experimental studies, a number of
questions about how to best model polymers under these conditions remains. Attempts have been made
to develop a kinetic theory for a bead-spring dumbbell model, but these have only been accurate at low
electric field strength and have not captured the nonmonotonic relationship between migration and electric
field strength. In this paper, we revisit the development of a kinetic theory for a bead-spring dumbbell in a
combination of parabolic flow and an external electric field. The resultant theory yields a compact formula
that predicts polymer concentration profiles that agree excellently with our Brownian dynamics simulations
including the aforementioned nonmonotonic relationship. Furthermore, we compare our theoretical results
to experimental data and find that our model nearly quantitatively predicts the position of the maximum in
migration.
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I. INTRODUCTION

It has been found that in parallel or antiparallel exter-
nal pressure-driven flow and electric field, DNA migrates
perpendicular to the flow and field [1,2]. Understanding the
mechanism for this phenomena could guide the development
of the next generation of microfluidic devices and allow for
the manipulation and study of individual molecules with a
high degree of control. When flexible polymers are exposed
to pressure-driven flow in a channel (without an electric
field), the polymers will migrate towards the center [3,4].
This migration is understood to be hydrodynamically driven in
nature [5,6]. However, this mechanism is not strong enough to
explain the migration of DNA in the experiments with electric
fields.

It is believed that the migration of DNA in both flow
and field is due to electrohydrodynamic interactions (EHIs)
between parts of the DNA [7]. These interactions lead to a
electrophoretic mobility tensor that depends on conformation.
The use of combined flow and electric fields has been to
successfully trap and separate molecules by manipulating
their conformation dependent mobility [8–10] as well as
concentrate genomic length DNA [11].

To date, there have been two major approaches to in-
corporate EHI into the modeling flexible polyelectrolytes.
One, developed by Liao et al. [12], discarded the long-range
electrohydrodynamic interactions, opting instead to include
only those interactions on a scale of a Kuhn length. The
one-dimensional model was successfully used to understand
qualitative changes in conformation dependent mobility as
a function of electric field strength. However, this model
assumed that the polymer was strongly stretched in the
field direction and could not capture transverse migration.
This model was later generalized by Pandey and Underhill
[13] and later used to understand the trapping of flexible

polyelectrolytes in T channels [8]. These coarse-grained mod-
els take the form of a bead-spring chain in which the mobility
of a spring depends on the conformation of the spring. In
this way, they incorporate the EHI between polymer segments
within a spring.

The other approach, developed by Kekre and co-workers
is a bead-spring chain model that directly includes long-range
EHI between segments [14]. This method captures the fluc-
tuations of the electrophoretic mobility as the conformation
fluctuates and includes the long-range interactions that are
important near equilibrium when the polymer is only weakly
deformed. However, representing polymers that are stretched
far from equilibrium would require a large number of springs,
all interacting with one another. This would greatly increase
the computational cost of using such a model.

Montes et al. [10] and Arca et al. [11] have successfully
used their model to quantify the dynamics and migration in
devices with combinations of fluid flow and electric field. This
includes currently capturing the nonmonotonic dependence of
the amount of migration on the strength of the electric field.
They also developed a kinetic theory for a bead-spring dumb-
bell model in a combination of parabolic flow and an external
force [15]. Although their kinetic theory accurately predicts
migration at low electric field strengths, it incorrectly predicts
a monotonic relationship between electric field strength and
migration. This has led to questions regarding the mechanism
for the nonmonotonic trend and why the bead-spring chain
with direct interactions captures it, but the kinetic theory of a
coarse-grained dumbbell does not.

In this article, we show using Brownian dynamics (BD)
simulations that a bead-spring dumbbell model is sufficient
to capture the nonmonotonic relationship between electric
field strength and migration for a variety of flow strengths.
Furthermore, we show that a modified derivation of the kinetic
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theory captures this nonmonotonic relationship in agreement
with our BD simulations.

II. SIMULATION METHOD

A standard BD method [16–18] was utilized for this re-
search. The polymer was reduced to a bead-spring dumbbell,
whereas the solvent was represented by a continuum, which
accounted for the stochastic motion and the viscous drag.
Note that explicit hydrodynamic interactions have not been
included. The positions of the beads are denoted by r1 and
r2. During each time step, a series of forces are applied
to each bead to determine their motion. The polymers are
exposed to a fully developed Poiseuille flow in x and varying
in y. Furthermore, the system includes a uniform electric field
pointing in the x direction. The dynamical equations take the
form

dr1 =
[

u f (r1) + μ · E + 1

ζ
Fs

]
dt +

√
2kBT dt

ζ
dW1, (1)

dr2 =
[

u f (r2) + μ · E − 1

ζ
Fs

]
dt +

√
2kBT dt

ζ
dW2, (2)

where u f is the external fluid flow, μ is the electrophoretic
mobility tensor, E is the external electric field, ζ is the bead
drag coefficient, Fs is the spring force, kB is the Boltzmann
constant, T is the absolute temperature, dt is the time step,
and dW 1 and dW 2 are vectors with components that are
independent stochastic variables chosen from a distribution
with zero mean and a variance of 1. We define the spring
connecter vector as Q = r2 − r1 and the center-of-mass as
rc = (r2 + r1)/2.

The springs make use of the finitely extensible nonlinear
elastic (FENE) spring force law [19], which is given by

Fs = HsprQ
1 − f 2

, (3)

where f = |Q|/Q0 is the spring’s fractional extension, Q0 is
the maximal extension of the spring, and Hspr is the spring
constant.

The coarse-grained mobility tensor for a FENE spring is
given by [13]

μ =
(

μ0 + 4μ1 f 2

3 − f 2

)
Q̂Q̂ +

(
μ0 − 2μ1 f 2

3 − f 2

)
(I − Q̂Q̂), (4)

where I is the identity tensor, Q̂ = Q/Q, μ0 is the mobility of
the polymer at equilibrium, and μ1 is related to the mobility
of the polymer away from equilibrium due to EHI between
polymer segments.

For all the cases examined here, the fractional extension of
the springs is small enough that the results are the same as
with a Hookean spring with the force law,

Fs ≈ HsprQ, (5)

with an approximate Hookean mobility tensor given by

μ ≈
(

μ0 − 2

3
μ1 f 2

)
I + 2μ1 f 2Q̂Q̂. (6)

For this paper, the external fluid flow is parabolic, so the
flow profile is given by

u f
x = γ̄ H[1 − (y/H )2], (7)

where γ̄ is the average shear rate, y is the distance from
the channel center, and H is the channel’s half height with
the walls at y = H and y = −H . We quantify the strength
of the fluid flow using a flow Weissenberg number, defined
as WiF = γ̄ τ , where τ is the Rouse relaxation time given
by τ = ζ/4Hspr. Due to the fact that the electric field is
uniform, we cannot use a field gradient to define an electric
Weissenberg number. Rather, we define WiE such that WiE =
WiF corresponds to the case that μ0E equals the mean fluid
flow. Using the relationship between the average shear rate
and the mean fluid flow, this results in WiE = 3μ0Eτ/(2H ).

III. KINETIC THEORY

The kinetic theory for an uncharged dumbbell in a channel
in dilute solution was developed in Ref. [4]. Later, this theory
was generalized to include an external force in Ref. [15]. For
the sake of brevity, only the essential points are elucidated
here.

The steady-state distribution for a polymer dumbbell in
solution is given by the distribution function �, which is a
function of the center-of-mass rc and the end-to-end vector Q,
and satisfies the conservation equation,

0 = − ∂

∂rc
· (ṙc�) − ∂

∂Q
· (Q̇�), (8)

where ṙc and Q̇ can be determined by combining Eqs. (1) and
(2),

ṙc = u f (r1) + u f (r2)

2
+ μ · E − Db

2

∂ ln �

∂rc
, (9)

Q̇ = u f (r2) − u f (r1) − 2

ζ
Fs − 2Db

∂ ln �

∂Q
, (10)

where Db = kBT/ζ is the bead diffusivity. It is worth noting
that previous studies assumed that two terms in Eq. (8) are
both independently near zero due to the polymer’s rapid
connector vector equilibration relative to migration [15]. We
do not make that assumption here.

The probability distribution is then decomposed into a
center-of-mass distribution function n and end-to-end distri-
bution function ψ ,

�(rc, Q) = n(rc)ψ (rc, Q), (11)

where

n(rc) =
∫

�(rc, Q)dQ. (12)

If Eq. (8) is integrated over Q, the steady-state distribution
of the center of mass can be written

∂

∂rc
· (n〈ṙc〉) = 0, (13)

where the angle brackets 〈 〉 represent an average over Q using
the conditional distribution ψ .
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Plugging Eq. (9) into Eq. (13) and using a Taylor expansion
of the flow yields

0 = ∂

∂rc
·
[

nu f (rc) + n

8
〈QQ〉:

(
∂

∂r
∂

∂r
u f

)∣∣∣∣
r=rc

+ n〈μ〉 · E − Db

2

∂n

∂rc

]
. (14)

Due to the form of the flow field and electric field used
here, Eq. (14) simplifies to

d

dy

[
n〈μyx〉E − Db

2

dn

dy

]
= 0, (15)

where 〈μyx〉 is the averaged yx component of the mobility
tensor and y is the component of the center-of-mass position.
Because n only depends on y, it has been renormalized to a
one-dimensional probability distribution. Inside the brackets
is the net y component of the translational flux of dumbbells.
It can be seen that the flux is determined by the sum of the EHI
migration and the counteracting diffusion term. The boundary
conditions require that the flux at the walls is zero, leading to

d ln(n)

dy
= 2

Db
〈μyx〉E . (16)

To simplify our analysis, we use a Hookean spring and ap-
proximate mobility for the kinetic theory. The yx component
for the Hookean mobility [Eq. (6)] is given by

〈μyx〉 = 2μ1

Q2
0

〈QxQy〉. (17)

Plugging this into Eq. (16) yields

d ln(n)

dy
= 4μ1E

DbQ2
0

〈QxQy〉. (18)

The concentration profile is, therefore, related to the sec-
ond order xy moment of the spring connector vector. In order
to determine the second order moments, Eq. (8) is multiplied
by QQ and integrated over Q. The term with the Q derivative
can be manipulated using standard integration by parts ma-
nipulations from Ref. [20]. The shear, spring, and Brownian
diffusion contributions in Eq. (10) lead to corresponding terms
in the moment equation.

The center-of-mass terms can be simplified using

n〈ṙcQQ〉 = nu f 〈QQ〉 + n

8

〈
QQ:

(
∂

∂r
∂

∂r
u f

)∣∣∣∣
r=rc

QQ

〉

+ n〈μ · EQQ〉 − Db

2

∂

∂rc
n〈QQ〉. (19)

In order to nondimensionalize our system, we scale chan-
nel quantities by (3kBT/Hspr )1/2 while scaling the spring
vector by (kBT/Hspr )1/2. Therefore, we define ỹ = y/(3kBT/

Hspr )1/2, H̃ = H/(3kBT/Hspr )1/2, and Q̃ = Q/(kBT/Hspr )1/2.
Applying these definitions to Eq. (18) results in

d ln(ñ)

dỹ
= �〈Q̃xQ̃y〉, (20)

where ñ = n(3kBT/Hspr )1/2 and

� = 32H̃μ1WiE/(μ0b) = 16τμ1E

Q2
0

√
3kBT

Hspr
. (21)

The FENE parameter b = HsprQ2
0/(kBT ) is three times the

number of Kuhn segments in the chain. The parameter � is
a key dimensionless group that is proportional to the electric
field and determines the migration. It quantifies the balance
between the two fluxes present in Eq. (15) by which the
deviation of the spring distribution from equilibrium creates
an electrophoretic flux that is balanced by a diffusive flux
to determine the overall concentration profile. Equation (20)
quantifies the relationship between the concentration profile
and the conformation distribution. Further insight into the
mechanism of migration is gleaned by developing expressions
for the second order moments, which can also be nondimen-
sionalized. The necessary yx, xx, and yy components are

24ñ
[〈

Q̃2
y

〉
γ̃ − 〈Q̃xQ̃y〉

] = �
d

dỹ

(
ñ
〈
Q̃2

xQ̃2
y

〉) − d2

dỹ2
(ñ〈Q̃xQ̃y〉),

(22)

24ñ[1 − 〈Q̃2
y〉] = �

d

dỹ

(
ñ
〈
Q̃3

xQ̃y
〉) − d2

dỹ2

(
ñ
〈
Q̃2

y

〉)
, (23)

and

24ñ
[
2〈Q̃xQ̃y〉γ̃ −〈

Q̃2
x

〉 + 1
]=�

d

dỹ

(
ñ
〈
Q̃xQ̃3

y

〉) − d2

dỹ2

(
ñ
〈
Q̃2

x

〉)
,

(24)

where

γ̃ = γ̇ τ = 2
γ̄ ỹ

H̃
τ = 2 WiF ỹ

H̃
. (25)

These equations yield insight into the phenomena that
impact the second order moments. In particular, Eq. (22)
describes the mechanisms that determine 〈Q̃xQ̃y〉, which then
determines the concentration profile via Eq. (20). The value
of 〈Q̃xQ̃y〉 is determined by a balance of shear, represented by
the 〈Q̃2

y〉γ̃ term, an electric field migratory flux, represented
by the � term, and a diffusive flux, represented by the second
derivative term. The importance of these terms varies as a
function of electric field strength as will be discussed in the
following section and shown schematically in Fig. 1.

As mentioned earlier, previous kinetic theories examining
migration of polymer dumbbells simplified the system by
assuming that the polymer’s connector vector distribution
relaxed quickly compared to the polymer’s migration across
the channel. If that approximation is performed, the right hand
sides of Eqs. (22)–(24) are zero.

IV. RESULTS AND DISCUSSION

A. Brownian dynamics simulations

For the simulations presented here, we used dumbbell bead
springs. The channel width was chosen to correspond to a
physical channel with a width of 80 μm containing λ DNA.
This corresponds to H̃ = 21.775. The length of the chain was
such that b = 450, which is roughly equivalent to the length of
labeled λ DNA [21]. Each simulation had three polymers with
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FIG. 1. A schematic for the mechanism of migration. The solid arrows illustrate how the phenomena affect each other. The arrow
labels refer to the corresponding equations where the relationship is demonstrated. The dashed green arrow highlights the new phenomenon
incorporated in our kinetic theory that is important at intermediate and high electric field strengths.

a μ1/μ0 of 0.125 were simulated and was run using a forward
Euler integration scheme for 106 steps where dt = 10−3τ .

By tracking the center of mass of each spring over the
course of the simulation, we are able to generate the prob-
ability distribution for the polymers across the channel. A
series of example distributions are shown in Fig. 2 for a
variety of WiF ’s and WiE ’s, which we fit with a normalized
Gaussian profile. The standard deviation was determined from
this fitting and used to quantify the amount of migration.
From the figure, we can see that the migration increases as
WiE increases from 1 to 25 as evidenced from the tighter
distributions. For WiE ’s greater than 25, the distributions
begin to widen again, signifying a decrease in the amount
of migration. The presence of a maximum of migration is
consistent with experiment. The dimensionless standard de-
viation σ̃ = σ/(3kBT/Hspr )1/2 from these profiles are shown
in Fig. 3 in blue. We also simulated a number of other larger
WiF ’s also shown in Fig. 3. The results show that the shape of

FIG. 2. The distribution of polymers across a series of simu-
lations with different WiE ’s. The circles represent the amount of
polymer in that region of the channel from the BD simulations. The
curves are a Gaussian fit to the profiles. All simulations were run
using WiF = 0.3. The values of WiE are WiE = 1 (blue line), WiE =
10 (red dot-dashed line), WiE = 25 (green dashed line), WiE = 50
(black dotted line). The walls of the channel are represented by the
vertical dot-dashed lines.

the migration curves as well as the position of the minimum
in σ̃ is unaffected by changes in WiF . However, the overall
amount of migration at a given WiE is strongly impacted by
the WiF with larger WiF ’s corresponding to larger amounts of
migration. The curves in Fig. 3 are the results of the kinetic
theory prediction developed in the following section.

To summarize, the BD simulations show that using a
dumbbell model produces a nonmonotonic relationship be-
tween migration and electric field strength, which is consistent
with experiment [9]. Because previous approximate kinetic
theories based on a dumbbell model showed a monotonic
trend, it was thought that a dumbbell model was insufficient
to match with experiments [9,15]. Our results suggest that the
discrepancy may have been due to the approximation in the
kinetic theory instead of the use of a dumbbell model.

B. Solving the kinetic theory

The kinetic theory, Eqs. (22)–(24), did not make additional
assumptions beyond Eq. (8) but do require knowledge of the

FIG. 3. Standard deviation of polymer concentration profiles.
The solid circles are the calculated σ̃ ’s from our BD simulations:
WiF = 0.3 (blue dotted line), WiF = 0.6 (red dot-dashed line),
WiF = 0.9 (green dashed line), and WiF = 1.2 (black line). The lines
are Eq. (27) for the corresponding value of WiF : WiF = 0.3, WiF =
0.6, WiF = 0.9, and WiF = 1.2.
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fourth order moments to solve. Unfortunately, deriving the
fourth order moments in the same manner used for the second
order moments results in a larger system of equations that
depend, in turn, on the sixth order moments. Appendix A
describes a different type of closure approximation valid in
weak flows which allows the equations to be solved. For most
of the results shown here, a simpler approach is accurate in
which the fourth order moments take their equilibrium values,
which, in our nondimensionalization, are 〈Q̃2

xQ̃2
y〉 ≈ 1 and

〈Q̃3
xQ̃y〉 ≈ 〈Q̃xQ̃3

y〉 ≈ 0. Appendix B uses the BD simulations
to show that the diffusive flux terms (second derivative terms)
in Eqs. (22)–(24) are small for the cases examined here. Once
the simplifications are applied, Eq. (23) becomes 〈Q̃2

y〉 = 1
and Eq. (22) now takes the form

24ñ[γ̃ − 〈Q̃xQ̃y〉] = �
d

dỹ
ñ, (26)

which is coupled with Eq. (20). The loss of the second
derivative leads to boundary layers at the walls, but they do
not affect the migration in the channel center when the width
of the distribution is small compared to the channel width.

Figure 1 shows a schematic that illustrates the mechanism
of migration. Equation (26) incorporates how the conforma-
tional distribution is determined by a combination of the shear
(via γ̃ ) and the electrophoretic flux (via �). The confor-
mation, in turn, determines the electrophoretic mobility via
Eq. (17) which manifests as electrophoretic fluxes in Eqs. (20)
and (26). Because the electric field migratory flux impacts the
conformation distribution [green arrow in Fig. 1], it acts as
a feedback mechanism. The impact of this feedback is more
clearly seen if the derivative on the right hand side of Eq. (26)
is eliminated using Eq. (20), and the resulting equation is
solved to obtain

〈Q̃xQ̃y〉 = − 48 WiF ỹ

H̃ (24 + �2)
. (27)

This result can then be plugged into Eq. (20) in order to
determine the concentration profile and by extension the σ̃ .
Because the shear rate is linear, the function ln(n) becomes
quadratic corresponding to a Gaussian profile with

σ̃ =
(

H̃ (24 + �2)

48 WiF �

)1/2

. (28)

Equation (28) is plotted for a range of WiF in Fig. 3
in comparison with the BD simulations. There is excellent
agreement between our simulated data and Eq. (28). Unlike
previous kinetic theory models, our model is accurate at both
low and high electric field strengths and accurately predicts
the nonmonotonic relationship between the migration and the
electric field strength. That being said, the error increases with
increasing WiF . This is not surprising as the stronger flows are
better able to push polymers out of equilibrium, which reduces
the validity of the assumption that the fourth moments are near
their equilibrium values.

From our formula for σ̃ , we can determine the point of
maximal migration for a given WiE and WiF . From Eq. (28),
we find that �min = √

24 and

min(WiE ) =
√

24

32

μ0b

μ1H̃
, (29)

from which we see that the position of the minimum is
independent of WiF as seen in Fig. 3. Furthermore, we can
use Eqs. (28) and (26) to understand the physical mechanism
for the nonmonotonic trend. For � � √

24, the migration
contribution in Eq. (26) is small, and the second spring mo-
ment is determined by the shear flow. However, for � � √

24,
the second spring moment decays as �−2. Simultaneously,
dñ/dỹ scales as �−1 such that the migration contribution in
Eq. (26) balances the shear flow. In this way, the migration is
self-limiting as the balance among the terms in Eq. (26) shifts
depending on the strength of the electric field.

C. Relation to experiment

Section IV B showed that there was excellent agreement
between our theory and BD simulations. However, it does
not give insight to how well the mechanism in the theory ex-
plains the nonmonotonic trend seen in the experimental data.
To determine this, we extracted the experimental migration
data, consisting of the electric field strength and σ̃ ’s from
Ref. [9]. More specifically, we used the data from Fig. 8 of
Ref. [9] for the S1 [40 mM Tris-acetate-EDTA (TAE)] and
S2 (0.4 mM TAE and 0.1 mM NaCl) solutions at WiF =
0.6. These two solution conditions were chosen due to their
different ionic strengths and Debye lengths. From the data,
the corresponding electric field strengths were calculated. We
used the electric field strength in conjunction with the channel
size (H̃ = 21.775), molecule size (b = 450), and molecule
relaxation time (τ = 0.1 s) to calculate WiE in accordance
with the definition given earlier in this paper, instead of the
definition given in Ref. [9]. The dimensionless results are
plotted in Fig. 4(a) for the S1 data and in Fig. 4(b) for
the S2 data.

To determine how well our model could reproduce the
nonmonotonic trend, a least squared fitting was performed
on both data sets using Eq. (27) with μ1/μ0 as the fitting
parameter and WiF = 0.5. The best fit plots are shown in
Fig. 4 in green solid curves. The best fit values are μ1/μ0 =
1.24 for the S1 solution and μ1/μ0 = 5.13 for the S2 solu-
tion. These values represent how the conformation dependent
mobility due to EHI appears in the coarse-grained model
and varies with ionic strength. It is also worth noting that
the experiments take place in a channel with a square cross
section, whereas the theory examined a cross section with one
dimension much larger than the other. Within these differ-
ences and the use of a coarse-grained model, the kinetic theory
matches the migration and turnaround nearly quantitatively.
In Refs. [12,13], the ratio μ1/μ0 is interpreted in terms of the
mobility of a Kuhn segment parallel and perpendicular to the
rod. In that interpretation, μ1/μ0 is expected to be less than
or equal to 1/4 and applies to situations with large enough
fractional extension so that long-ranged EHI is negligible. In
this article, using Eqs. (4) and (6), the fractional extension
is relatively small so that the ratio μ1/μ0 also incorpo-
rates contributions from long-ranged EHI in a coarse-grained
way.

Recall that the nonmonotonic trend is due to the inclusion
of an additional term in the kinetic theory. To illustrate the
importance of that term in matching with the experimental
data, we will also show the corresponding prediction if that

052501-5



ANGELO C. SETARO AND PATRICK T. UNDERHILL PHYSICAL REVIEW E 100, 052501 (2019)

(a)

(b)

FIG. 4. Comparison of experimental data from Ref. [9]. The
blue triangles are the experimental data with the S1 solution at
WiF = 0.6 shown in (a) and S2 solution at WiF = 0.6 shown in
(b). The best fit plots of Eq. (28) (green line) give a μ1/μ0 of 1.24
for the S1 solution and 5.13 for the S2 solution. Equation (30) is
plotted using the corresponding best fit value for μ1/μ0 (red dotted
line).

mechanism was not included. Previous investigators as-
sumed that the polymer’s connector vector distribution re-
laxed quickly compared to polymer migration across the
channel. This assumption results in the right hand side of
Eqs. (22)–(24) becoming zero. This different set of equations

results in a prediction similar to Eq. (28) of the form

σ̃ =
(

H̃

2 WiF �

)1/2

. (30)

Equation (30) was then plotted using the same parameters
and the best fit value of μ1/μ0. This is shown by the red
dotted curves in Fig. 4. As can be seen from the figures, there
is excellent agreement between Eqs. (28) and (30) at low
WiE . However, as WiE (and by extension �) increases, the
two equations deviate with Eq. (28) capturing the minimum
near the experimental values, whereas Eq. (30) continues to
decrease monotonically.

V. CONCLUSIONS

In this paper, we have quantified the migration due to the
conformation dependent mobility of a coarse-grained dumb-
bell model in a combination of parabolic flow and an external
electric field. We have shown that BD simulations making
use of a coarse-grained dumbbell are capable of capturing the
nonmonotonic relationship between migration and WiE . This
result is in contrast to the predictions made from a previous
kinetic theory. To gain mechanistic insight into the migration,
we then developed a kinetic theory for the dumbbell bead
spring. Via assumptions about the nature of the moments and
the magnitude of the individual components, we were able
to develop a compact formula for the amount of migration.
This approximation [Eq. (28)] agreed excellently with our
simulations across all of the WiF ’s and WiE ’s examined here.

Furthermore, the form of the differential equation in
Eq. (26) yields insight into the underlying phenomenon de-
termining the amount of migration. More specifically, the
migration is determined by the balance of the shear flow trying
to distort the spring distribution from equilibrium, the spring
force resisting that distortion, and the electrophoretic mobility
migrating the polymers across regions with different shear
rates. When varying the electric field at a constant shear rate,
the shear term always contributes, whereas the balance of the
spring force and electrophoretic mobility terms varies with
WiE . At low WiE , the migration does not significantly alter the
spring distribution which is determined by the shear. However,
at high WiE , the migration itself alters the spring distribution
leading to a self-limiting migration. Schematically, this mech-
anism is described in Fig. 1. Finally, we compared our model
to experimental data presented in Ref. [9] and found that our
results were near quantitative at predicting the conditions for
maximum migration.

It should be noted that this model is designed to study
phenomena at relatively low shear rates and electric field
strengths. At higher shear rates and electric fields, other phe-
nomena will also couple with the mechanism described here.
For example, hydrodynamic migration becomes significant
at higher shear rates [4]. Furthermore, at high electric field
strengths, charged polymers can collapse [22], impacting its
electrophoretic mobility.
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(a) (b) (c)

FIG. 5. Validation of the three closures for WiE = 25 and WiF = 0.6. The red triangles show the fourth order moments given by (a) 〈Q̃2
y Q̃2

y〉,
(b) 〈Q̃xQ̃3

y〉, and (c) 〈Q̃3
x Q̃y〉. The blue circles give the corresponding approximations using second order moments from Eqs. (A4)–(A6). All

data are from BD simulations. The horizontal blue dashed lines show the equilibrium value (the no flow no field case).

APPENDIX A: CLOSURE

In order to solve Eqs. (22)–(24), it is necessary to develop
some expression for the fourth order moments. We found that
assuming that the fourth order moments kept their equilibrium
values and that the diffusive flux could be neglected gave
excellent agreement with our simulations. To demonstrate the
validity of this approximation, we take a different approach
here. Equations (22)–(24) are first simplified via the order
of magnitude analysis from the BD simulations described in
Appendix B. The resultant equations are

24ñ
[〈

Q̃2
y

〉
γ̃ − 〈Q̃xQ̃y〉

] = d

dỹ

(
ñ�

〈
Q̃2

xQ̃2
y

〉)
, (A1)[

1 − 〈
Q̃2

y

〉] = 0, (A2)

2γ̃ 〈Q̃xQ̃y〉 + [
1 − 〈

Q̃2
x

〉] = 0. (A3)

These equations were solved in Sec. IV B by assuming
the fourth order moment in Eq. (A1) remains at equilibrium.
Instead, we here use a closure in order to capture out of
equilibrium behavior. Moment closures have also been used
to understand migration processes in swimming active matter
systems [23–25], although the mechanism for migration is
different. The approximation used here incorporates the corre-
lation between the connector vector components in the x and
y directions in weak shear flows and the combinatorial factors
when grouping terms and takes the form〈

Q̃2
yQ̃2

x

〉 ≈ 〈
Q̃2

y

〉〈Q̃2
x〉 + 2〈Q̃xQ̃y〉2, (A4)〈

Q̃3
yQ̃x

〉 ≈ 3〈Q̃xQ̃y〉
〈
Q̃2

y

〉
, (A5)

〈Q̃yQ̃3
x〉 ≈ 3〈Q̃xQ̃y〉〈Q̃2

x〉. (A6)

The latter two approximations are not needed to solve
Eqs. (A1)–(A3) but are included for completeness.

In order to gauge the accuracy of these approximations,
we calculated both the second and the fourth order moments
from our BD simulations and compared them in accordance
with Eqs. (A4)–(A6). The results are shown in Fig. 5. As
can be seen, there is excellent agreement between the fourth
order moments and the corresponding combinations of second
order moments. Although the channel coordinate goes from
−21.775 to 21.775, we have only included the central portion
of the channel where there was sufficient statistics to predict
accurate data due to the migration. Furthermore, we have

plotted the equilibrium value for the fourth order moments
and see that the BD simulations show only mild deviations
away from those values under these conditions.

Having validated the closure, Eq. (A4) can then be plugged
into Eq. (A1) to produce a set of coupled equations. Using
Eqs. (A2) and (A3) to eliminate 〈Q̃2

y〉 and 〈Q̃2
x〉, and using

Eq. (20) results in
24

�
(γ̃ − 〈Q̃xQ̃y〉) = �〈Q̃xQ̃y〉(1 + 2γ̃ 〈Q̃xQ̃y〉 + 2〈Q̃xQ̃y〉2)

+ d

dỹ
(1 + 2γ̃ 〈Q̃xQ̃y〉 + 2〈Q̃xQ̃y〉2).

(A7)

FIG. 6. The standard deviation of polymer concentration distri-
butions as a function of WiF and WiE . The circles show the data
from our BD simulations and are the same as in Fig. 3. The solid
curves are predictions for σ̃ making use of Eqs. (A11) and (A12).
The small difference between these curves and those in Fig. 3 is from
relaxing the assumption about a fourth moment and using a closure
approximation. The values of WiF are WiF = 0.3 (blue dashed line),
WiF = 0.6 (red dot-dashed line), WiF = 0.9 (green dashed line), and
WiF = 1.2 (black line).
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(a) (b) (c)

(d) (e) (f)

FIG. 7. The calculated values from the BD simulations for each term in Eqs. (22)–(24). The top row corresponds to WiF = 0.6 and
WiE = 1. (a) shows the components of Eq. (22), (b) shows the components of Eq. (23), and (c) shows the components of Eq. (24) under
these conditions. The bottom row corresponds to WiF = 0.6, WiE = 100. (d) shows the components of Eq. (22), (e) shows the components
of Eq. (23), and (f) shows the components of Eq. (24) under these conditions. The terms displayed include migratory flux (blue upward facing
triangles), diffusive flux terms (black stars), shear (green diamonds), spring extension (red circles), and Brownian diffusion (cyan downward
facing triangles).

The variability of the shear rate with position can be shown
explicitly by writing γ̃ = 2 WiF ỹ/H̃ , which results in[

−48 WiF ỹ

H̃�

]
= 24

�
〈Q̃xQ̃y〉 + �〈Q̃xQ̃y〉

×
(

1 − 4 WiF ỹ

H̃
〈Q̃xQ̃y〉 + 2〈Q̃xQ̃y〉2

)

+ d

dỹ

(
1 − 4 WiF ỹ

H̃
〈Q̃xQ̃y〉 + 2〈Q̃xQ̃y〉2

)
.

(A8)

The solution in the center of the channel can be computed
using a Taylor series incorporating the odd symmetry using
the form

〈Q̃xQ̃y〉 ≈ −a1ỹ + a3ỹ3 + · · · , (A9)

where a1 and a3 are undetermined coefficients. We found that
only the first order term contributed significantly and all other
terms could be dropped. By plugging Eq. (A9) into Eq. (A8)
we can solve for a1 and, by extension, 〈Q̃xQ̃y〉. The coefficient
a1 must satisfy

0 = 4a2
1 −

[
24

�
+ � − 8 WiF

H̃

]
a1 + 48 WiF

H̃�
, (A10)

which can be solved yielding

a1 =
(

24
�

+ � − 8 WiF
H̃

) −
√(

24
�

+ � − 8 WiF
H̃

)2 − 768 WiF
�H̃

8
.

(A11)

This solution can be plugged back into Eq. (A9) to get an
expression for 〈Q̃xQ̃y〉. In turn, this can be used to calculate σ̃

for the distributions using Eq. (20) as in the body of the paper,
which is given by

σ̃ = 1√
�a1

. (A12)

A comparison between this prediction and the BD simulations
is shown in Fig. 6. For small WiF , Eqs. (A12) and (28) become
the same and match with the BD simulations across all values
of WiE . For larger WiF , Eq. (A12) more accurately captures
the distortion of the fourth moments from equilibrium but
matches the BD simulations comparably well, demonstrating
the validity of our original assumption.

APPENDIX B: SIMPLIFICATION OF THE
SYSTEM OF DIFFERENTIAL EQUATIONS

In this paper, we showed that our kinetic theory adequately
captures the migration of the polymers and we could solve
the kinetic theory more easily if we made assumptions about
the importance of terms within the theory. In this Appendix,
we use the BD simulations to validate assumptions made
in the kinetic theory. In the BD simulations, the polymer
concentration and moments are computed for each region
of ỹ, and derivatives are computed from them using central
finite difference. The results are shown in Fig. 7. We show
two conditions: one at low electric field strength [WiE = 1,
Figs. 7(a)–7(c)] and one at high electric field strength [WiE =
100, Figs. 7(d)–7(f)]. This was performed in order to demon-
strate how the magnitude of certain terms were significant
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whereas other terms could not be neglected over a range of
WiE .

Due to the many terms in Eqs. (22)–(24), it is useful to
note that, on the right hand side of the equations, the terms
containing the first derivative and fourth moments resulted
from the electrophoretic migratory flux and terms contain-
ing the second derivatives represent diffusive flux. On the
left hand side, we distribute the 24ñ term onto the terms
within the brackets for these results. The terms containing γ̃

represent shear distorting the spring distribution, the second
order moments represent the spring force acting to push the
spring distribution towards equilibrium, and the terms with 1
represent Brownian diffusion.

In all cases, the diffusive terms (black stars) are small. This
supports the assumption made in Sec. IV B and Appendix A
that the diffusive terms could be neglected. Similarly, the
migratory flux terms(blue upwards triangles) are small in
Figs. 7(b), 7(c) 7(e), and 7(f), which validates our assumption
that the fourth order moments for Eqs. (23) and (24) would

be close to their equilibrium values of 0. However, the fourth
order moment term in Eq. (22) contributes significantly in
the high WiE case [Fig. 7(d)] but not for the low WiE case
[Fig. 7(a)]. Because the fourth order moment does contribute
significantly at higher WiE , this warrants its inclusion to the
system of equations as in Sec. IV B.

Furthermore, Figs. 7(a) and 7(d) show that, although the
shear is significant at both high and low WiE ’s, the mag-
nitude of the other terms differs. At high WiE ’s, the shear
contribution is matched by the fourth order moment term. At
low WiE ’s, the shear contribution is balanced by the spring
extension term. As WiE increases, so does the fourth order
moment’s term, whereas the spring extension term decreases.
This trend continues until the behavior shown in Fig. 7(d)
manifests.

These quantifications using the BD simulations of the
terms in Eqs. (22)–(24) validate which phenomena are im-
portant and how they are rewritten as Eqs. (A1)–(A3) in
Appendix A.
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