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Mechanical conditions for stable symmetric cell constriction
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Cell constriction is a decisive step for division in many cells. However, its physical pathway remains poorly
understood, calling for a quantitative analysis of the forces required in different cytokinetic scenarios. Using
a model cell composed by a flexible membrane (actin cortex and cell membrane) that encloses the cytoplasm,
we study the mechanical conditions necessary for stable symmetric constriction under radial equatorial forces
using analytical and numerical methods. We deduce that stable symmetric constriction requires positive
effective spontaneous curvature, while spontaneous constriction requires a spontaneous curvature higher than
the characteristic inverse cell size. Surface tension reduction (for example by actin cortex growth and membrane
trafficking) increases the stability and spontaneity of cellular constriction. A reduction of external pressure
also increases stability and spontaneity. Cells with prolate lobes (elongated cells) require lower stabilization
forces than oblate-shaped cells (discocytes). We also show that the stability and spontaneity of symmetric
constriction increase as constriction progresses. Our quantitative results settle the physical requirements for
stable cytokinesis, defining a quantitative framework to analyze the mechanical role of the different constriction
machinery and cytokinetic pathways found in real cells, so contributing to a deeper quantitative understanding
of the physical mechanism of the cell division process.
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I. INTRODUCTION

Cell division under symmetric constriction is an essential
feature of life from which stems the capacity of any living
organism for self-replication [1]. No matter what the cell is,
either prokaryote or eukaryote, every cell is replicated from
preexisting cells through cytokinesis, the terminal process of
the cell cycle, and thereby the mother cell is cleaved into
two daughters [2]. The key cytokinetic features are conserved
in the different kingdoms of life, standing out by their re-
producibility and regularity in every organism [2–4]. Such a
set of universal characteristics suggests a general mechanical
pathway with a tight physical control mediated by specific
biomolecular players [5–7]. Specific mechanistic details differ
between organisms due to biochemical evolution [8], which
makes possible confronting different constriction forces with
mutable cells of dissimilar sizes and variable mechanical
characteristics [4]. In animal cytokinesis, cell constriction has
evolved to occur at an equatorial site specifically named a
cleavage furrow [9] [see Fig. 1(a), upper panel]. In plant
cells, some structural aspects deviate from the animal cy-
tokinetic scenario; specifically, due to the rigidity of cell
walls necessary to support physiological turgor, they form a
dividing septum on the equatorial plane of cell division. Cell
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septation, which is the synthesis of the cell wall that separates
the daughter cells, is also exploited by prokaryotes [10–16].
Here, we focus on the case of animal eukaryotic cells, as
prokaryotes and plant cells require the specific consideration
of the mechanical effects of the cell wall where they are
encapsulated.

Recent studies and reviews call for the need of an in-
tegrated mechanical model of animal cell division [17,18].
However, the mechanical properties of the cortex present a
huge degree of variability between cell types and may change
during the cell cycle [18]. Additionally, some of the force-
generating mechanisms can be redundant or only activated
when they are required to control a perturbation-induced
instability as discussed in Ref. [17]. Therefore, determining
the required forces for stable symmetric constriction, indepen-
dently of the force-generating mechanism, is expected to be
enlightening for a deep understanding of cytokinesis.

We contribute to this aim using a minimal mechanical
model, independent of particular mechanisms, which quan-
tifies the relations between the different mechanical contribu-
tions required for stable symmetric cell division. This minimal
mechanical model has been already used for the determina-
tion of constriction forces (both numerically and through a
combined variational and perturbative approach) [19–21]. In
Sec. II the minimal model is summarized and extended for
our present study to compute the stabilization force required
for symmetric constriction for nonzero spontaneous curvature,

2470-0045/2019/100(5)/052408(16) 052408-1 ©2019 American Physical Society

https://orcid.org/0000-0003-4251-7289
https://orcid.org/0000-0001-6455-3083
https://orcid.org/0000-0003-1611-913X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.100.052408&domain=pdf&date_stamp=2019-11-21
https://doi.org/10.1103/PhysRevE.100.052408


BELTRÁN-HEREDIA, MONROY, AND CAO-GARCÍA PHYSICAL REVIEW E 100, 052408 (2019)

FIG. 1. Real cells and minimal model cell during cytokinesis.
(a) HeLa cell undergoing cell constriction (cytokinesis). Upper
panel: Formation of the cleavage furrow (optical microscopy image,
courtesy of A. Siegel and H. C. Smith, University of Rochester).
Lower panel: Scanning electron micrograph during the final stage of
constriction (courtesy of A. Wilde, University of Toronto). (b) Profile
of a constricted cell and its characteristic parameters. The force Fm at
the polar radius Rm keeps the size of the lobes; the constriction force
Fc directed toward the cell interior causes constriction to constriction
radius Rc; and the stabilization force Fs directed to the middle of
the cell (�x = 0) symmetrizes the division. External stress fields
applied either transversally, as a pressure �p, or longitudinally, as
a lateral membrane tension �, complete the main systemic factors
defining the shape of the cell, whose intrinsic mechanical properties
are represented by an effective bending modulus κ and an effective
spontaneous curvature C0.

pressure, and tension. This model entails the mechanical
energetics of an effective flexible shell, comprising the plasma
membrane and the actin cortex. This cortical layer, whose
mechanics is dominated by the actin cortex, is the dominant
mechanical ingredient in animal cells [22].

Here, we compute the stabilization forces required for
symmetric constriction, independently of their generation
mechanisms. These forces are known to be effectively ex-
erted through different mechanisms involving the actin cortex,
which include bleb formation to control polar pressure [17],
and also spindle position controlling through the microtubule-
based motor dynein and asymmetric plasma membrane elon-
gation [23]. Section III presents the results for the stabilization
force and compares them with previous results on the con-
striction force. These results allow us to clarify and compare
the conditions for spontaneous constriction and for stable
symmetric constriction, and the influence of effective surface
tension, pressure, and spontaneous curvature.

II. THE MODEL CELL

The natural eukaryotic cell is modeled as a deformable
vesicle with the cellular contents enclosed by a flexible shell,
which represents the elasticity properties of the cellular mem-
brane and cortex. The total energy of the flexible shell is given
in terms of its mean curvature H by the Canham-Helfrich (CH)
form [24,25], as

ET = κ

2

∫
�

(2H − C0)2dA + �A + �pV . (1)

This CH-model membrane is characterized by an effective
spontaneous curvature C0 and an effective bending rigidity

κ to give an effective theory of cell mechanics [26,27].
The spontaneous curvature C0 represents the tendency of the
membrane to bend in the equilibrium state [28], usually due
to the compositional asymmetry between the inner and the
outer sides [29]. In our minimal model, C0 is assumed to be
homogeneous along the whole membrane, thus determining
the global shape of the vesicle [30]. This model membrane,
of actual surface area A, is assumed laterally undeformable
and subjected to effective cortical tension �. The cell interior,
including cytoplasm, organelles, and other cellular structures,
is described as a hydrostatic fluid enclosed in a vesicle of
volume V (and surface area A) subjected to a pressure dif-
ference �p between the outer medium and the cell interior
(�p = pout − pin). This pressure difference accounts for ei-
ther possible osmotic imbalances, a turgor pressure, or simply
a Laplace pressure due to local curvature [17]. [For additional
details see comments on Eq. (A1) in the Appendix.]

Additionally, forces exerted by the cell contents in the cell
membrane are simplified to three types of forces: one keeping
a certain size of each of the lobes of the cell Fm, another force
exerting constriction in the middle of the cell Fc, and finally, an
effective force stabilizing the symmetric constriction Fs [see
Fig. 1(b)]. Bulge Fm and constriction Fc forces are assumed
to act as line tensions. Stabilization force Fs acts like an
effective force centering the constriction region in the middle
of the cell. All these forces are effective forces, and each one
can have different cellular processes as sources. The effective
force acting on the bulge, Fm, can be due to nucleoid exclusion
and the cytoskeleton. The constriction force, Fc, can be caused
by polymerization and depolymerization of actin filaments
and to actin cortex flows. Stabilization force, Fs, includes
effective forces exerted by asymmetric cortex flows. Other
effects can be sources of these effective forces. However,
our approach here is to compute the minimal requirements
independently of the character of sources of the forces. Within
this approach we consider constriction at constant cell volume
(usual traffic membrane case [31–34]) or at constant cell area
(inhibited membrane traffic case [19–21,35–38]).

We explore the stability of the symmetric constriction,
which will allow us to compute the required stabilization
forces. These results are compared with previous results of the
required constriction forces. All these results are derived find-
ing the cell shape that minimizes the total energy, Eq. (1), us-
ing a combination of perturbative and variational approaches,
and verified by numerical computations (for details see below
and Refs. [19–21]).

A. Parametrization of the constricted cell profile

The axisymmetric profile of a symmetrically constricted
cell is divided into two different regions: polar caps [left polar
cap shaded in blue in Fig. 2(a)] and the constriction zone [left
half of the constriction zone shaded in yellow in Fig. 2(a)].
Establishing the origin of the x coordinate in the middle point
of the vesicle, the constriction profile can be expressed as

R(x; s) =
⎧⎨⎩

Rleft polar cap(x), if x ∈ [−Lp − Lm, −Lm],
Rcz(x; s), if x ∈ [−Lm, Lm],
Rright polar cap(x), if x ∈ [Lm, Lm + Lp],

(2)
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FIG. 2. Symmetrically constricted vesicle. (a) Profile R(x) of a
symmetrically constricted vesicle with the axis of symmetry along
the x axis and its characteristic parameters. Left polar cap is shaded
in blue and the left half of the constriction zone is shaded in yellow.
(b) Surface obtained from the revolution around the x axis.

where Lm and Lp represent half of the length of the constric-
tion zone and the polar distance, respectively [see Fig. 2(a)].
Note that the constriction profile must be continuous in
the boundaries of the zones. In addition, since the shape
has central symmetry, we have the relation Rleft pole cap(x) =
Rright pole cap(−x).

The profile describing the right polar cap with semiaxis Rm

(polar radius) and Lp (polar distance) centered at x = Lm [see
Fig. 2(a)] is

Rright polar cap(x) = ±Rm

√
1 −

(
x − Lm

Lp

)2

,

x ∈ [Lm, Lm + Lp]. (3)

In previous works [5–7], we have seen that the constriction
zone can be approximately described with a trigonometric
function whose local curvature changes along the constriction
process as

Rcz(x; s) = Rm

{
1 − s

2

[
1 + cos

(
πx

Lm

)]}
, (4)

where the constriction parameter s is defined in terms of the
ratio between the constriction radius Rc and the polar radius
Rm in the form s = 1 − Rc/Rm. The constriction profile of the
vesicle R(x; s) [Eq. (2)], together with its first and second
derivatives (Rx = ∂R/∂x and Rxx = ∂Rx/∂x), allows us to
determine the minimum energy shapes along the constriction
pathway by minimizing the total energy [Eq. (A13) of the
Appendix] with respect to the characteristic length of each
zone (Lp for the polar caps and Lm for the constriction zone):

∂ET,polar caps(Lp, Rm,C0, �,�p, κ )

∂Lp
= 0

yields→ Lp = Lopt
p , (5a)

∂ET,cz(s, Lm, Rm,C0, �,�p, κ )

∂Lm

∣∣∣∣
s

= 0
yields→ Lm(s) = Lopt

m (s).

(5b)

Once optimal total length Lopt
p + Lopt

m (s) has been obtained,
other quantities of the system can be calculated, such as the
total energy, the membrane area, the volume enclosed, and
the constriction forces. These expressions are given in terms
of the spontaneous curvature C0, the surface tension �, the
osmotic pressure �p, the polar radius Rm, and the constriction
parameter s (analytical formulas can be found in Ref. [21]).

The fourth-order expressions describe with 95% agreement
the numerical solution up to constrictions as large as s ≈ 0.65
(see Figs. 5 and 6 in Ref. [21]). Higher constriction stages
require a constriction profile more accurate than Eq. (4) to
describe the strong changes of curvature.

When the constriction process is assumed to proceed by
keeping the polar radius Rm constant, the polar distance Lp

[Eq. (5a)] becomes independent of the constriction parameter
s (and therefore, other properties of the system calculated on
the polar caps zone are also independent of s). Conversely,
under constant area or constant volume conditions (see be-
low), these quantities are not constant but vary along the
constriction pathway.

In previous works [19–21], the initial cell shape (before
constriction) was shown to be determined by spontaneous
curvature, surface tension, and external pressure through the
quantity

� = (1 − C0Rm)2 + 2�R2
m/κ + �pR3

m/κ. (6)

� = 1 stands for the sphere, while 0 < � < 1 gives pro-
late (rodlike) and � > 1 oblate (disklike) spheroids; for � <

0 there are no solutions [21]. The parameter � also determines
the shape of the cell lobes during division (see Fig. 3). Par-
ticularly, during constriction prolate-shaped cells (cylinders)
elongate along their axis, and constriction becomes favored
by lowering the external pressure, or the surface tension (e.g.,
by enhancing membrane traffic toward the cell membrane). In
contrast, oblate cells (discocytes) have flatter shapes, which
are favored by high values of external pressure or surface
tension (see Fig. 4) (for details see Refs. [19–21]). In general,
oblate cells require much stronger constriction forces (see
Fig. 4), giving rise to less stable configurations.

The degree of constriction is indicated by the constriction
parameter s = 1 − Rc/Rm, which is defined in terms of the
constriction radius Rc and the initial cell size measured as a
polar radius Rm (see Fig. 2). This parameter increases from
s = 0, when there is no constriction and Rc = Rm, to s = 1,
when the constriction is maximal and Rc = 0.

B. Exact numerical method

Analytical formulas derived with the perturbative method
are compared with the (exact) solution of the Euler-Lagrange
equations computed numerically. The Euler-Lagrange equa-
tions do not have an analytical solution, in general, but can
be solved numerically and different methods have been de-
veloped to solve them. As we did in previous works [19–21],
we use here the methodology proposed in Refs. [31–32], and
apply it to axisymmetric shapes subject to equatorial constric-
tion stress with either polar radius Rm, enclosed volume V,
or membrane area A maintained constant. This methodology
for axisymmetric shapes involves a different parametrization
of the generating curve. The generating curve is parametrized
in terms of the angle with the symmetry axis as a function
of the generating curve length. The Euler-Lagrange equation
gives the differential equations, which allows obtaining the
angle with the symmetry axis along the generating curve.
Conditions at the poles and constant volume or constant
area conditions set boundary conditions to the differential
equations. Linear tensions appear as matching conditions at
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FIG. 3. Constraints to the constriction pathway. Upper panel:
Model shapes for prolate, spherical, and oblate cells at different
constriction stages (at s = 0: initially unconstricted vesicle; at s =
0.5: midpoint in the constriction process; at s = 1: maximum con-
striction; and at the finally fissioned state). Three different constraints
to the constriction pathway are considered: constant polar radius
(black shadow), constant volume constriction (red shadow), and
constant area constriction (blue shadow). Lower panel: Constriction
at constant polar radius requires an increase of 100% in membrane
area and volume (black columns); constriction at constant volume
requires a decrease in polar radius of around 20% and an increase
in membrane area of around 26% (red columns); and constriction at
constant area requires a decrease in both polar radius and volume of
around 30% (blue columns). The cell shapes and the values in this
figure were computed using the numerical solution.

the intermediate points where they are applied. (For a de-
tailed description of the numerical procedure followed see
the Supplemental Material of Ref. [21]). The MATHEMATICA

numerical code used for the present paper is available in the
Supplemental Material [53].

C. Constraints to the constriction pathway

Constant polar radius constriction. In a previous work
[21], we explored the case of symmetric cell division with
constant polar radius Rm (i.e., constant maximum transversal
radius; see Fig. 2). In this case, the shape of the lobes remains
equal to the initial prolate, spherical, or oblate configuration
at all stages of constriction while the cell area and volume are
doubled upon division (Fig. 3, black shadowed shapes and bar
charts).

Constant volume or area constriction. In this work, instead
of constant polar radius constriction, we address constant

volume or constant area constriction. Constriction at constant
volume may describe dividing cells with intense membrane
trafficking [31,32], which is known to play an important
role in cytokinesis [33,34]. Constriction at constant area may
describe dividing cells with low or inhibited membrane traf-
ficking. In constant area constriction, a greater initial area is
required to have the same final volume [19–21]. Heat shock
has been shown to increase the area before division [35,36]
and to affect the gene expression of membrane trafficking
molecules, but also those of signaling molecules [37].

There are several possibilities to define these constant
area or constant volume constriction paths. In previous works
[19–21], we proposed a redimensioning strategy that rescales
the shape in a factor λ(s) as κ → κ, Rm → λRm,C0 →
C0/λ, A → λ2A,V → λ3V, � → �/λ2, and �p → �p/λ3

[with λA(s) at constant area constriction and with λV (s) at
constant volume constriction]. Note that this rescaling con-
striction path also keeps constant the dimensionless products
C0Rm, �R2

m, and �pR3
m (and thus �) during constriction.

Although this simplifies the computations, it could be not very
realistic. We explore here a more lifelike constriction path,
where the parameters C0, �, and �p remain constant along
the constriction pathway (instead of the products C0Rm, �R2

m,
and �pR3

m). To do that, we have first to determine the variation
of the polar radius during constriction, Rm, A(s) or Rm, V (s),
which also keeps constant either the cell membrane area A
or the volume enclosed by cell V, respectively. Therefore,
we solve, respectively, the algebraic equations A(Rm, s) =
A(R0, 0) or V (Rm, s) = V (R0, 0), with R0 the polar radius of
the initial (unconstricted) cell [21]. Thus, the quantity � of
Eq. (6), which determines the shape of the cell lobes, mildly
varies along the constriction process due to the variations of
Rm, AV (s) (for details, see Appendix A 3). The model predicts
in general shape conservation; thus, oblate, spherical, or pro-
late mother cells divide, respectively, into two oblate, two
spherical, or two prolate daughter cells (see Fig. 3). At con-
stant volume constriction, each of two daughter parts reduces
its polar radius by 21% and its membrane area by 37%. This
only requires an increase in the total area of 26%. Instead, if
the constriction process occurs keeping the membrane area
constant, each of the two daughter parts reduces its polar
radius by 29% and its volume by 64% upon constriction. This
requires a reduction in the total volume of 29%. These results
are summarized in Fig. 3 (for further details, see Figs. 6 and 7
of the Appendix).

D. Constriction force

The constriction force, exerted as a constriction ring at
the cell equator, is obtained from the variation of the total
energy with respect to the constriction radius Rc. Under the
constant polar radius Rm condition, the constriction Fc,Rm

is obtained as Fc,Rm ≡ −dET /dRc = −(∂ET /∂s)(∂s/∂Rc) =
1/Rm(∂ET /∂s), where we have used s = 1 − Rc/Rm. The
constriction force scales inversely proportional to Rm; i.e.,
smaller cells are harder to constrict. This quantity was pre-
viously derived by us (both analytically and numerically) in
Ref. [21]. Under the new constraints considered in this work,
the constriction forces at constant area Fc,A or at constant
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FIG. 4. Stabilization and constriction forces for different scenarios. Stabilization and constriction forces, Fs and Fc, at the beginning of
constriction (s = 0.2) as a function of the adimensionalized tension �R2

m/κ (y axis) and the adimensionalized pressure �p R3
m/κ (x axis)

for different values of the adimensionalized spontaneous curvature: C0Rm = −0.8 (a), C0Rm = −0.3 (b), C0Rm = 0.3 (c), C0Rm = 0.8 (d),
C0Rm = 1.3 (e), and C0Rm = 1.8 (f). Conditions predicting unstable and nonspontaneous constrictions are shaded in red; conditions predicting
stable but nonspontaneous constrictions are shaded in yellow; conditions predicting stable and spontaneous constrictions are shaded in green;
and conditions under which equatorial constriction is impossible (imaginary analytical results and no numerical solution) are shaded in black.
Stable symmetric constriction requires positive spontaneous curvature [(c)–(f)] while spontaneous symmetric constriction requires that the
spontaneous curvature be higher than the characteristic radius of the cell [(e)–(f)]. Panel (g) graphically summarizes the results showing the
different regimes, their locations, and separation conditions; cell shapes of three illustrative cases are represented. High surface tensions � and
high external pressures �p give rise to oblate vesicles, which require large constriction and stabilization forces. In contrast, if � and �p are
low, our model predicts prolate shapes requiring smaller forces. Dashed lines correspond to spherical vesicles [curves with � = 1, Eq. (6)], the
case that separates prolates (0 < � < 1) and oblates (� > 1) (note that the curve with � = 1 for C0Rm = −0.8 is not in the region shown).
The stabilization force Fs and the constriction force Fc were determined assuming constant volume constriction, but the same conclusions
apply for constant area constriction. This figure represents the results obtained with the analytical solutions, verified by comparison with the
numerical solutions in a representative grid in the plotted ranges.
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volume Fc,V are determined as

Fc.AV (s) = 1

Rm

∂ET

∂s
+ 1

R2
m

∂Rm

∂s

×
(

C̃0
∂ET

∂C̃0
+ 2�̃

∂ET

∂�̃
+ 3�̃p

∂ET

∂�̃p

)
, (7)

where C̃0 = C0Rm, �̃ = �R2
m, �̃p = �pR3

m, and Rm =
Rm,A(s) or Rm = Rm,V (s) is a function of the constriction state
s given by the assumed constraint of constant area or constant
volume constriction, respectively. The constriction process is
spontaneous for negative constriction force, Fc � 0, since this
condition implies a decrease in the total energy as constriction
progresses.

E. Stabilization force

The stability of symmetric constriction against longitudinal
asymmetries can be addressed by comparing the energy of
the symmetrical cell with equal right and left lobes with an
asymmetrical cell in which the constriction ring is displaced
a small distance �x from midcell [see Fig. 1(b)]. In the
asymmetrical case, the polar radius Rm (and consequently the
constriction parameter s) is slightly different in each one of the
lobes. At constant area (or volume) constriction, the transition
between the symmetric and the asymmetric shape is assumed
to occur by keeping the area (or volume) constant. For small
displacements �x, we can write

Easym,AV (s) = Esym,AV (s) + kAV

(
�x

Rm,AV

)2

, (8)

where kAV is the stability coefficients with units of energy (kA

for constant area and kV for constant volume) [19,20]. Sym-
metric constriction is stable for positive stability coefficients,
as then the energy of the symmetric configuration is smaller
than for the asymmetric one. In contrast, negative stability
coefficients predict unstable symmetric shapes against longi-
tudinal deformations. The stabilization forces at constant area
Fs,A or constant volume constriction Fs,V are obtained from
Eq. (8) as

Fs,AV (s) = − ∂Easym

∂�x

∣∣∣∣
AV

= −2kAV
�x

R2
m,AV

. (9)

This definition implies that symmetric constriction is stable
for negative stabilization force, Fs � 0, which scales inversely
proportional to R2

m; i.e., smaller cells require higher stabiliza-
tion forces for symmetric constriction. The deduction of the
stability coefficients together with their analytical approxi-
mate solutions can be found in Appendix A 4. Recall that
Rm,AV in Eqs. (8) and (9) is a function of the constriction state
s, a function given by the assumed constraint of constant area
or constant volume constriction.

III. RESULTS

Our minimal model of cell constriction includes the es-
sential mechanical ingredients involved in cytokinesis, i.e.,
flexibility of the shell enclosing the cell, possible geometrical
constraints, and driving forces leading to equatorial constric-
tion and stability. In this setting, we analyze the mechanical

requirements for stable symmetric constriction in different
conditions. In particular, the constriction forces required hav-
ing constriction, and the stabilization forces required keeping
the constriction symmetric. The results obtained indicate that
the main magnitude is the spontaneous curvature, C0, which
separates three regions (see Fig. 4):

(1) Negative spontaneous curvature, C0 < 0: Unstable con-
striction. For negative spontaneous curvature, the constriction
is nonspontaneous and unstable irrespective of surface tension
� and external pressure �p [see Figs. 4(a) and 4(b)]. Cells
with a negative spontaneous curvature are prone to build up
in a concave configuration. In constricting cells, although the
cell shape in the central constricting region is concave as seen
from the cell exterior, the cell is convex in the other cell
regions. Thus, membranes with negative spontaneous curva-
ture require additional mechanisms to generate and stabilize
symmetric constriction.

(2) Moderately positive spontaneous curvature, 0 � C0 <

1/Rm: Stable constriction is possible. Constriction is always
nonspontaneous in this case, i.e., when the positive sponta-
neous curvature is smaller than the inverse of the characteristic
radius of the cell. However, symmetric constriction may be
stable for a narrow range of surface tension and external
pressure, where cells do not need symmetrization mechanism,
only constriction mechanisms. [This range is shaded in yellow
in the (c) and (d) panels of Fig. 4.]

(3) Considerably positive spontaneous curvature, C0 �
1/Rm: Spontaneous and stable constriction is possible. If the
spontaneous curvature is higher than the inverse of the cell
size, there exists a broad region of values of surface tension
� and external pressure �p giving rise to spontaneous and
stable symmetric constriction [see region shaded in green in
Figs. 4(e) and 4(f)]. This region requires neither constriction
nor stabilization forces to generate and stabilize the symmetric
constriction.

Therefore, stable symmetric constriction without centering
mechanisms (i.e., zero stabilization force) requires cells with
a globally positive spontaneous curvature that decreases the
bending energy. In order to be additionally spontaneous (i.e.,
zero constriction force), the cell requires spontaneous curva-
ture higher than its characteristic inverse size, C0 � 1/Rm.
The later spontaneity condition is found to be stricter, and
spontaneous constriction is always stable, as shown by the
region configuration in Fig. 4.

Reducing either the surface tension or the external pressure
increases the stability and spontaneity of constriction, as
shown in Fig. 4. To symmetrically constrict in a stable and
spontaneous way, cells subjected to high external pressures
(�p > 0) require negative surface tensions (� < 0), much
higher in absolute value than cells immersed in an iso- or hy-
potonic media (�p � 0) [panels (c)–(f) of Fig. 4]. This result
means that negative surface tensions � may counterbalance
high positive pressures �p. Likewise, negative pressures may
counterbalance high positive membrane tensions. However,
below a critical threshold, � � 0, which corresponds to strong
negatives values of both � and �p (regions shaded in black
in Fig. 4), symmetric constriction is no longer possible. As we
approach the limit � → 0, our model predicts very elongated
prolate (rodlike) cells, for which the symmetric mode of
equatorial constriction is impossible since these cells cannot
fix a single circumferential furrow at a well-defined equator.
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FIG. 5. Energy landscape during cell constriction for different
scenarios. Energy of the asymmetric configuration as a function of
the constriction stage s and the displacement of the constriction ring
from the middle point �x/R0 for �R2

0/κ = �pR3
0/κ = 0.25 and for

C0R0 = −0.3 (a), 0.3 (b), and 1.8 (c), with R0 the initial maximum
radius. Dotted line represents the symmetric constriction pathway.
Unstable, stable, and spontaneous regions are shaded, respectively, in
red, yellow, and green. Membranes characterized by negatives values
of C0 (a) present unstable (convex profile) and nonspontaneous
constriction (uphill energy) during the whole process. If, instead, C0

is positive but lower than the characteristic inverse cell size (b), the
constriction is nonspontaneous (uphill energy) but reaches stability
at some point of the division (concave profile). Finally, when C0 is
higher than the characteristic inverse cell size (c), constriction starts
as a nonspontaneous and unstable process but becomes stable (con-
cave profile) and spontaneous (downhill energy) at final stages. These
results were determined assuming constant volume constriction, but
the same conclusions apply for constant area constriction. This figure
represents the results obtained with the analytical solutions, verified
by comparison with the numerical solutions in a representative grid
in the plotted ranges.

In general, prolate (rodlike) shaped cells require lower
stabilization and constriction forces than oblate (disklike)
cells. This result is related to the previously described effects
of the pressure and tension, as lower values of surface tension
and external pressure tend to give prolate (rodlike) cell shapes,
which are found to require lower stabilization and constric-
tion forces. Conversely, higher values of surface tension and
external pressure give rise to oblate (disklike) cells, which
require strong constriction and stabilization forces to divide
symmetrically (see Fig. 4).

Stability and spontaneity of symmetric constriction are
found to increase as constriction progresses, reducing the
required stabilization and constriction forces, as shown in
Fig. 5. Nonspontaneous constrictions are uphill processes,
characterized by an increase of energy as the constriction
advances, and therefore require a constriction force to occur.
This can be seen in Fig. 5 as an increase of energy in
the direction of the constriction stage s coordinate for the
nonspontaneous regions (red and yellow regions). Note also
that progress in constriction implies a decrease in the slope
(related to constriction force), which in some cases even

becomes negative, implying a transition from nonspontaneous
(red and yellow region) to spontaneous constriction (green
region). Stable symmetric constriction entails that symmetric
constriction is an energy minimum, and therefore the energy
increases when the asymmetry �x goes out of its zero value,
giving a concave energy profile in the �x direction for the
stable cases (yellow and green regions of Fig. 5). Unstable
symmetric constriction corresponds to maxima, and convex
profiles appear in the �x direction (red regions of Fig. 5).
Figure 5 illustrates that as symmetric constriction progresses,
it becomes more stable, in addition to more spontaneous;
i.e., both the required stabilization and constriction forces are
reduced along the constriction pathway.

Membranes characterized by negatives values of C0 present
unstable and nonspontaneous constriction during the whole
process [Fig. 5(a)]. On the other hand, if C0 is positive but
lower than the characteristic inverse cell size, the constriction
is nonspontaneous but reaches the stability at some point
of the division [Fig. 5(b)]. Finally, when C0 is higher than
the characteristic inverse cell size, constriction starts as a
nonspontaneous and unstable process but becomes stable and
spontaneous at the final stages [Fig. 5(c)]. The constriction
stages where the transitions between the regions occur de-
pends on the values of the membrane surface tension and
external pressure. Note also that the energy of the system
decreases as the spontaneous curvature increases.

We also note that for constant volume or constant area con-
striction, Rm decreases as constriction advances (see Figs. 6
and 7 of the Appendix). This implies that the product C0Rm

also decreases during constriction, and therefore it could
change from one region of behavior to another. In practice,
this only happens to values close to the limits of the region (as
for example C0R0 = 1.3). In particular, it is not the case for
the values represented in Fig. 5.

IV. DISCUSSION

We found that mechanical stability of symmetric con-
striction without centering cytokinetic forces necessarily re-
quires cell shapes defined by positive spontaneous curvature
(prolate-like) at sufficiently high external pressure and low
membrane tension [see Figs. 4(e) and 4(f)], a situation found
in some elongated eukaryote cells [39]. Otherwise, additional
stabilization mechanisms should be incorporated into the con-
striction system. Amazingly, symmetric constriction is shown
to occur spontaneously for spontaneous curvatures above a
threshold determined by the cell size (C0 � 1/Rm). This cir-
cumstance is not usual in modern cells endowed with specific
cytokinetic machinery, but it could have been exploited by
primitive protocells to undergo spontaneous division [40].
Furthermore, our results show that a lowering in membrane
tension, due to membrane-targeted lipid biogenesis or directed
cortical flows, for instance, leads to an increase of stability and
spontaneity of cellular constriction. A reduction of external
pressure also gives rise to a similar consequence. This implies
that prolate-shaped cells (cylinders) favored by low pressure
and surface tension, in general, require lower constriction and
stabilization forces to undergo division.

These general results are useful for the study of a wide
range of animal cells, as they are independent of the detailed
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mechanism, and give the force requirements that have to be
verified by the combined action of the different mechanism
in action in this cell type. This is particularly useful because
mechanical properties of the cortex present a huge degree of
variability between cell types, and may change during the cell
cycle [18]. The osmotic pressure difference in animal cells
is in the range of 0.1−1 kPa, cortical tension in the range
of 40–4000 pN/μm, and cortex thickness in the range of
50 nm to 1 μm [18]. The Young’s modulus of the cell cortex
is on the order of 100 kPa [22]. These latter values imply
effective bending rigidities in the range of 103−107 kBT ,
which dominate the mechanics of the cortical layer, as they
are much greater than the typical bending rigidities of the lipid
bilayer (10−200 kBT ). These parameter values lead to similar
energy contributions of the pressure, tension, and bending
contributions, and to stabilization and constriction forces on
the order of tenths of nanonewtons. This constriction force
value is in accordance with measurements [41] and can be
generated by polymerization and depolymerization in actin
filament bundles [42].

Alternatively, in the simplest case of cell-sized lipid vesi-
cles (R0 ≈ 1−10 μm), with a single lipid bilayer as the flexi-
ble membrane (κ ≈ 20−200 kBT ), the required constriction
forces are smaller, in the piconewton range, Fc ≈ κ/R ≈
0.01−1 pN. Under adequate conditions of excess area, or
reduced volume, regulated by osmotic stresses, asymmetric
budding occurs spontaneously in cell-size vesicles without
constriction machinery [43]. This indicates the chief role
of membrane tension and external pressure in spontaneous
constriction mechanisms leading to facilitated cell scission.
Indeed, well known is the mechanical link that exists between
the spontaneous curvature of the lipid bilayer and the phe-
nomenon of spontaneous fission observed in model vesicles
[44]. Those phenomena observed in artificial vesicles have at-
tracted much theoretical interest [45–47]. Our minimal model
enables predicting conditions for stability and spontaneity of
the constriction process, and its general results are consistent
with the experimental observations [41,48–50].

Relevant extensions of the present minimal model in-
clude studying mechanical conditions to stabilize asymmetric
constrictions found in some cell types, which will help to
understand this open question [17]. Another extension of our
model would entail the inclusion of the cell wall effects to
determine minimal mechanical requirements in prokaryotes
and plant cell division [15].
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APPENDIX

1. Equilibrium condition: Generalized young-laplace equation
as constitutive relationship relating systemic constraints and

cellular shape

In our minimal model of a deformable cell depicted as a
closed vesicle of membrane area A and enclosed volume V,
under the net pressure difference �p = pout − pin between the
outer medium and the cell interior, and the tensional action of
the surface tension �, the total elastic energy is written in the
canonical Canham-Helfrich form as [28]

ET =
∫

�

[κ

2
(2H − C0)2 + κGK + �

]
dA +

∫
�

�p dV , (A1)

where � is the closed surface that delimits the membrane
vesicle, H is the mean curvature, K the Gaussian curvature, dA
denotes the element of area, and dV the volume counterpart.
The parameters κ and κG are the bending modulus and the
Gaussian bending rigidity, which represent the strength of the
membrane modes of curvature associated with H and K, re-
spectively; C0 is the spontaneous curvature of the membrane,
which represents the tendency of the membrane to curve in
the equilibrium state [28], usually due to the compositional
asymmetry between the inner and the outer sides [29]. Note
that the Gaussian term

∫
�

κGK dA is omitted in Eq. (A1). This
is because this integral is constant for surfaces with the same
topology (Gauss-Bonnet theorem [28]). Since the constriction
process in a vesicle does not change its topology, and only
involves shapes that are topologically equivalent to a sphere
(no holes), the contribution of the Gaussian curvature can be
ignored because it remains constant independently of the size
and shape of the vesicle. For the final fissioned state, in which
the vesicle splits into two separated daughters, the Gaussian
contribution should be considered.

To determine which generic shape has the lower energy for
given values of the mechanical constraints, the first variation
of the energy is calculated from Eq. (A1). For a closed mem-
brane vesicle, the equilibrium cell-shape equation is [51,52]

�p + 2�H − κ (2H − C0)(2H2 − 2K + C0H ) − 2κ∇2H

= 0, (A2)

where ∇2 is the Laplace-Beltrami operator. This nonlinear
partial differential equation is extremely complicated to solve.
It represents the local force balance at the vesicle membrane,
and apart from the pressure difference and the membrane
tension, it accounts for the local stress of curvature.

For the special case of a sphere of constant radius R, the
curvatures are H = 1/R and K = 1/R2, so the shape equation
has the analytical solution [28]

�pR3 + 2�R2 + κ (C0R − 2)C0R = 0, (A3)
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which is fulfilled under the geometrical condition ∇2H =
0, which describes the constant curvature of the sphere.
Amazingly, if no bending rigidity is considered (κ = 0), the
relationship in Eq. (A3) reduces to the well-known Young-
Laplace equation of a soap bubble, �p = −2�/R, which
relates the radius of the bubble with the Laplace pressure
through the surface tension. Thus, positive membrane tension
leads to a negative value of the Laplace pressure, as defined
by the setting in Eq. (A1).

In a previous work [21], we derived the following general-
ized Young-Laplace relationship for ellipsoidal spheroids with
revolution symmetry

�pR3
m + 2�R2

m + κ (C0Rm − 2)C0Rm + κ (1 − �) = 0, (A4)

where Rm is the polar radius of the spheroid and � is the
shape parameter, which takes values 0 < � < 1 for prolate
spheroidal shapes, � > 1 for oblate ones, and reduces to
� = 1 for the sphere (see Fig. 3). This expression leads to
the definition of � shown in Eq. (2). For small departure from
the spherical shape, the curvatures of spheroids may approach
those of the sphere, and then H ≈ 1/R and K ≈ 1/R2. Thus,
by comparison between Eqs. (A2) and (A4), one deduces the
Laplacian-Beltrami term in Eq. (A2) for spheroids as ∇2H =
(� − 1)/2R3

m. The Laplacian of a scalar field measures the
convexity, or stress of the field, as indicated by how much the
value of the field differs from its average value taken over the
surrounding points. Oblate shapes (� > 1) give positive val-
ues of ∇2H , which indicates locally concave scalar curvature
fields. Conversely, prolate shapes (0 < � < 1) give ∇2H < 0,
corresponding to locally convex scalar curvature fields.

2. Differential geometry of spheroidal cells

To describe the membrane surface of the vesicle, we use
the Monge parametrization [28]: the position �r on the surface
has Cartesian coordinates and is defined by giving its height h
over some x-y plane as

�r = (x, y, h(x, y)). (A5)

After considering mathematical aspects of differential geome-
try, the mean curvature H = (C1 + C2)/2 is found to be given
in terms of the height function by [28]

H = C1 + C2

2
=

(
1 + h2

x

)
hyy + (

1 + h2
y

)
hxx − 2hxhyhxy

2
(
1 + h2

x + h2
y

)3/2 ,

(A6)
where the x and y subscripts represent partial derivatives with
respect to this variable. The element of area on the surface and
the element of volume enclosed by the surface area [28]

dA =
√

1 + h2
x + h2

ydx dy, dV = h dx dy. (A7)

For the particular case of axisymmetric shapes with the axis
of symmetry along the x axis,

h(x, y) = ±
√

R2(x) − y2, (A8)

where R(x) is the functional form describing the membrane
profile in the x-z plane (see Fig. 2). The signs + and −
parametrize, respectively, the upper half �+ and the lower
half �− of the surface. Using the parametrizations for �+ the

mean curvature of Eq. (A6) becomes

H = C1 + C2

2
= 1 + R2

x − RxxR

2
(
1 + R2

x

)3/2
R

. (A9)

The elements of area and volume [Eq. (A7)] are

dA =
√

1 + R2
x

R2 − y2
dx dy, dV =

√
R2(x) − y2dx dy. (A10)

If the surface is between xi and x f , its total area is

A = 2
∫

�+
dA = 2

∫ x f

xi

R
√

1 + R2
x

∫ R(x)

−R(x)

1√
R2 − y2

dy dx

= 2π

∫ x f

xi

R
√

1 + R2
xdx. (A11)

For the total volume enclosed by the surface we have

V = 2
∫

�+
h(x, y)dx dy = 2

∫
�+

√
R2(x) − y2dy dx

= π

∫ x f

xi

R2dx, (A12)

where the factor 2 outside the integrals of Eqs. (A11) and
(A12) comes from the symmetry between �+ and �−, and
we have integrated the y variable.

Finally, the bending energy Eb (ignoring the Gaussian
term) for a surface of revolution is given by

Eb = κ

2

∫
�

(2H − C0)2dA

= κ

∫ x f

xi

[
1 + R2

x − RxxR − RC0
(
1 + R2

x

)3/2]2(
1 + R2

x

)5/2
R

×
∫ R(x)

−R(x)

1√
R2 − y2

dy dx

= πκ

∫ x f

xi

[
1 + R2

x − RxxR − RC0
(
1 + R2

x

)3/2]2(
1 + R2

x

)5/2
R

dx.

(A13)

Note that the results of Eqs. (A11)–(A13) are independent
of the coordinate y, as expected for surfaces with rotational
symmetry around x.

3. Constriction at constant membrane area
or at constant cell volume

Instead of considering the polar radius Rm constant, con-
strictions at constant area or at constant volume can be ad-
ditionally addressed. There are several possibilities to define
these constant area or constant volume constriction paths. In
Refs. [19–21], we proposed a redimensioning strategy that
rescales the shape in a factor λ(s) as Rm → λRm, κ → κ ,
ET → ET , C0 → C0/λ, C1 → C1/λ, C2 → C2/λ, A → λ2A,
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FIG. 6. Constant volume constriction. Decrease of the polar
radius (left-hand column) and increase of membrane area (right-
hand column) along the constriction pathway maintaining a con-
stant volume. Comparison between analytical and numerical results.
(a) Influence of the surface tension �. (b) Influence of the osmotic
pressure �p. (c) Influence of the spontaneous curvature of the
membrane C0. Constriction process at constant volume requires a
final decrease in polar radius of around 20% and a final increase in
the membrane area of around 26%, independently of C0, �, and �p.

V → λ3V , � → �/λ2, and �p → �p/λ3. This parameter
corresponds to

λA =
√

A(s = 0)

A(s)
(A14)

for the constant area condition and to

λV = 3

√
V (s = 0)

V (s)
(A15)

for the constant volume condition. A(s = 0) and V (s = 0)
are, respectively, the membrane area and the volume en-
closed by the initial spheroid. This rescaling method imposes
shape invariance since it maintains the dimensionless products
C0Rm, �R2

m, and �pR3
m constant upon constriction [and then

maintains � invariant; see Eq. (3)]. Although this simplifies
the computations, it could be not very realistic.

We explore here a more lifelike constriction path, where
the parameters C0, �, and �p remain constant along the
constriction pathway (instead of products C0Rm, �R2

m, and
�pR3

m). To do that, we compute the variation of the polar
radius during constriction that keeps constant either the cell
membrane area A or the volume enclosed by the cell V,
Rm, AV (s), then allowing � to vary in both cases along the
constriction pathway. Therefore, we solve the respective al-
gebraic equations, either A(Rm, s) = A0(R0, s = 0) at variable
V (Rm, s), or V (Rm, s) = V0(R0, s = 0) at variable A(Rm, s),
with R0 being the polar radius of the mother cell (uncon-
stricted configuration). The expressions of membrane area
A(Rm, s) and the cell volume V (Rm, s) along the constriction
pathway were previously derived for us (both analytically
and numerically) in Ref. [21]. Except in the simple case
when C0 = � = �p = 0, there is not an analytical solu-
tion of these equations, but they can be solved numerically.
Equivalently, Rm, AV (s) can be obtained by evaluating the
following differential equations with the initial condition
Rm, AV (0) = R0:

dRm,A

ds
= − ∂A/∂s

∂A/∂Rm
,

dRm,V

ds
= − ∂V/∂s

∂V/∂Rm
. (A16)

Consequently, the quantity � of Eq. (3), which determines the
shape of the cell lobes, mildly varies along the constriction
process due to the variations of Rm, AV . The model predicts
in general shape conservation. Thus, oblate, spherical, or
prolate mother cells divide, respectively, into two oblate, two
spherical, or two prolate daughter cells (see Fig. 2).

Increase of area at constant volume. Constriction at con-
stant volume requires a decrease in polar radius Rm,V and an
increase in the membrane area AV (see Fig. 6). There is a close
agreement between the analytical and the numerical results
for both quantities at low and intermediate regimes. At large
constrictions, the analytical formulas do not describe the exact
solution properly but significantly underestimate the increase
of area. At final constriction, when s → 1, the decrease in
polar radius is

lim
s→1

Rm,V

R0
= 2−1/3 ≈ 0.79, (A17)

while the increase in membrane area is

lim
s→1

AV

A0
= 21/3 ≈ 1.26. (A18)

Consequently, the constriction process at constant volume
requires a final decrease in polar radius of around 20% and
a final increase in the membrane area of around 26% inde-
pendently of C0, �, and �p, which is in agreement with the
numerical limits (see Fig. 6).

Constriction at constant volume may describe divided cells
with intense membrane trafficking [31,32], which is known to
play an important role in cytokinesis [33,34].

Decrease of volume at constant area. Constriction at con-
stant area requires a decrease in both the polar radius Rm,A

and the volume enclosed by the vesicle VA (see Fig. 7). As
in constant volume constriction, the analytical results repro-
duce the exact solution in the range of low and intermediate
constrictions, but fail at higher regimes. The decrease in both
polar radius and volume enclosed on the vesicle at the final
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FIG. 7. Constant area constriction. Decrease of both polar ra-
dius (left-hand column) and the volume enclosed in the vesicle
(right-hand column) during constant area constriction. Comparison
between analytical and numerical results. (a) Influence of the surface
tension �. (b) Influence of the osmotic pressure �p. (c) Influence of
the spontaneous curvature of the membrane C0. Constriction process
at constant area requires a final decrease in both polar radius and
volume enclosed on the vesicle of around 30%, independently of C0,
�, and �p.

constriction state is

lim
s→1

Rm,A

R0
= lim

s→1

VA

V0
= 2−1/2 ≈ 0.71, (A19)

implying that the constriction process at constant area requires
a final decrease in both polar radius and volume enclosed by
the vesicle of around 30% independently of C0, �, and �p,
which corresponds with the numerical limit (see Fig. 7).

Constriction at constant area may describe divided cells
with low or inhibited membrane trafficking. Moreover, in
constant area constriction, a greater initial area is required
to have the same final volume. Heat shock has been shown
to increase the area before division [35,36] and to affect the
expression of genes of membrane trafficking molecules, but
also of other genes such as those of signaling molecules [37].

FIG. 8. Asymmetrically constricted vesicle. (a) Asymmetric pro-
file after displacing the constriction ring a length �x from the middle
point. (b) Surface obtained from the revolution around the x axis.

4. Stability of symmetric constriction: Stability coefficients

The stability of the symmetric constriction can be ad-
dressed by introducing small changes to the symmetric shape
and comparing its energy with the original one. In order to
perform this computation, the constriction ring is displaced
a length �x from the middle point giving an asymmetric
shape in which one of the lobes is greater than the other (see
Fig. 8).

We study here the cases in which the transition between the
symmetric and the asymmetric shape takes place by keeping
the volume enclosed in the vesicle or its membrane area
constant. The energy of this new shape can be expressed
as

Easym,VA(s) = Esym(s) + kV,A

(
�x

Rm,AV

)2

, (A20)

where kV,A are the stability coefficients with units of energy
(kV for constant volume and kA for constant area), and Rm,VA

is the polar radius. Symmetric constriction will be stable when
the stability coefficients are positive, because, in this case,
the energy of the symmetric configuration is smaller than
the asymmetric one. In contrast, negative stability coefficients
predict unstable symmetric shapes against longitudinal defor-
mations. In terms of the first and second derivatives of ET ,
LT = Lm + Lp, and V (for constant volume constriction), or
A (for constant area constriction) with respect Rm (see next
section for a detailed deduction), kV,A take the form

kV = R2
m,V

2(dLT /dRm)2

[
d2ET,sym

dR2
m

− dET,sym

dRm

d2V/dR2
m

dV/dRm

]
, (A21)

kA = R2
m,A

2(dLT /dRm)2

[
d2ET,sym

dR2
m

− dET,sym

dRm

d2A/dR2
m

dA/dRm

]
. (A22)

Replacing the expressions of ET , LT , V, and A previously
obtained by us (see Supplemental Material of Ref. [21]),
we can determine analytically approximated solutions of the
stability coefficients along the constriction pathway in terms
of the spontaneous curvature of the membrane C0, the surface
tension �, and the osmotic pressure difference �p. In pre-
vious works [19,20], we addressed this question in vesicles
with zero spontaneous curvature, C0 = 0, negligible mem-
brane tension, � = 0, and isotonic conditions (no pressure
difference between internal and external media), �p = 0. In
this particular case, the values of kV,A are negative during
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all processes, indicating the unstable character of symmetric
constriction. Here, we generalize this previous work to more
realistic situations by taking into account the additional effects
of C0, �, and �p. This allow us to study whether it is
possible to get stable symmetric constriction for appropriate
combinations of these parameters.

Maintaining constant volume, the stability coefficient kV in
Eq. (A21) can be expressed as

kV = −π2κ
kN

V

kD
V

, (A23)

with the numerator and denominator given by

kN
V = 61/42

9(
 + 29)2�1/4
[3807 + 417
 + 12
2 + 1494� + 162
� + 4
2� − 1125�2 − 25
�2 − 15C0Rm

− 10C0Rm� + 25C0Rm�2]s1/2 − π

288�
[30�2 + 216
� − 144� − 14461/2
�1/2]s + · · · , (A24)

kD
V = 63/4π3

16�3/4
s1/2 − 61/2π2

3(
 + 29)2�1/2
[33018 + 459
 + 13
2 − 1365� − 25
� − 40C0Rm + 40C0Rm�] s + · · · . (A25)

Alternatively, if the constraint of constant area is considered, the corresponding stability coefficient kA in Eq. (A22) takes the
form

kA = −π2κ
kN

A

kD
A

, (A26)

with the numerator and denominator given by

kN
A = 61/44

9(
 + 29)3�1/4
[110403 + 17466
 + 819
2 + 12
3 + 35266� + 5892
� + 278
2� + 4
3� − 25785�2

− 1570
�2 − 25
2�2 + 1220�3 + 20
�3 − 435C0Rm − 15C0Rm
 − 330C0Rm� − 10C0Rm
� + 805C0Rm�2

+ 25C0Rm
�2 − 40C0Rm�3]s1/2 − π

288�
[14461/2�1/2(� − 
) + 36
� − 42�2 − 144�]s + · · · , (A27)

kD
A = 63/4 π3

8�3/4
s1/2 − 61/22π2

3(
 + 29)3�1/2
[85507 + 16254
 + 836
2 + 13
3 − 37875� − 2020
� − 25
2�

+ 305�2 + 5
�2 − 1170C0Rm + 40C0Rm
(� − 1) + 1180C0Rm� − 10C0Rm�2]s + · · · . (A28)

These coefficients are written in terms of � [Eq. (3)] and

 = (2 − C0Rm)2 + 2�R2

m/κ − 1, as are the expressions of
ET , LT , V, and A involved [5].

As stated above, in the particular case of vesicles with
zero spontaneous curvature, C0 = 0, negligible membrane
tension, � = 0, and isotonic conditions, �p = 0, the coef-
ficients kV,A are negative during the entire process (black
line in Fig. 9): they converge down to the asymptotic
limit lims→0 kV,A = −2.77κ ≈ 28kBT for a flexible mem-
brane (κ ≈ 10kBT ), and become progressively less unstable
with increasing constriction approaching zero in the large-
constriction limit lims→1 kV,A = 0. We (Refs. [19,20]) pre-
viously studied this case. In the general case studied here,
when C0, �, and �p are not necessarily zero, we also see
that symmetric constriction becomes progressively more sta-
ble with increasing constriction. Additionally, we obtain a
new and interesting result: the symmetric constriction can
be stable (kV,A > 0) against lateral deformations for appro-
priate combinations of these parameters (see Figs. 9, 3,
and 4).

The approximate analytical results of the stability coef-
ficients reproduce the numerical solutions for low and in-
termediate constriction regimes, with better agreements for

vesicles with positive surface tensions (� > 0), immersed in
hypertonic media (�p > 0) and with positive spontaneous
curvatures (C0 > 0) (see Fig. 9). The analytical result for
the case with �R2

m/κ = −0.3 and with C0 = �p = 0 (cyan
triangles in Fig. 9) differs from the exact numerical values
more than the other cases. The reason is that this combination
of parameters gives the closer-to-zero value of � and the
analytical formulas of the stability coefficients [Eqs. (A23)–
(A28)] diverge as � approaches zero.

Deduction of the stability coefficients. Each lobe of the
asymmetric shape is characterized by a different polar radius:
one of them has a greater polar radius R+

m > Rm (the right lobe
in Fig. 2) while the other has a smaller one R−

m < Rm (the left
lobe in Fig. 2). We denote these changes as

�R±
m = R±

m − Rm. (A29)

Similarly, the total length LT in each lobe changes with respect
to the symmetric case in the form

�L±
T = LT (R±

m, Rc) − LT (Rm, Rc). (A30)

These parameters are clearly indicated in Fig. 7.
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FIG. 9. Stability coefficients for constant volume and constant area constrictions. Stability coefficients maintaining volume constant kV /κ

(above) and maintaining membrane area constant kA/κ (below) at all stages of constriction. Comparison of the exact numerical results with
the analytical approximate solutions. (a) Influence of the surface tension �. (b) Influence of the osmotic pressure �p. (c) Influence of the
spontaneous curvature of the membrane C0. Regions with stable configurations (kV,A > 0) are shaded in yellow.

Stability coefficient at constant volume. If the transition between the symmetric and the asymmetric shapes occurs by keeping
the volume constant, we can write

V (Rm, Rc) = 1
2 [V (Rm + �R−

m, Rc) + V (Rm + �R+
m, Rc)]. (A31)

This equation can be solved numerically which allows us to obtain the relation between �R+
m and �R−

m that maintains constant
the volume enclosed by the vesicle. However, for small departures from the symmetrical shape �x, an analytic perturbative
computation is also valid. Expanding Eq. (A31) up to second order, we get

V (Rm + �R±
m, Rc) = V (Rm, Rc) + dV (Rm, Rc)

dRm
�R±

m + 1

2

d2V (Rm, Rc)

dR2
m

(�R±
m )2

. (A32)

Introducing Eq. (A32) into Eq. (A31) gives

0 = 1

2
(�R+

m + �R−
m )

dV (Rm, Rc)

dRm
+ 1

4
[(�R+

m )2 + (�R−
m )2]

d2V (Rm, Rc)

dR2
m

. (A33)

Solving this quadratic equation for �R−
m and expanding the positive solution up to second order we have

�R−
m = −�R+

m − d2V/dR2
m

dV/dRm
(�R+

m )2
. (A34)

The displacement of the constriction ring from the middle point of the symmetric shape �x can be related with the total lengths
L±

T of the asymmetric poles as

�x(Rm, Rc) = 1
2 [LT (Rm + �R+

m, Rc) − LT (Rm + �R−
m, Rc)]. (A35)
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Expanding these lengths in Taylor series up to second order for small asymmetries we obtain

LT (Rm + �R±
m, Rc) = LT (Rm, Rc) + dLT (Rm, Rc)

dRm
�R±

m + 1

2

d2LT (Rm, Rc)

dR2
m

(�R±
m )2

. (A36)

Introducing Eqs. (A36) and (A34) into Eq. (A35) gives

�x(Rm, Rc) = �R+
m

dLT (Rm, Rc)

dRm
+ (�R+

m )2

2

d2LT (Rm, Rc)

dR2
m

d2V/dR2
m

dV/dRm
. (A37)

Solving for �R+
m ,

�R+
m = �x

dLT /dRm
− (�x)2

2(dLT /dRm)2

d2V/dR2
m

dV/dRm
. (A38)

Following the same steps, we can express the energy of the asymmetric shape in terms of the energies of the asymmetric lobes
as

ET,asym(Rm, Rc) = 1
2 [ET,sym(Rm + �R−

m, Rc) + ET,sym(Rm + �R+
m, Rc)]. (A39)

Expanding it in power series up to second order for small asymmetries we have

ET,sym(Rm + �R±
m, Rc) = ET,sym(Rm, Rc) + dET,sym(Rm, Rc)

dRm
�R±

m + 1

2

d2ET,sym(Rm, Rc)

dR2
m

(�R±
m )2. (A40)

Introducing the results of �R−
m [Eq. (A34)] and of �R+

m [Eq. (A38)] into Eq. (A40) we obtain that the difference of energy with
respect to the symmetric configuration is given by a quadratic form as

�ET = ET,asym(Rm, Rc) − ET,sym(Rm, Rc) = kV

(
�x

Rm,V

)2

, (A41)

with the effective harmonic constant

kV = R2
m,V

2(dLT /dRm)2

[
d2ET,sym

dR2
m

− dET,sym

dRm

d2V/dR2
m

dV/dRm

]
. (A42)

Stability coefficient at constant area. Similarly, if in the transition between the symmetric and the asymmetric shapes the area
is kept constant, the difference in their energies is given by the quadratic form

�ET = ET,asym(Rm, Rc) − ET,sym(Rm, Rc) = kA

(
�x

Rm,A

)2

(A43)

with the effective harmonic constant

kA = R2
m,A

2(dLT /dRm)2

[
d2ET,sym

dR2
m

− dET,sym

dRm

d2A/dR2
m

dA/dRm

]
. (A44)

Useful relations between derivatives to numerically compute the stability coefficients. To obtain the stability coefficients of
Eqs. (A42) and (A44) we have to calculate the following first and second derivatives with respect to Rm:

dLT

dRm
,

dET

dRm

dA

dRm
,

dV

dRm
,

d2ET

dR2
m

d2A

dR2
m

,
d2V

dR2
m

. (A45)

The numerical algorithm computes ET and the scaled quantities Lm/Rm, A/R2
m, and V/R3

m, which allows us to determine their
first and second partial derivatives with respect to s, C0Rm, �R2

m, and �pR3
m , using the mean value theorem. To compute the

total derivatives with respect to Rm, we can expand them into their partial derivatives as

d

dRm
= ∂s

∂Rm

∂

∂s
+ ∂ (C0Rm)

∂Rm

∂

∂ (C0Rm)
+ ∂

(
�R2

m

)
∂Rm

∂

∂
(
�R2

m

) + ∂
(
�pR3

m

)
∂Rm

∂

∂
(
�pR3

m

) = (1 − s)

Rm

∂

∂s
+ �, (A46)

d2

dR2
m

= (1 − s)2

R2
m

∂2

∂s2
− 2(1 − s)

R2
m

∂

∂s
+ �2, (A47)
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using that s = 1 − Rc/Rm and with

� = C0
∂

∂ (C0Rm)
+ 2�Rm

∂

∂
(
�R2

m

) + 3�pR2
m

∂

∂
(
�pR3

m

) (A48)

and

�2 = C2
0

∂2

∂ (C0Rm)2 + 4�2R2
m

∂2

∂
(
�R2

m

)2 + 2�
∂

∂
(
�R2

m

) + 9�p2R4
m

∂2

∂
(
�pR3

m

)2 + 6�pRm
∂

∂
(
�pR3

m

)
+ 4C0�Rm

∂2

∂ (C0Rm)∂
(
�R2

m

) + 6C0�pR2
m

∂2

∂ (C0Rm)∂
(
�pR3

m

) + 12��pR3
m

∂2

∂
(
�R2

m

)
∂
(
�pR3

m

) + 2C0
(1 − s)

Rm

∂2

∂ (s)∂ (C0Rm)

+ 4�(1 − s)
∂2

∂ (s)∂
(
�R2

m

) + 6�p(1 − s)Rm
∂2

∂ (s)∂
(
�pR3

m

) . (A49)

Now, we have to relate the partial derivatives of the scaled quantities computed numerically, LT /Rm, A/R2
m, and V/R3

m, with the
partial derivatives of the absolute quantities LT , A, and V. After simple mathematical calculations, the partial derivatives with
respect to s are related as

∂LT

∂s
= Rm

∂ (LT /Rm)

∂s
+ LT

(1 − s)
, (A50)

∂A

∂s
= R2

m

∂
(
A/R2

m

)
∂s

+ 2A

(1 − s)
, (A51)

∂2A

∂s2
= R2

m

∂2
(
A/R2

m

)
∂s2

+ 4

(1 − s)

∂A

∂s
− 2A

(1 − s)2 , (A52)

∂V

∂s
= R3

m

∂
(
V/R3

m

)
∂s

+ 3V

(1 − s)
, (A53)

∂2V

∂s2
= R3

m

∂2
(
V/R3

m

)
∂s2

+ 6

(1 − s)

∂V

∂s
− 6V

(1 − s)2 . (A54)

Note that the second derivatives of LT are not required since they are not involved in Eqs. (A42) and (A44). Finally, introducing
the results of Eqs. (A50)–(A54) into Eqs. (A46) and (A47), we obtain the expressions of the total derivatives required to
numerically determine the stability coefficients.
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