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Medical conditions due to acute cell injury, such as stroke and heart attack, are of tremendous impact and
have attracted huge amounts of research effort. The biomedical research that seeks cures for these conditions has
been dominated by a qualitative, inductive mind-set. Although the inductive approach has not been effective
in developing medical treatments, it has amassed enough information to allow construction of quantitative,
deductive models of acute cell injury. In this work we develop a modeling approach by extending an autonomous
nonlinear dynamic theory of acute cell injury that offered new ways to conceptualize cell injury but possessed
limitations that decrease its effectiveness. Here we study the global dynamics of the cell injury theory using a
nonautonomous formulation. Different from the standard scenario in nonlinear dynamics that is determined by
the steady state and fixed points of the model equations, in this nonautonomous model with a trivial fixed point,
the system property is dominated by the transient states and the corresponding dynamic processes. The model
gives rise to four qualitative types of dynamical patterns that can be mapped to the behavior of cells after clinical
acute injuries. The nonautonomous theory predicts the existence of a latent stress response capacity (LSRC)
possessed by injured cells. The LSRC provides a theoretical explanation of how therapies, such as hypothermia,
can prevent cell death after lethal injuries. The nonautonomous theory of acute cell injury provides an improved
quantitative framework for understanding cell death and recovery and lays a foundation for developing effective
therapeutics for acute injury.
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I. INTRODUCTION

Injury is a perturbation to a biological system that disrupts
organization or function at one or more levels of the system.
There are two broad classes of injury. Acute injuries are those
with a clearly identifiable injury mechanism such as ischemia
(a large reduction or cessation of blood flow), mechanical
force (as in e.g., traumatic brain injury), chemical toxicity, etc.
The injury mechanism typically can be applied with a variable
intensity, e.g., the duration of ischemia, intensity of mechan-
ical force, concentration of toxin. Chronic injuries such as
cancer or Parkinson’s disease are distinguished from acute
injuries in that the injury mechanism is generally unknown
for chronic injuries. The general focus of research on chronic
injuries is to identify the injury mechanism itself. For acute
injuries, the research focus is to determine how the injury
mechanism kills cells. In this work we focus specifically on
acute injuries, for which the term “injury” will be used.

Injury to a biological system can affect any of its structural
levels, but the ultimate target is the individual cell. If cells die,
the tissue, organ, and organism show defects in proportion
to the number of dead cells. Injury is studied by comparing
the uninjured condition to the injured condition. A list of
the biological differences between the uninjured and injured
condition is constructed, generally through the work of many
laboratories studying the same injury. Since the target of in-
jury is the cell, the bulk of current biomedical research focuses

*ddegraci@med.wayne.edu

at this level using techniques from biochemistry and molecu-
lar biology. Any given biomolecule may increase, decrease,
or be unchanged by the injury or it may be modified, e.g.,
by phosphorylation or dephosphorylation or by any number
of possible chemical modifications. Chemical species may
be found in the injured cells that are absent from the unin-
jured (e.g., free radical species). Gene expression inevitably
changes as a result of injury. The essence of biomedical
research is to go, one by one, through the list of differences
between the uninjured and injured conditions and attempt to
demonstrate which are causal in cell death and which are
epiphenomena.

However, it is precisely this approach that has failed to
produce effective treatments to halt the cell death for clinical
acute injuries. A typical example is stroke, a form of focal
ischemia when blood flow to a portion of the brain ceases,
resulting in death of that part of brain tissues. Stroke research
has uncovered conditions that predispose to stroke—obesity,
heart disease, diabetes, and others—and led to preventative
efforts that have decreased strokes incidence [1]. Research
has also led to the development of surgery methods and one
chemical intervention [tissue plasminogen activator (TPA), a
“blood thinner”], that can alleviate stroke injury to varying
extents [2]. However, these methods can be used on only <

10% of the approximately 750 000 stroke patients each year
in the USA [3]. The remaining >90% of stroke victims will
suffer irreversible brain damage. To date, there have been
close to 150 clinical trials [4] to test therapies to halt or slow
stroke-induced brain damage in the stroke patients who cannot
undergo surgery or TPA treatment. Every single stroke clinical
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trial has failed [5]. This situation is not unique to stroke but
applies to a diverse array of medical conditions: cardiac arrest
[6], myocardial ischemia (“heart attack”) [7], acute kidney
injury [8], traumatic brain injury [9], and others.

Although the current research approach has produced a
wealth of biomedical information at the cellular, subcellular,
and biomolecular levels, it is qualitative, describing altered
molecular pathways and coupling among different cellular
factors. This approach does not account for quantitative pa-
rameters, such as the injury intensity, and how any such
parameters link to cell recovery or death. It is also an inductive
approach, relying exclusively on the specifics of measure-
ments and observations and being limited by the degree of
completeness of empirical information. This approach too
often conflates a difference detected between the injured and
uninjured conditions with the cause of cell death. In addition,
when one aspect of injury is manipulated (e.g., by giving
a drug that targets that aspect) there is little consideration
given to how this would affect all of the other changes on
the list of differences between the uninjured and injured
conditions. That is, the notion of “all other things being equal”
is commonly assumed to hold in biomedical research. How-
ever, this assumption is untested and, given the complexity
and network-type characteristics of biological systems [10],
unlikely to be true.

These weaknesses can account, at least in part, for the
failures to find effective treatments for important medical con-
ditions listed above. An influential metareview that critiqued
stroke therapies developed on the qualitative basis described
above concluded: “[That] … no particular drug mechanism
distinguished itself on the basis of superior efficacy … might
suggest that our conception of stroke needs reformulation”
[5]. To fully understand the importance of this quote, we
briefly review salient facts about acute injuries.

A. Salient facts about acute injuries

1. Outcome is binary

Outcome refers to the disposition of individual cells after
injury: individual cells either recover or die after injury. There
is not a third outcome. If a cell survives being injured, it does
not permanently transform into a phenotype different from
what it was before the injury. The ideal goal of medically
treating an injury is to foster the injured cells to resume
their preinjury phenotype so that the organ can function as
it did before the injury. If injured cells transformed into a
phenotype different from the preinjury phenotype, then this
medical goal would not be possible. There are two points of
possible confusion with the assertion that outcome is binary:
(1) surviving cells in an organ adapt to the loss of cells that
died from the injury and (2) cells undergo transient changes
after injury. We briefly discuss each in turn.

2. Adaptations

An example of postinjury adaptation is hypertrophy fol-
lowing cardiac ischemia [11]. Ischemia of the heart causes
contractile cardiomyocyte cells to die. A normal heart gen-
erates specific forces with each beat. After cardiac ischemia,
these forces are altered and diminished due to death of car-

diomyocytes. The surviving cardiomyocytes will grow in size
to attempt to compensate for the lost cells, a condition called
hypertrophy. The surviving cells do not assume this new phe-
notype as a result of being injured, but as a result of the loss
of cells that formerly contributed contractile force in the heart;
that is, the stimulus for this change is not the injury intensity,
but the altered mechanical forces in the heart following the
death of other cardiomyocytes. If the cardiomyocytes that
died could have been prevented from dying, there would have
been no stimulus to trigger the hypertrophy adaptation. Such
adaptive situations are secondary to the primary injury, and the
models of cell injury studied here are not intended to account
for such cases.

3. Transient dynamics

It is well established that injured cells show transient
changes, given that the system of interest is intrinsically
nonequilibrium. Our models are designed to describe these
transient postinjury dynamics. A most important transient
change, the “preconditioned” state, will be discussed below.
Usually in a standard nonlinear dynamical analysis, the final
states of the system are of primary interest, and the transient
dynamics towards those states are of secondary importance.
In the study of acute cell injury, it is the opposite case. The
final states are, in essence, trivial: the system is binary and
either reverts to its preinjury state or dies. It is the trajectory
followed by the cell after injury that is of central interest, and
we aim to account for the behavior of the cell in the postinjury
period because that is the time when medical intervention is
possible. If the transient trajectory of the system is understood,
then it is possible in principle to perturb that trajectory to
achieve some desired aim. For example, if the system is on
a transient trajectory towards the death outcome, knowledge
of that trajectory may allow an intervention to change it from
the death outcome to the survival outcome. Thus, a unique
feature of our study here is an explicit focus on the transient
postinjury dynamics and not on the final states of the system.

4. Quantitative parameters determine outcome

Whether a cell recovers or dies is a function of the injury
intensity, I . To concretely visualize a range of injury intensity,
consider a series of the same cell type where each member
is injured at increasing intensity by some generic injury
mechanism. Cell 1 is injured with I1, cell 2 injured with I2,
and so on with cell N injured by IN . For intensity below a
lower threshold Imin, which is a mere increment over zero, the
injury may have no effect at all on the cell. At a very high
I = Imax, the injury will be so intense that the cell is instantly
destroyed. It is obvious that as I increases between Imin and
Imax, the amount of damage to the cell will also increase, and
there will be a continuum of the cell’s response dynamics
along the range Imin < I < Imax, which henceforth will be
called the I-range. A major goal of the cell injury models is to
quantitatively describe the injury dynamics across the I-range,
as will be detailed below.

5. Injury produces many changes in the injured cell

What is the physical response of a cell to being in-
jured? The previous section insinuates that the answer to this
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question depends on the parameter I . While this is true, it is
nonetheless possible to abstract and generalize the possible
responses displayed by an injured cell. There are only two
possible categories of response: (1) the cell is passively dam-
aged by the injury and (2) the cell actively responds to being
injured.

6. Cell damage

By “damage” we mean disruption of the structural and/or
functional organization of a cell. Structural damage includes
breakdown of cell components or loss of structural organi-
zation such as breakdown in the various compartments of
a cell. Damage can also be functional, e.g., a disruption in
temporal or enzymatic activities. In practice, both structural
and functional disorganization occurs after injury. Empiri-
cally, there is a long list of possible forms of cellular damage.
However, because cells are finite, the list of how they can be
damaged is also finite. Any specific injury mechanism will
draw from this ensemble of possible forms of damage, and
it is expected that different injures will produce overlapping
sets of damage products. The common feature of any form of
damage produced by any injury mechanism is that the damage
is a passive by-product of injury to the cell.

7. Cell stress responses

However, cells are not passive bystanders in the face of
injury. They actively seek to retain their integrity if it is
disrupted. In biology, this is called homeostasis and consists
of a long list of possible mechanisms a cell can exert to
overcome disruption. It is a spectrum between a homeostatic
perturbation and frank injury, again implying a continuum of
injury intensities.

It has become clear over the past decades that cells re-
spond to injury by stress reprogramming [12]. When a cell
is injured, it possesses molecular mechanisms to detect the
passive damage products. These mechanisms alter the genetic
programming of the cell by changing the set of mRNAs
produced, and therefore the corresponding proteins inside the
cell. Such stress response reprogramming mechanisms are the
physical basis for the transient responses exhibited by injured
cells. The function of stress responses is to ameliorate the
damage caused by injury by inhibiting damaging chemical
reactions, rebuilding damaged parts of the cell, clearing out
damage products, etc. [13].

We give one example of stress reprogramming. The heat
shock response (HSR) was discovered in the early 1960s as
a cellular response after heating cells to potentially lethal
temperatures (e.g., from 37 °C to 42 °C) [14]. It is now
known that a large variety of injuries activate the HSR:
heavy metal toxicity, oxygen deprivation, glucose deprivation,
ethanol exposure, and others [15]. The HSR is an ancient
genetic program, highly conserved from yeast to humans, and
even present in bacteria [16]. The HSR is a reprogramming
event where the injured cell ceases translating its native
proteins for a transient period, which for mammalian cells
is on order of 12–24 h after the injury. During this period
the cell instead transcribes and translates almost exclusively a
set of 8–12 proteins called heat shock proteins (HSPs) [17].
HSPs belong to a class of enzymes known as chaperones,

which are proteins that assist other proteins to fold into their
proper three-dimensional structure. The HSR is triggered by
abnormally high concentrations of denatured proteins in the
cell. The various injury mechanisms listed above, although
appearing superficially diverse, all cause denaturation of the
cell’s proteins (each by different specific mechanisms), and
thereby a diverse range of injury mechanisms trigger the same
stress response across almost all living organisms.

A couple dozen stress responses have been discovered so
far. Along with the HSR, others are, e.g., the unfolded protein
response [18], the antioxidant response [19], the mitochon-
drial stress response [20], and several distinct DNA repair
programs [21,22]. They share the feature that diverse insults
activate them across diverse species. Since all cells evolved
from a common ancestor, and because genomes are finite,
it is expected that there will be overlap in the response of
all cells to a variety of injury mechanisms. There will be
species-specific variations, but these will be smaller when the
evolutionary difference between species is smaller.

A general feature shared by all stress responses is that they
are mediated by proteins produced by the cell. There is only
a finite capacity of these proteins, and they can be saturated if
the concentration of the damage product greatly exceeds the
concentration of stress response proteins. Our model below
accounts for the saturation of stress responses.

To summarize, cells are made of the same physical sub-
stances (nucleic acids, proteins, lipids, sugars, etc.) with the
same general plan of organization. Cells utilize evolutionarily-
related homeostatic mechanisms. Thus, diverse cell types
injured by different forms of injury exhibit overlapping
sets of many passive damage products and active stress
responses.

B. Therapy after acute cell injury

In biomedical research, no matter what specific injury is
studied, the goal is the same: to develop a successful therapy
for that injury. In this context, therapy means to take an
injured cell for which it is known it will die following the
injury and perform some intervention to prevent the cell from
dying. This is called a “protective” therapy. This definition of
protective therapy has several antecedents. First, only at very
high injury intensity does cell death occur during the injury. At
lower injury intensities, substantial amounts of time can pass
between the end of the injury and the occurrence of cell death
(see the example of stoke discussed below). Because there is
time between injury and cell death, it is possible to carry out
a therapeutic intervention to halt the cell death, and any such
intervention is a protective therapy.

It is well established that the rate cells die following acute
injury varies, and the time between injury and cell death
depends on the injury intensity [23]. For example, if stroke
duration is very short (e.g., on order of 5 min, a “transient
ischemic attack”), there will be no cell death [24]. If stroke
duration is very long (e.g., 8 h), the cells die during the
ischemia [25]. If ischemia is moderate (e.g., 1 h), then it may
take days, weeks, or even months after the end of the ischemia
for brain cells to die [26]. Rapid cell death after injury is
called necrosis. In stroke research, the slower death process
is called delayed neuronal death. It is not a binary distinction
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between necrosis and delayed death because the delayed death
occurs over variable durations and is therefore more like a
continuum.

In the case of stroke research, the therapies mentioned
above, surgery and TPA, serve to shorten the ischemia du-
ration and thereby decrease the injury intensity. They do
not satisfy the definition of protective therapies because, by
decreasing injury intensity, the cells are prevented from being
exposed to a lethal injury intensity [3]. However, lowing
injury intensity is effective only if the patient presents to a
physician within the first 4 h after stroke onset, which happens
in only roughly 10% of stroke cases, while the typical stroke
patients present within the first 24 h after stroke onset [27].
In this typical case, the brain cells have been exposed to
lethal injury intensities. The patient presents to the physicians
with a region of dead, necrotic brain tissue called a “core.”
Neurons do not divide, and thus the core is unsalvageable.
In addition, over the ensuing days, weeks, and months, it is
observed that the size of the core region grows in the brain of
the patient, which is the manifestation of delayed death. This
is a significant clinical example where it is known beforehand
that the cells will die by delayed death and there is ample
time to intervene to stop the cell death. The goal of stroke
neuroprotection is to prevent the growth of the core over the
ensuring days and weeks after a stroke [28]. It is this effort, to
prevent delayed neuron death and the growth of the core, that
has shown a 100% failure rate in clinical trials [4,5].

The therapies tested in clinical stroke trials were drug
treatments. The drugs chosen were based on the list of bio-
logical differences between normal brain and brains subjected
to stroke in experimental animals. The drugs targeted a di-
verse variety of qualitatively different cellular mechanisms.
To name a few of the specific mechanisms targeted [4,5]:
free radical scavengers, drugs that decreased swelling of the
brain, growth factors that stimulate protective patterns of gene
expression, drugs that alter the flow of Ca2+ ions in the tissue,
etc. The list of tested drugs is long. But as the quotation
above stated, “no particular drug mechanism distinguished it-
self on the basis of superior efficacy” [5]; that is, of the specific
mechanisms in the list of differences between a normal brain
and a stroke brain, none of them stood out as more effective
at stopping delayed cell death than the other. When used in
clinical human stroke trials, none of them worked to prevent
the growth of the core region over time.

However, the differences between stroked and normal brain
are empirical facts that have been reproduced across different
laboratories. They are not false experimental results. The key
point is that stroke induces many forms of cellular damage
and many forms of cellular stress responses in the brain cells
[29]. The realization that has emerged from the failure of
stroke clinical trials is that if the therapy treats only a single
form of damage, it is ineffective at preventing cell death.
Some physicians and researchers have advocated multiple-
drug therapies [30]. However, this suggestion is unrealistic
because (1) specific drugs cannot be given for the hundreds
of identified biological changes in the injured tissue (e.g., as
reviewed in Ref. [29]) and (2) increasing the number of drugs
administered simultaneously compounds drug interaction ef-
fects, leading to an unpredictable and unmanageable situation.
There are, however, two protective therapies that are effective

at stopping cell death after injury, including stroke, as we now
describe.

C. Preconditioning and hypothermia

Preconditioning and hypothermia have proven effective at
preventing cell death across diverse injuries applied to diverse
organs and cell types. Preconditioning is a situation where the
cell or organ is first exposed to a sublethal injury intensity
and then, after some duration, is exposed to a second injury
at a lethal injury intensity [24,31]. Prior exposure to the
sublethal insult prevents cells from dying after exposure to
the lethal insult. The cells become “conditioned” from the
first, sublethal insult (the “pre-“ insult), hence the name pre-
conditioning. The preconditioning protocols, however, vary
across cell types. For example, in brain, a typical protocol
is to perform a short, sublethal ischemia (2 min), wait 2
days, and then perform a lethal (10 min) ischemia [32]. The
2-day intervening time period is important. If it is shorter
or longer than 2 days, the effect is suboptimal. If the time
between the sublethal and lethal insults is 1 wk or greater,
the preconditioning effect is lost. Thus, preconditioning is a
transient effect. A protocol to precondition heart cells is to
perform three 1-min, sublethal ischemias, each separated by
5 min, followed by a lethal 10-min ischemia on the heart,
which prevents the death of cardiomyocytes [33]. For different
organs the effect of preconditioning is the same: it prevents
cell death after the lethal insult. But the temporal parameters
required to optimize the effect are vastly different between
brain and heart, indicating that each exhibits different injury
dynamics with respect to the same injury, ischemia, in this
case. Such protocols are discovered by trial and error, and
at present there is no effective way to determine beforehand
how to optimize such protocols. Our models below seek to
provide a deductive framework that ultimately might be used
for making such determinations.

Similarly, lowering temperature, i.e., hypothermia, has
shown to be highly effective at preventing the death of cells
that have experienced an otherwise lethal injury. Hypothermia
is already in clinical use for transplantation surgeries [34]
and some cardiac surgeries where keeping the organs cold
prevents cell death during periods of no blood flow [35,36].

There are ongoing research efforts across many labora-
tories to understand how preconditioning and hypothermia
prevent cell death. If the mechanism of their protection could
be understood, it could, in principle, be exploited to stop
cell death in other cases. However, this research proceeds
via the qualitative list approach described above, which now
generates a more complex situation. Not only must a list be
constructed for the differences between the uninjured and
lethally injured tissues, but also lists of differences between
the uninjured and preconditioned (or hypothermic) ones, the
preconditioned versus injured, and so on. The number of
list comparisons multiplies and becomes unmanageable. In
general, the list-comparison approach has failed to find “the”
biological mechanism of either preconditioning or hypother-
mic protection. Instead, research into the protective effects
of these treatments has demonstrated, as in the case of un-
treated injury, that many cellular and molecular changes can
be detected between the uninjured, lethally injured, and the
preconditioned (or hypothermic) cases [37–39].
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Preconditioning and hypothermia share a vital common
feature: they are both forms of injury to cells. Preconditioning
is so by definition. Hypothermia, as applied to biological
systems, is also a mild form of injury. It is an injury mech-
anism of variable intensity, where the intensity of insult is
the temperature difference. A mild temperature differences
prevents cells from dying, but a large temperature difference
kills cells.

Thus, we come to a surprising conclusion that the most
effective way discovered so far to prevent cell death after a
lethal injury is to provide a prior sublethal injury. Similar to
the case with stroke, no specific molecular or cellular mech-
anism has stood out as “the” mechanism that generates the
protective effects of either preconditioning or hypothermia.
The deductive models presented below, both autonomous and
nonautonomous, offer a unique dynamical understanding of
the protective effects of preconditioning and hypothermia.
The autonomous model suggested to us they are perturbations
that shift a system on a death trajectory to a survival trajec-
tory. The nonautonomous model suggests that perturbations
like preconditioning and hypothermia access a reserve stress
response capacity that is likely critical for achieving a survival
outcome.

The above summarizes the qualitative findings across many
biomedical disciplines, using stroke research as our focal
point. The qualitative understanding of how cells respond to
injury has advanced enough that it is now possible to abstract
and generalize the findings in the service of constructing
deductive models that can help organize what is otherwise
a bewilderingly complex array of specific biological findings
(such as those in Ref. [40] that sought to classify cell death on
qualitative bases).

II. A DEDUCTIVE APPROACH TO CELL INJURY

We begin by noting that we consider the deductive theories
developed here to be coarse-grained phenomenological mod-
els. They contain oversimplifying idealizations and are based
on a series of assumptions that ultimately require empirical
verification. Our justification for developing and studying
phenomenological models is the fact that the qualitative list-
comparison approach described above has failed to generate
successful clinical therapies; therefore alternative approaches
are required. With this deductive approach we aim to (1) de-
termine if deductive dynamical models can capture the salient
aspects of cell injury discussed above and (2) determine if
a study of the phenomenological models offers new insights
into acute cell injury.

The first model is an autonomous system of coupled or-
dinary differential equations (ODEs) that we have developed
previousy [41]. In the following we provide an overview of
the theory, pointing out the novel insights provided by this
autonomous model and highlighting its weaknesses. The main
purpose of this paper is to describe the global dynamics of
the nonautonomous extension of the theory and show how it
overcomes the limits of the autonomous model and provides
a fuller understanding of the acute injury dynamics. As will
be shown below, this nonautonomous model exhibits different
and more complicated dynamic behavior as compared to those
known from standard nonlinear dynamics, and the standard

fixed-point and bifurcation analyses could not be applied since
the system property here is determined by transient dynamic
processes. On the other hand, the resulting dynamic patterns
can well represent various clinically-relevant cell behaviors
after injury, and a new quantity that is important to therapies,
a latent stress response capacity (LSRC), can be identified.

A. The autonomous model

As described in Sec. I A, the key empirical finding at the
core of our model is that acute injury simultaneously induces
many forms of damage and activates many stress responses in
the cell. We formalized these observations via the concepts of
total induced damage, D, and total induced stress responses,
S. These may be symbolically expressed as

D = ∑

i
di, S = ∑

i
si, (1)

where di are all the individual forms of passive damage
induced by the injury of intensity I , and si are all of the cell’s
active responses to the injury. No matter what specific forms
of damage are produced by injury, the aggregated or overall
effects of them give the total amount of damage produced in
the cell, and similarly for the induced stress responses. Thus,
instead of listing the fine-detailed changes, we introduced a
course-graining approach to describe the cell’s response to
injury. Equation (1) is a conceptual definition. Converting it
to an operational definition is beyond the scope of this paper
and is not necessary for the theoretical analysis offered here.

For a given injury intensity, I , the individual di and si

will follow their intrinsic time courses, causing D and S to
change with time. We idealized application of injury with
intensity I to be an instantaneous event at time t = 0, after
which the changes in D and S constitute the system dynamics.
Additionally, by definition, D and S are mutually antagonistic.
Damage will blindly act to destroy any aspect of cell function,
including stress response mediators. Stress responses exist to
eliminate cell damage as described above in Sec. I. To model
how the mutual antagonism of D and S change with time, we
used a well-known system of coupled nonlinear ODEs that
specifies a winner-take-all competition [42,43]. The net rates
of change of D and S equal their formation rates minus decay
rates:

dD

dt
= vD

�n
D

�n
D + Sn

− kDD,

dS

dt
= vS

�n
S

�n
S + Dn

− kSS, (2)

where the v and k parameters scale the rates of formation and
decay, respectively. The threshold �D is the amount of D that
decreases S by 50%, and �S is the amount of S to decrease
D by 50%. The parameter of exponent, n, can be taken as
a measure of the coupling amongst the individual di and si

of which D and S consist. Note that time t in all the model
equations presented in this paper is rescaled, and the real unit
can be determined only when compared to experimental data
which is part of our ongoing work of D and S measurements
and will be reported elsewhere.

We briefly justify the use of Eq. (2), similar forms of which
have successfully described dynamics of other biological
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systems where mutual antagonism is a core feature (as de-
scribed in a general context in Ref. [42]). Huang et al. [43]
showed that a similar version of Eq. (2) could model tran-
scription factor dynamics governing the binary fate decision
of a stem cell, and Tawari et al. [44] discuss using such models
to describe switching dynamics in bacterial gene networks.

Next, we posited that the thresholds �D and �S change
as a function of injury intensity, I . As indicated above, the
meaningful I-range is Imin < I < Imax. As I increases, there
will be an increase in the total amount of damage to the
cell, causing the corresponding increase in �D. The larger
�D is, the harder for S to overcome D. The idea that stress
responses are finite, and hence can saturate, was discussed
above. Therefore, S is expected to increase with I to a point
and then decrease with increasing I thereafter because the
excess damage saturates the finite stress responses. �S should
follow the behavior of S. In our modeling we assumed �D

increases exponentially with I and �S decreases exponentially
with I:

�D = cDIeIλD , �S = cSIe−IλS , (3)

with the scaling parameters cD, cS and the exponential pa-
rameters λD and λS . The parameters (cD, λD) can be taken
to give a quantitative representation of the specific form of
injury (e.g., ischemia vs mechanical trauma, etc.), and (cS , λS)
can be taken to represent a specific cell type (e.g., neuron vs
cardiomyocyte, etc.), as discussed previously [45]. We stress
that the functional form of Eq. (3) is merely for the sake of
modeling. The true relationship between the thresholds and I
requires empirical investigation.

The autonomous model of acute cell injury was obtained
by substituting Eq. (3) into Eq. (2) and assuming vD = vs = v

and kD = kS = k for simplicity, giving

dD

dt
= v

(cDIeIλD )
n

(cDIeIλD )n + Sn
− kD,

dS

dt
= v

(cSIe−IλS )
n

(cSIe−IλS )n + Dn
− kS. (4)

B. Solutions of the autonomous model

Equation (4) is nonlinear and has no closed form solu-
tion, therefore solutions were obtained by standard numerical
methods. From Eq. (3), a parameter pair (cD, λD) was inter-
preted to indicate a specific injury mechanism, and a pair (cS ,
λS) interpreted to indicate a specific cell type [45]. The v and
k parameters were set to 1 to scale solutions to the unit plane
[41]. The value of n was arbitrarily taken as 4, since varying
n over 1 � n � 25 does not affect the qualitative dynamics
[43]. Thus, a parameter input vector consists of (cD, λD, cS ,
λS , n = 4, v = 1, k = 1, I). The goal was then to study the
system dynamics over the I-range.

The relevant I-range was determined by calculating the
tipping point value of I , IX . IX is the value of I where for
I < IX , the cell survives and for I > IX , the cell dies [41]. IX

is calculated by setting �D = �S in Eq. (3), which leads to

IX = ln(cS ) − ln(cD)

λD + λS
. (5)

Bifurcation diagrams of Eq. (4) were constructed with I as
the control parameter. This was meant to model application
of the injury mechanism (cD, λD) to some cell type (cS ,
λS) at each I across the I-range. The fixed point (D*, S*)
at each I determines the outcome of the cell. If S* > D*,
then the final state shows the stress responses dominating
over damage, corresponding to the survival outcome. If D* >

S*, then damage dominates over stress responses, and the
outcome was death. Many combinations of (cD, λD) and
(cS , λS) were studied across the relevant I-ranges. A major
finding of the qualitative analysis was that Eq. (4) output only
four qualitative types of bifurcation diagram [41]. The two
canonical types are illustrated in Fig. 1. The other two types
are variants of those shown and not discussed here.

Figure 1(a) illustrates a monostable bifurcation diagram
exhibiting a single fixed point attractor at each I . For I < IX ,
S* > D*, and the outcome was survival. For I > IX , at each
attractor D* > S*, representing death outcomes. There was
one value of I = IX where D∗ = S∗, thereby demonstrating
IX as the tipping point between the survival and death out-
comes. The other panels in Fig. 1(a) show individual phase
planes at I = 3, and 10, respectively, indicting the respective
trajectories from the initial condition (D0, S0) = (0, 0). The
bifurcation diagram shows that monostable systems have two
possible “phases”: either survival at I < IX or death at I > IX .

Figure 1(b) illustrates a second type of bifurcation diagram
that exhibited bistability. In part of the I-range, two attractors,
representing both the survival and death outcomes, are present
on the phase planes (yellow bar in the middle of first panel).
Four phase planes are shown in adjacent panels, with bistable
phase planes shown at I = 2.5 and 4. Prior to the bistable
region of the I-range, all outcomes were survival, and after
the bistable region, all outcomes were death. For I < IX in
the bistable region, trajectories from initial conditions of (0,
0) or of large enough S0 survived, although those from large
enough D0 with small enough S0 would die. For I > IX in
the bistable region, trajectories from (0, 0) or large enough
D0 died but those from large enough S0 with small enough
D0 survived. Thus, the bistable bifurcation diagram exhibited
four “phases”: monostable survival, bistable survival, bistable
death, and monostable death. IX was centered in the bistable
range, and D∗ = S∗ occurred as the repeller at IX .

Figure 2 illustrates how the durations of the trajectories
from initial condition (0,0) to the attractor state varied with
I for the bifurcation diagrams in Fig. 1. The durations were
constant at low I and then increased as I approached IX . After
IX , there is a continuous decline in the durations until at high
enough I the durations became constant again and were the
shortest.

C. Insights from the autonomous model

Two key insights emerged from studying Eq. (4): (1)
the interpretation of bistable solutions in the context of cell
injury and (2) the variation of time course durations with I .
The occurrence of bistability was the most important finding
because it suggested an entirely new mechanism of therapy.
Therapy was defined above as performing some intervention
on an injured cell that is fated to die and preventing cell
death. The deeper question is: How is this physically possible?
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FIG. 1. (a) Monostable and (b) bistable bifurcation diagrams obtained from Eq. (4), and the representative phase planes at indicated I
values. In the bifurcation diagrams, vertical dashed lines indicate IX , and green (light gray) and red (dark gray) curves are S* and D* attractors,
respectively. In the first panel of (b), blue (dark gray) and red (light gray) open points are repellers for S and D, respectively, and yellow (light
gray) area indicates bistable part of I range, as indicated. In phase planes, trajectories are from (D0, S0) = (0, 0), with survival attractor [green
(light gray)], death attractor [red (dark gray)], and repeller [blue (medium gray)]. Scale on I = 5 phase plane in (b) applies to all the phase
planes. Parameters (cD, λD, cS , λS , n) are for (a) (0.1, 0.1, 100, 0.9, 4) and for (b) (0.075, 0.1, 2, 0.9, 4), with all other parameters equal to 1.

In the qualitative biomedical approach, therapy is explained
by specific biological mechanisms. For example, after injury
there may be a large increase in free radical species that
are presumed to cause death by destroying cell components.
Therefore, if a drug is given to halt free radicals (the therapy),
then cell death should be prevented. However, this approach
has failed to produce success in clinical trials for the reasons
discussed above.

The results shown in Fig. 1(b) provide the completely
unique insight that therapy is a consequence of bistable injury
dynamics. When I > IX , these systems will always die from
initial condition (0, 0). On the other hand, if the system is in
the bistable range of injury intensity I , both attractor states
are possible outcomes of the system. This result allowed us
to envision that therapy could be thought of as a perturbation
on the trajectory from (0, 0) to the death attractor that diverts

FIG. 2. Time to the attractor states for trajectories starting from (D0, S0 ) = (0, 0) for (a) monostable and (b) bistable systems shown in
Fig. 1. Bistable region in (b) is indicated and also shown by yellow (light gray) bar. IX is indicated by purple (black) vertical solid line. “Delayed
death” durations are indicated between IX and the black dashed line that separates them from the rapid “necrosis” duration. Time is expressed
in arbitrary units for this and all figures containing time plots.
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the system to the survival attractor [46]. This suggested to
us a dynamical conception of therapy where the biological
factors were not causative in outcome, but instead instantiate
the dynamics. Whether a system is amenable to therapeutic
treatment would depend on the dynamics. In the scope of
the autonomous model described above, therapy is possible
only when the dynamics are bistable. We have discussed the
application of this concept in other publications and refer
interested readers to them [41,46,47]. However, although the
autonomous model allow envisioning these insights, it cannot
implement this concept of therapy, i.e., diverting a system
from a prodeath to a prosurvival trajectory. Developing a the-
ory that allows implementation of this dynamical concept of
therapy is therefore the main motivation for the current work.

The second insight obtained from the autonomous model
is that the results in Fig. 2 resemble the empirical fact that
the time to death after injury varies with injury intensity.
There is a range of I > IX that shows relatively longer but
variable durations, resembling the delayed death phenotype
(labeled “delayed death” in Fig. 2). At high I > IX , the dura-
tions become constant for all subsequent I and are relatively
rapid, resembling the necrosis phenotype (labeled “necrosis”
in Fig. 2). The word “resemble” is used because the result
does not recapitulate the empirical facts. However, these
resemblances were important clues in the development of the
nonautonomous model, which does recapitulate the empirical
facts as described below.

D. Weaknesses of the autonomous model

The study of durations shown in Fig. 2 reveals a weakness
of Eq. (4): It does not describe the full time course following
injury. When the cell is uninjured, there is no damage or stress
responses, i.e., D = S = 0. To capture the full time course
after injury, the model must allow the system to return to (0,
0). This is true regardless of whether the system survives or
dies. For survival, when the cell recovers from injury both D
and S return to 0 (the uninjured state). In the case of death, all
cell variables go to 0 because the cell disintegrates. However,
Eq. (4) puts the injured cell to a final state (D∗, S∗) �= (0, 0).
Thus, having trajectories begin and end at (0, 0) was an impor-
tant technical consideration in developing the nonautonomous
model.

The second weakness of Eq. (4) lies in the interpretation of
the initial conditions. The meaning of D0 > 0 is that there is
preexisting damage in the cell at the instant injury of intensity
I is applied. In this case, we would expect the predamaged cell
(D0 > 0) to be weaker compared to a cell with no preexisting
damage (D0 = 0). However, in the monostable phase planes
for I = 3 in Fig. 1(a), and I = 1 in Fig. 1(b), for all D0 > 0
the outcome is always survival. This is an unrealistic result. If
a cell had severe enough damage before application of even a
low intensity injury, it is expected that there would exist initial
conditions from which the cell would die, even if I < IX .
Therefore, the model would be improved if outcome was not
only a function of injury intensity, I , but also of the initial
conditions (D0, S0). We will show below this feature emerges
automatically from the nonautonomous model.

Figure 2 is one way to represent the family of time courses
from (D0, S0) = (0, 0) across the I-range. This family of

time courses has a special significance by representing the
“natural” response of a cell to an injury across the full range
of injury intensities. As indicated above, nonzero initial con-
ditions imply either preexisting damage (D0 > 0) or preacti-
vated stress responses (S0 > 0) in the cell. By what physical
means can initial conditions be altered? While there are many
specific means, they can be generalized as forms of pretreat-
ment of the cell before application of the injury. A canonical
pretreatment is preconditioning, which, as described above,
prevents cell death after application of a subsequent injury that
would otherwise be lethal. Thus, nonzero initial conditions
imply that a prior, additional injury was applied to the cells.
This leads to a very important distinction that will be used
in studying the nonautonomous theory. The natural system is
the family of time courses from initial condition (0, 0) and
represents the intrinsic (“natural”) behavior of the injured sys-
tem. The perturbed systems are any time courses from nonzero
initial conditions. Our conceptual model of a perturbed system
corresponds to preconditioning or hypothermia, as discussed
above.

III. THE NONAUTONOMOUS THEORY OF CELL INJURY

The autonomous model was developed from Eq. (2) by
positing that the threshold terms were functions of I as shown
in Eq. (3). The nonautonomous version of the cell injury
theory is developed by converting the v and k parameters of
Eq. (2) to functions as now described.

A. Nonautonomous model parameters

Treating parameter v as a constant serves to scale the
accumulation rates of D and S. However, because we idealize
application of injury, I , as an instantaneous event at time zero,
we imagine some initial rate (cv1) that will slow with time
after application of the injury:

vD = vS = cv1e−cv2t . (6)

We stress Eq. (6) is merely a starting point for the sake of
study by taking a simple exponential form of time decay. We
also assume the rate parameters vD and vS are equal for the
simplicity of study.

In Eq. (4) D and S are modeled to have first-order decay
independent of each other. Given that D and S are mutually an-
tagonists, each serving to eliminate the other, the assumption
of their independent decay is untenable. The function used
to represent the decay parameter, k, should couple D and S,
and derive from considering the physical meaning of the fixed
points (D*, S*) in the autonomous model. The bifurcation
diagrams (Fig. 1) show that as the system approaches IX from
either side, the magnitude of the difference |D* - S*| shrinks,
becoming zero at IX . The magnitudes D* and S* represent the
final amounts of D and S at the completion of the winner-
take-all competition between them. There are three cases to
consider:

(1) D∗ � S∗. Here, the total amount of damage greatly
exceeds the total stress responses, thereby overwhelming the
cell’s ability to cope. It is expected that disintegration of
the cell is rapid under such conditions, leading to a large
magnitude of decay parameter k.
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FIG. 3. Time courses calculated from the nonautonomous model from initial condition (0, 0). (a) I < IX and the outcome is survival. (b)
I > IX and outcome is death. Dashed vertical line in (a) marks the location for Smax, and dashed vertical line in (b) marks Dmax. For this system,
IX = 0.1275 and (cD, λD, cS, λS, n, cV 1, cV 2, ck ) = (0.5, 0.75, 0.625, 1, 4, 1, 1, 1).

(2) S∗ � D∗. Here the total stress responses greatly ex-
ceed the total amount of damage. Since the amount of damage
is small compared to the stress responses, we expect rapid
clean-up and repair, and fast recovery to the preinjury state,
yielding again a large decay parameter.

(3) D∗ > S∗ or S∗ > D∗ with similar magnitude. If one of
D* or S* only slightly exceeds the other, as shown in Fig. 2,
it takes relatively longer time for their interactions to play
out. Thus, the time it takes the cell to die or to recover to the
preinjury state will be longer, resulting in a smaller k value.

These considerations lead to the inference that the rate to
either death or recovery is a function of |D∗ − S∗|. We then
generalized this consideration by having the decay parameter,
k, change as a function of the instantaneous value of |D − S|
along the entire time course. The parameter cK is assumed
equal for D and S for simplicity, and thus

kD = kS = ck|D − S|. (7)

Substituting Eqs. (6) and (7) into Eq. (4) provides the nonau-
tonomous formulation of the cell injury theory:

dD

dt
= cv1e−cv2t (cDIeIλD )

n

(cDIeIλD )n + Sn
− ck|D − S|D,

dS

dt
= cv1e−cv2t (cSIe−IλS )

n

(cSIe−IλS )n + Dn
− ck|D − S|S. (8)

B. Solving the nonautonomous model

Figure 3 shows example time courses obtained by nu-
merical solution of Eq. (8), where Fig. 3(a) illustrates a
survival outcome and Fig. 3(b) a death outcome. The time
courses begin and end at (D, S) = (0, 0), recapitulating the
entire duration from application of injury at time zero to
the final outcome (D∗, S∗) = (0, 0) as t → ∞. Equation (8)
overcomes one of the main weakness of Eq. (4) such that every
solution to Eq. (8) always ends at (D∗, S∗) = (0, 0), i.e., the
biologically meaningful end state as discussed in Sec. II D.
Therefore, the standard analysis of fixed points, determination
of the separatrix, etc., as was performed for the autonomous
model Eq. (4), is inapplicable to the nonautonomous model,
given only one trivial fixed point (0, 0) for Eq. (8).

For the autonomous theory, outcome was unambiguously
determined by the values of D and S at the fixed points, i.e.,
S∗ > D∗ indicating survival and D∗ > S∗ indicating death.
This criterion could not be used for the solutions of Eq. (8)
because (D∗, S∗) = (0, 0) for all time courses. On the other
hand, it is apparent in Fig. 3(a) that during the evolution
process the S time course is greater than the D time course,
indicating a survival outcome. For Fig. 3(b), the D time course
dominates, indicating a death outcome.

There are two features of the nonautonomous time courses
that might serve to establish outcome: (1) Compare the max-
ima of each time course (Smax vs Dmax, as indicated in Fig. 3)
such that Smax > Dmax indicates survival and Dmax > Smax

indicates death. (2) Determine the late-time course behavior.
Since Eq. (8) retains the form of a winner-take-all competi-
tion, one of the time courses will eventually dominate, and its
value will be greater than the other time course at the late-time
stage, as can be also seen in Fig. 3. Both methods were tested
(see Appendix B) and it was established that determining the
late-time course behavior is the correct method for assigning
outcome. For this reason, the study of Eq. (8) focuses on the
transient dynamics, specifically, the late-time behavior, but not
the final system state.

In addition, we have identified a method to express the
solutions to Eq. (8) so that they functionally resemble the
bifurcation diagram solutions of Eq. (4) [47]. At each I ,
time courses are calculated across ranges of initial conditions
(0 � D0 � D0,max and 0 � S0 � S0,max) [see Fig. 4(a)]. Next,
an “outcome plane” is constructed by plotting a green (light
gray) or red (dark gray) point, indicating a survival or death
outcome respectively, at each initial condition [Fig. 4(b)].
Then, outcome planes are calculated across the I-range of
interest [Fig. 4(c)]. Finally, the percentage of death outcomes
on each outcome plane is plotted versus I to give a “percent
death plot” [Fig. 4(d)]. The outcome planes serve a role
analogous to the phase planes of the autonomous model by
illustrating how the system behaves across initial conditions
at a given I . The percent death plot functions analogously to
a bifurcation diagram of the autonomous model (e.g., Fig. 1).
Like a bifurcation diagram, it allows quick assessment of the
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FIG. 4. Example of procedure for solving Eq. (8). In (a) D and S time courses are red (dark gray) and green (light gray), respectively.
In (b) and (c), red (dark gray) and green (light gray) points represent death and survival outcomes, respectively. The percent death plot (in
d) serves as an analog to a bifurcation diagram (e.g., that in Fig. 1). Input parameters for this example are (cD, λD, cS, λS, n, cv1, cv2, ck ) =
(0.5, 0.75, 15, 1, 4, 1, 1, 1), with I indicated in the plots and the initial conditions spanning the range [0,1].

system as a function of I while also accounting for initial
conditions.

The unique finding of solving Eq. (8) in this manner is to
recognize that, in general, at each I , both death and survival
outcomes occur. This situation is analogous to bistability in
that both death and survival outcomes are present. However,
unlike the autonomous model, values of injury intensity con-
taining both outcomes are generally present across the whole
I-range up to Imax, after which the outcome is 100% death.
This result overcomes the second limitation of Eq. (4) dis-
cussed above in Sec. II D and shows that the dynamics across
the I-range are a function of both I and initial conditions.
As seen from the example in Fig. 4(d), the number of death
outcomes increases with I , as is intuitively expected.

In general, different input parameters to Eq. (8) give qual-
itatively different percent death plots. Thus, the major goal
here is to describe the qualitative dynamics of Eq. (8) across
ranges of the input parameters. The details of all the calcula-
tions and parameter sweeps are provided in Appendix A, and
the main results are described below.

IV. THE GLOBAL DYNAMICS OF THE
NONAUTONOMOUS CELL INJURY THEORY

Figure 5 summarizes the global dynamics of the nonau-
tonomous Eq. (8). We discuss two aspects of the global

dynamics: the form of the percent death curves, and the family
of time courses starting from initial condition (0, 0), i.e.,
the family of natural time courses. An important result from
studying Eq. (8) is the quantifying of cellular stress responses
in the form of the natural maximum total stress response,
Smax,NAT, and the perturbed maximum total stress response,
Smax,PER. The definitions of Smax,NAT, and Smax,PER are given
below, and their relevance to stress response biology and
protective therapy will be discussed in Sec. V.

A. Percent death curves

A total of 5832 percent death curves were obtained from
solving Eq. (8) with 34 992 000 combinations of parameter
values (see Appendix A). Studying the form of these revealed
only four basic, qualitatively different types of percent death
curves. We gave these the descriptive names “hill,” “hook,”
“peak,” and “plateau,” examples of which are shown in
Figs. 5(a)–5(d) (first column of panels). For all four patterns,
Imax is defined as the lowest value of I beyond which 100%
death outcomes are achieved. No I < Imax exhibited 100%
death in any of the percent death curves calculated.

The hill pattern [Fig. 5(a)] is the only one of the four
to have close to 0% cell death at Imin. It is called “hill”
because it shows a monotonic increase in death outcomes
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FIG. 5. Column 1: Four types of qualitative dynamics obtained from solutions of Eq. (8). IX is marked by vertical dashed line in column
1 panels. Angled dotted lines in panels 1 of (b) and (c) show the I-range of decreasing percent death. Cross hatched areas mark the ranges of
“therapeutic solutions” (see Sec. V B). Column 2: The corresponding natural time courses obtained from the initial condition (D0, S0) = (0, 0)
with D time courses in red/dark gray and S time courses in green/light gray. Column 3: Plots of the D (red/dark gray) and S (green/light gray)
maxima of each time course of column 2 vs I/IX . Smax,NAT (black points on green/light gray curves) is the largest Smax across the I-range for
the natural time courses. The input parameter vector (cD, λD, cS , λS) for each row is (a) (0.5, 0.25, 37.5, 0.25); (b) (0.1, 0.5, 3.5, 1); (c) (0.075,
0.5, 0.1875, 0.1); (d) (0.075, 0.075, 0.0825, 0.075). The percent death curves (column 1) were calculated with D0 and S0 initial conditions over
the range [0, 1.5].

as I values increase, with some intervening constant regions,
before reaching 100% death outcomes at Imax. The hook
pattern [Fig. 5(b)] begins at ∼50% death outcome at Imin,
then declines to ∼10% death outcome with the increase of I ,
before turning to a monotonic increase with I to reach 100%
death, thus resembling a hook. The peak pattern [Fig. 5(c)]

also begins at ∼50% death outcome at Imin and then increases
to reach a “peak” position at ∼90% death outcome [arrow,
panel 1, Fig. 5(c)], followed by a decline with I before turning
upwards to 100% death at Imax. The plateau pattern [Fig 5(d)]
starts at ∼50% death outcome and monotonically increases
towards the 100% death outcome at Imax.
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For the hook pattern, there is a range of I < IX where the
percentage of cell death decreases with increasing I [orange
line in Fig 5(b), panel 1]. For the peak pattern, there is
a range of I > IX where the percentage of death outcomes
also decreases with increasing I [orange line, Fig 5(c), panel
1]. These are emergent, counterintuitive results since it is
intuitively expected that the cell death percentage will in-
crease with I . That only four distinct qualitative patterns were
observed stands as a prediction of the theory that any injury
to a real cell type will display only one of the four dynamical
patterns observed. This will be elaborated in Sec. V.

B. Natural time courses

The natural time courses for the parameters of the hill,
hook, peak, and plateau patterns are plotted across their
respective I-ranges in column 2 of Fig. 5. Because these
time courses are calculated from initial condition (0, 0), the
survival outcome occurs at I < IX and the death outcome
occurs at I > IX .

The natural time courses for the hill pattern shows long
durations through a range of about I = IX to 3IX [indicated by
a dashed line in Fig. 5(a), panel 2]. Time courses outside this
range have shorter durations. Thus, the distinction between
slow (delayed death) and rapid (necrosis) death durations is
maintained by the nonautonomous model. The hook pattern
[Fig. 4(b), panel 2] shows more rapid natural time courses
than the hill pattern but also exhibits variable durations which
increase as I approaches IX from either side. Similarly, the
natural time courses for peak and plateau patterns [Figs. 5(c)
and 5(d), panel 2] show relatively rapid time courses across
the I-range, with increased durations around IX .

The hill and hook patterns extended for ∼6 and 3 IX units,
respectively. The peak and plateau dynamics spanned larger
I-ranges of ∼30 and 60 IX units, respectively. This pattern
of relative sizes of I-ranges generally held across all percent
death curves evaluated. The biological interpretation of this
result will be discussed in Sec. V.

C. Natural maximum total stress response, Smax,NAT

As shown in Fig. 3, for a given solution to Eq. (8), both
the D and S time courses exhibit a maximum value, Dmax,
and Smax, respectively. The third column in Fig. 5 plots the
I dependence of Dmax and Smax obtained from the natural time
courses in column 2. It shows that there is one value of I that
exhibits a largest value for Smax, which is termed the natural
maximum total stress responseSmax,NAT. For the hill and hook
dynamics, Smax,NAT occurs before IX , while for the peak and
plateau dynamics it occurs after IX . As seen in Fig. 1, no such
quantity was observed in the autonomous model.

This result indicates that the nonautonomous model gen-
erates, and therefore predicts the existence of a quantitative
maximum stress response, Smax,NAT, that would be observable
in a given cell type subjected to a specific injury mechanism.
Although it is possible to conceive this idea from a qualitative
biological perspective, it would lack any framework to ground
the notion. To our knowledge, the nonautonomous model,
Eq. (8), is the first example of a deductive theory predicting
the existence of a maximum total stress response, Smax,NAT.

FIG. 6. Effect of initial condition ranges on the percent death
plot. The primary parameter vector (cD, λD, cS , λS) is chosen as (0.25,
1, 3.125, 1). The number next to each curve is the upper limit of the
D and S initial conditions used to construct the corresponding plot.

Furthermore, as elaborated below, the theory also predicts
stress response capacity in excess of Smax,NAT. To develop
this idea we need to consider the role of initial conditions in
solving Eq. (8).

D. Outcome as a function of initial conditions

The example of constructing a percent death plot in Fig. 4
shows initial conditions ranging over the interval [0,1]. The
question, however, arises: What is the correct range of initial
conditions? Clearly, physical considerations rule out negative
values of damage or stress responses, while their upper bounds
are unknown. We have numerically tested ranges of initial
conditions in the construction of percent death plots and found
that (1) The form of the percent death plot changes as a
function of the initial condition range, and (2) when the initial
condition ranges exceed [0, 1.5], the percent death plot lost
physical meaning.

When the initial condition range approaches zero, the
percent death curve is binary: all outcomes at I < IX give 0%
death (i.e., 100% survival) and at I > IX have 100% death.
The limit as the initial condition ranges go to 0 gives, expect-
edly, the outcome of the natural family of time courses. As the
range of initial conditions increases, the percent death curve
changes form, through the four qualitative types described
above (i.e., hill → hook → peak → plateau). However, in
every case tested, when the upper limit of initial conditions
exceeded 1.5, the percent death curves never achieved 100%
death, no matter how far the I-range was extended, a sce-
nario that is clearly unphysical. As seen in Fig. 6, when
the upper limit of initial conditions is 5 [blue (medium dark
gray curve)], percent death levels out at ∼70% death for all
I . When the upper limit of initial conditions is set to 14
[purple (dark gray curve)], a binary curve is again obtained
where for I < IX the percent death is 45% and for I > IX the
percent death is 55%. Thus the percent death curve transitions
from physically meaningful binary outcomes of 0%/100%
death when the initial condition range approaches zero, to an
unphysical binary curve of 45%/55% death when the range of
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initial conditions exceed 1.5. Mathematically, the value of 1.5
is an arbitrary point depending on the model parameter values
chosen. But from the biological viewpoint of cell injury, this
value of 1.5 marks the upper limit of physically applicable
initial condition ranges for Eq. (8).

Therefore, we come to a surprising conclusion that the
nonautonomous theory dictates the physically meaningful
range of initial conditions. This result held for all the input
parameter vectors tested (as given in Appendix A). Thus in
this study, including the calculation of percent death curves
shown in Fig. 5, the initial conditions were always varied over
the range [0, 1.5].

E. Perturbed maximum total stress response, Smax,PER

Above we established that nonzero initial conditions can be
physically interpreted as applying some second form of injury
to the natural system, with preconditioning as the canonical
example. Preconditioning, hypothermia, drug administration,
or any other intervention are perturbations of the natural time
courses. Any such perturbation is represented by nonzero
initial conditions. Therefore, a percent death curve represents
all possible perturbations to the natural system. It was shown
above that the natural family of time courses exhibits a max-
imum stress response Smax,NAT under zero initial condition.
We asked if there were values of S in any of the time course
solutions represented by a percent death plot that were greater
than Smax,NAT. The answer was affirmative.

For the 5832 parameter combinations tested in the study
of Eq. (8) (see Appendix A), the value of Smax,NAT ranged
from 0.148 to 1. For the parameter set giving Smax,NAT =
0.148, the maximum S across all time courses in the initial
condition range [0, 1.5] was 1.64. Thus, there exists an S
time course from nonzero initial conditions that exhibited an
11-fold increase over Smax,NAT for that parameter set. For the
parameter set giving Smax,NAT = 1, the maximum S across all
time courses in the initial condition range [0, 1.5] was 2.5,
representing a 2.5-fold increase over Smax,NAT. Thus, for all
the parameter combinations tested, increases of 2.5- to 11-fold
over Smax,NAT were observed.

These examples illustrate that values of total stress re-
sponse S greater than the natural maximum quantity Smax,NAT

exist when nonzero initial conditions are considered. The
largest of such S values we term the perturbed maximum total
stress response, Smax,PER. The difference between Smax,PER and
Smax,NAT can be interpreted as a latent stress response capacity
(LSRC) in injured cells that are subjected to a perturbation:

LSRC = Smax,PER − Smax,NAT. (9)

This has important implications for the mechanism of protec-
tive therapeutics as will be discussed below.

V. DISCUSSION

Section I reviewed the empirical findings on acute cell
injury. The main conclusion was that the qualitative biomed-
ical approach cannot explain how it is possible to take an
injured cell that is fated to die and convert it to a survival
outcome, as occurs with preconditioning or hypothermia. It
is the purpose of this paper to present the global dynamics

of the nonautonomous model that can provide an explanation
and corresponding mechanisms. To this end, we showed that
the nonautonomous model outputs four types of qualitatively
distinct percent death curves, each representing unique pat-
terns of dynamics. The form of the percent death curves
depends on the range of initial conditions, where the ini-
tial condition range [0, 1.5] sets the limits for a physically
meaningful interpretation of Eq. (8). By studying how the
variable S behaves across the initial conditions, Smax,NAT and
Smax,PER were identified. Their difference represents a latent
stress response capacity that can be evoked from injured cells
by an external perturbation. These results provide additional
unique insights about the dynamics of acute cell injury, with
important implications for eventually applying the theory to
assist in developing real-life therapies for medical conditions,
such as stroke and heart attack, that have up to now evaded
successful treatment.

A. Phenomenological models

Throughout we have indicated our simplifying assump-
tions, idealizations, and choices made for the model devel-
opment. The alternative, as discussed in Sec. I, are long lists
of biological facts that have proven ineffective in the efforts to
develop clinical therapies for major acute injuries. The coarse-
grained phenomenological models presented here seek to
isolate the basic principles behind cell injury and deductively
model acute injury in a general way. The ability to retrodict
well-established phenomena of cell injury suggests that there
is veracity to the principles underlying the phenomenological
models. The autonomous model captures the variations in the
duration to death after injury, while the nonautonomous model
improves on this by calculating dynamic time courses that
capture the full cycle of cell injury. The time courses have
a relatively simple interpretation: injury displaces a cell out
of its steady state. The overall effect of this displacement is
characterized by the fixed points in the autonomous model and
the values of D and S at late-time stage in the nonautonomous
model. If S dominates, the cell “falls back” to the preinjury
state, but if D dominates the cell “escapes” its own homeosta-
sis and disintegrates (i.e., dies). This is the generic principle
captured by the theory that occurs in any cell type injured by
any injury mechanism. The additional findings reported here
expand on this theoretical conception of cell injury.

B. The I-range and therapeutics

A significant difference between the nonautonomous and
autonomous models is that both survival and death outcomes
are present across the I-range in the former but confined to
bistable solutions in the latter. For the natural time courses,
I < IX means the cell will survive the injury. But in the nonau-
tonomous model, for I < IX with D0 > 0, the model outputs
death outcomes, as would be expected if there was enough
preexisting damage in the cell at the moment of applying
the injury. Similarly, at I > IX , the model outputs survival
solutions when S0 > 0. Thus, the nonautonomous model gives
a more sensible biological result than the autonomous model.

The result also has clinical consequences. With the au-
tonomous model, only the bistable region could be subject
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to protective therapeutics. As seen in Fig. 1(b), the bistable
region is only a fraction of the I-range. In contrast, there are
survival outcomes across the whole range Imin < I < Imax of
the percent death plots for the nonautonomous model. This
provides more opportunity for protective therapeutics across
the I-range.

For a natural system, I > IX means the system will die.
This case corresponds to an injury that is not subject to
therapeutic intervention. However, the nonautonomous model
now gives survival solutions over IX < I < Imax. We can label
survival outcomes at I > IX as “therapeutic solutions” since
they fit the definition of a protective therapy that will halt cell
death that, left otherwise untreated, would die. Therapeutic
solutions are indicated in the percent death plots in Fig. 5 by
the cross-hatched areas. As seen, the number of therapeutic
solutions decreases as I increases from IX to Imax. Thus,
it is expected it will be increasingly difficult to access the
therapeutic solutions as I approaches Imax, and likely to be
a case of diminishing returns to attempt to extract every last
survival outcome.

Survival outcomes at I < IX are not therapeutic solutions
because the natural system survives any I < IX . However,
the nonautonomous model indicates that, if the system is
perturbed, it is possible for a system at I < IX to have a death
outcome when D0 > 0. This also has clinical relevance in
the context of comorbidities where the presence of a preex-
isting disease or injury could cause an additional otherwise
nonlethal injury to be lethal. A concrete example of such a
case is stroke outcome of diabetics compared to nondiabetics:
diabetics who have a stoke suffer greater brain damage than if
a similar magnitude of stroke occurs in a nondiabetic [48].

Thus, the nonautonomous model provides quantitative in-
sight into protective therapeutics and comorbidities. Such
considerations are natural interpretations of the theory solu-
tions. They are practical, quantitative considerations for the
development of protective therapeutics that are inconceivable
from within the qualitative biomedical mind-set.

C. Four qualitative dynamical patterns

The four distinct forms for the percent death curves (see
Fig. 5, column 1 panels) can be used to explain how different
cell types respond to injury. Cardiomyocytes die in minutes
to hours after ischemia [49], whereas, as explained above,
neurons die hours, days, and weeks after exposure to equiva-
lent ischemia intensity [26,28]. Additionally, it was explained
how preconditioning is carried out differently in brain and
heart. Brain preconditioning is called “delayed precondition-
ing” because of the long durations involved, whereas cardiac
preconditioning is called “rapid.” Such temporal differences
can be linked to the four qualitative types of percent death
curves. The hill dynamics show long times to cell death
around IX which is reminiscent of the behavior of neurons
after stroke and of neuron preconditioning kinetics. The other
three dynamical patterns, hook, peak, and plateau show rapid
decay to death when I > IX and one of these may model the
behavior of heart cells after ischemia and how they are pre-
conditioned. In general, the four dynamical patterns provide
quantitative templates for the interpretation of experimental
data and can also guide the design of data acquisition.

D. Initial conditions

The form of percent death curves changes with initial con-
dition ranges. In the limit where the initial condition ranges
approach zero, all percent death curves reduce to the intuitive
and idealized result that 100% survival occurs at I < IX and
100% death occurs at I > IX [see Fig. 6 beige (lightest gray
curve)]. This exactly recapitulates the monostable case in the
autonomous model [Fig. 1(a)]. On the other hand, in the limit
where initial condition ranges go to infinity, we obtained the
unphysical result of 45%/55% percent death curves [Fig. 6,
purple (dark gray curve)]. Unphysical percent death appeared
when values of initial conditions exceed 1.5. We therefore
conclude that the nonautonomous model self-determines the
appropriate range of initial conditions based on the physical
interpretation of the outcome. We note also that an initial
condition range maximum of 1.5 is only 50% greater the
largest values of D and S across the natural time courses. This
puts the initial condition range in the same order of magnitude
as the time course solutions. More future studies across a
wider parameter space would be needed to further understand
this result.

E. Latent stress response capacity: Basic and
therapeutic considerations

Currently, cell stress responses are understood mainly in
terms of specific qualitative molecular pathways [50]. This
level of understanding merely describes and catalogs stress
responses. There is a relatively smaller literature that seeks
to quantify stress response pathways by treating them with
the formalisms of classical chemical equilibria and chemical
kinetics [51–53]. This latter approach is limited because (1)
cells are not at equilibrium and it is questionable if equilib-
rium expressions are applicable, especially following acute
cell injury where the system is in a constant state of transfor-
mation, and (2) there is no guarantee that all possible molec-
ular interactions are accounted for in the choices of products
and reactants. Our theories use the coarse graining of D and
S [e.g., Eq. (1)] to approximate and account for all possible
interactions. Further, our equations are phenomenological and
agnostic to the status of chemical equilibrium. Thus, while
our intention has been to quantify acute cell injury dynamics,
the nonautonomous model, via the concepts of Smax,NAT and
Smax,PER, appears to provide a foundation for examining the
quantitative biology of cellular stress responses.

The existence of a LSRC, Eq. (9), also has consequences
for therapeutic technology by providing an explanation of
how protective therapeutics is possible. In the autonomous
model, protective therapeutics was explained by bistability at
I > IX indicating the system possesses both survival and death
attractors [Fig. 1(b)]. For the nonautonomous model with its
trivial single fixed point (0, 0), this explanation of bistability
is not applicable because attractor states no longer factor into
the solutions. However, the tradeoff is the existence of the
LSRC in the nonautonomous model. This result suggests that
protective therapies such as preconditioning and hypothermia
function by accessing the LSRC. The additional amount of S
this provides serves to “push” the cell from a prodeath to a
prosurvival trajectory.
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It bears mention that Smax,PER is the highest value of S
achievable for a given percent death plot and represents the
maximum possible total stress response the cell can exert.
However, Smax,PER cannot be accessed in the natural state [i.e.,
the family of time courses from initial condition (0, 0)]; it
can be accessed only via a second manipulation, such as pre-
conditioning or hypothermia. This means that, operationally,
Smax,PER cannot be experimentally measured in the natural
state and measuring it requires some additional perturbation
of the cells other than the injury mechanism, such as by
preconditioning or hypothermia.

F. Future directions for theory development

The present analysis of the nonautonomous model provides
a building block for constructing progressively more realistic
models of cell injury, with the ultimate goal to construct
models of specific forms of injury to specific organs. Equation
(8) can be used to construct “multiple injury models” (MIMs)
that simulate applying different injuries over time as occurs
with preconditioning and hypothermia. We have shown initial
results of a MIM construction elsewhere [46]. The result
obtained here, that there is an intrinsic limit to the range
of initial conditions, will affect MIM constructions. How to
integrate this result into MIM construction is an important
future direction of study. An additional future direction is the
construction of models with an explicit spatial dependence.
We envision spatial models where the cellular distribution
of an organ will be approximated by a three-dimensional
distribution of grid points, where each grid point models a
single cell. The injury will then be modeled by a spatial and
temporal distribution of injury intensity, I , superimposed over
the grid of cells. An initial discussion of spatial models of cell
injury has been provided elsewhere [46]. The understanding
of the nonautonomous model described here moves us closer
to constructing spatial models that will allow applying the
theory to multicellular structures.

VI. CONCLUSIONS

We have examined the global dynamics of a nonau-
tonomous formulation of the acute cell injury theory, which
is a phenomenological theory intended to capture the basic
principles governing how a living cell responds to acute
injury. The theory recapitulates important salient aspects of
the empirical facts and predicts the existence of four distinct
qualitative dynamics and of a latent stress response capacity
of cells. As a nonlinear dynamical theory, it is unique for its
focus on the transient dynamics that determines the outcomes
and mechanisms of the cell injury.

This deductive approach has been undertaken because
the currently dominant qualitative mind-set in biomedical
research has not been effective at achieving its stated goal of
developing protective therapies to halt cell death in injured
tissues. The development and study of the cell injury theory is
a first step towards its practical applications, particularly the
development of quantitative and systematic medical therapeu-
tic technologies. The issues involved in operationalizing the
theory are daunting, but not insurmountable. A future report

will detail our attempts to operationalize the model through
experimental measurements and analyses.
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APPENDIX A: DETAILS OF NUMERICAL CALCULATION

Equation (8) cannot be solved analytically and thus nu-
merical solutions were undertaken in Matlab using ode45 and
the built-in parallel computing functions. [The corresponding
Matlab code can be obtained by request to the first author
(DeGracia) via email.] The workflow was designed to op-
timizing computational time, minimize floating-point errors,
and maximize the range of parameters tested. The general
workflow was the following: A total of 34 992 000 different
values of input parameter vector (cD, λD, cS , λS , n, cV 1, cV 2,
cK , I, D0, S0) were used to generate D and S time courses
and the corresponding outcomes. Percent death plots were
constructed across various I-ranges. Because there were 27
cS chosen per cD (see below), continuation plots of 27 percent
death curves for each of the 216 combinations of (cD, λD, λS)
were used to organize the time courses. A typical continuation
plot is illustrated in Fig. 7. The set of 216 continuation plots
was repeated seven times across different ranges of initial
conditions. The specifics are as follows.

FIG. 7. Example continuation plot of a family of 27 percent
death plots, used to identify the qualitative dynamics of Eq. (8).
The main parameters cD, λD, and λS are indicated, and values of
cS were set as multiples of cD as explained in Appendix A 1. Each
percent death curve is calculated to its respective Imax. The I-range is
expressed as I/IX . D0 and S0 initial conditions were over the range [0,
1.5]. The percent death plots form a continuous transition from the
plateau → peak → hook → hill dynamic as cS increases. This result
held for all 216 continuation plots which varied in (1) the length of
the I-ranges, and (2) the extent of the cS range occupied by each of
the four qualitative dynamics.
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1. Initial parameter vector 1

The 216 combinations of (cD, λD, λS) were constructed
from the following:

cD = [0.075 0.1 0.25 0.5 0.75 1]
λD = [0.075 0.1 0.25 0.5 0.75 1]
λS = [0.075 0.1 0.25 0.5 0.75 1]

.

By Eq. (5), a strict parameter constraint of the model is
cS > cD so that IX > 0. Thus, parameter cS was chosen as
multiples of cD. Our studies showed that (1) percent death
plots tended to become uniform after cS ≈ 75cD (taking on
the hill dynamic) and (2) the following 27-valued choice of cS

led to reasonably uniform spacing on log(cS) plots:

cS = cD[1.1, 1.25, 1.5, 1.75, 2, 2.5, 3, 3.5, 4, 5, 6, 8, 10, 12.5,

15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75].

In addition, the following parameters were held constant for
all parameter sets:

n = 4, cV 1 = 1, cV 2 = 1, cK = 1,

where cv1 and cK scale the time course heights. Setting them
to 1 constrains D and S to the unit plane. Parameters n and
cV 2 were kept constant to simplify the analysis. Thus, initial
parameter vector 1, IPV1, is defined as (cD, λD, cS , λS , n, cV 1,
cV 2, cK ).

2. Determination of I-ranges

The I-range (Imin � I � Imax) was determined for each
IPV1 because Imax is specific for a given IPV1, recalling that
Imax is the value of I after which there is only 100% death
outcome for all subsequent I . To be computationally efficient,
a two-step procedure was used to determine Imax.

Step 1 incremented I in units of IX [as calculated by
Eq. (5)] and calculated the D and S time courses only from the
single initial condition (D0, S0) = (0, 0). I was incremented
until the S time course was effectively zero across all the time.
The value of I at which this occurred was Itest .

Step 2 calculated the outcome plane at Itest across a range
of 100 initial conditions (as specified in the next subsection).
If the outcome plane was 100% death, Itest was decremented
by 1 IX unit until the outcome plane was <100% death and
the prior value of I was taken as Imax. If the outcome plane
at Itest was <100% then Itest was incremented in one IX unit,
taking as Imax the first I to give an outcome plane of 100%
death. Thus, Imax was determined to within one IX unit.

Once Imax was estimated, the I-range was divided into 60
equal increments (e.g. Imin = Imax/60), and each IPV1 was
spawned into 60 initial parameter vector 2, IPV2, across Imin

� I � Imax: (cD, λD, cS , λS , n, cV 1, cV 2, cK , I).

3. Initial conditions

Seven initial condition ranges, 0 � D0 � D0,max and 0 �
S0 � S0,max, with D0,max = S0,max, were studied over the in-
terval [0, 2]. Each initial condition range was divided into 10
equal increments, and a 10 × 10 grid of all combinations were

constructed, giving 100 initial conditions per IPV2. Negative
initial condition values were not studied.

4. Summary of parameter choices

Equation (8) was solved 34 992 000 times using input
vector (cD, λD, cS , λS , n, cV 1, cV 2, cK , I , D0, S0). The
quantitative summary of the choices of parameter vectors is
the following:

(1) 216 combinations of (cD, λD, λS)
(2) 27 cS per (cD, λD, λS) combination → 216 × 27 =

5832 combinations
(3) 60 values across I-range → 5, 832 × 60 = 349 920
(4) 100 initial conditions (D0, S0) per

(cD, λD, λS, cS, I ) → 100 × 349 920 = 34 992 000
(5) n = 4, cV 1 = 1, cV 2 = 1, cK = 1 for each run of the

34 992 000 parameter vectors.
Most results reported in this paper were from the set

of 34 992 000 runs with initial condition maxima D0,max =
S0,max = 1.5. Additional calculations have been conducted
for another six sets (each having these 34 992 000 parameter
combinations) when choosing different values of D0,max =
S0,max, with some results summarized in Table I below.

5. Time course durations

Given around two orders of magnitude differences in the
chosen range of several parameters, each input vector had
unique durations for the D and S time courses. For every run of
Eq. (8) described above, the time course solutions were passed
through a subroutine to determine the ratios Dend /Dmax and
Send /Smax, where Dend and Send were the last points computed
for each time course (representing the results at late-time
stage), and Dmax and Smax were the maximum values of the
respective time course. These ratios had to be < 1% to accept
a pair of time courses as “completed.” If they failed this test,
the time course duration was incremented by a factor of 5 until
this test was passed. The minimum time course range was 50
time units in 0.1 increments, and the maximum was 3 906 250
time units in 7812.5 increments.

APPENDIX B: OUTCOME DETERMINATION

Each of the 34 992 000 parameter vectors used in Eq. (8)
produced a pair of D and S time courses. For Eq. (8), at t = ∞,
(D, S) = (0, 0). However, at late-time stage with large t (e.g.,
at the end of each time course numerically calculated, with
results Dend and Send), the dominant time course is always
greater than the subdominant, which served as our effective
definition of a winner-take-all model. Therefore, if Dend >

Send, the outcome was death, and if Send > Dend, the outcome
was survival. Given the above criteria for determining time
course durations (Appendix A 5), Dend and Send were well
within floating-point limits.

In our previous work presenting the method to express
the solutions to Eq. (8) [47], we used the maximum points
of the D and S time courses to determine the cell outcome
where Dmax > Smax corresponded to death and Smax > Dmax

to survival. However, in the present study the extensive explo-
ration of initial conditions revealed that maxima comparisons
were inadequate across the parameter ranges. As shown in
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FIG. 8. Example time course in which the initial condition, D0,
was greater than any point along the D time course. In this example,
at late-time stage the S time course [green (light gray curve)] is
seen to dominate, and therefore this solution to Eq. (6) is taken as a
survival outcome. Input parameter vector (cD, λD, cS , λS , I) is (0.075,
0.25, 1.5, 0.75, 0.28).

Fig. 8, when values of initial conditions were greater than
or equal to time course maxima for t > 0, the overall max-
imum point would be the initial one at t = 0. When this
occurred, it might or might not agree with the determination
of outcome using the late-stage points of the calculated time
courses.

TABLE I. Quantification of outcome mismatches as a function of
initial condition ranges. In column 1, initial conditions are expressed
as fold of Smax,NAT. Column 2 shows the percentage of the 5,832 (cD,
λD, cS , λS) primary parameter vectors (PPVs) displaying mismatches
in outcome determination between the maxima and late-stage meth-
ods (a PPV is counted as containing mismatch as long as any one
of the (I , D0, S0) combinations corresponding to it displayed the
mismatch). Column 3 lists the percentage of all the ∼35 million input
parameter vectors displaying outcome mismatches.

S0,max/Smax,NAT % of PPV % mismatches

2.00 99.9% 5.08%
1.00 99.8% 2.62%
0.50 99.2% 0.85%
0.25 96.4% 0.33%
0.125 86.7% 0.15%
0.05 76.2% 0.06%

We quantified this disagreement on outcome determina-
tion and found, expectedly, the number of disagreements
decreased as the range of initial conditions decreased, as
shown in Table I, column 3, where the initial condition range
is expressed in terms of the maximum value of S across the
family of time courses calculated from initial conditions (0,
0), Smax,NAT (column 1). Further, the effect was ubiquitous
across primary parameter vectors (cD, λD, cS , λS), affecting
over 95% of them when the maximum initial condition was
>0.25Smax,NAT (column 2). Thus, in the present study we used
the late-stage results of time course (i.e., end points of the
numerical calculation) to determine outcome and did not use
time course maxima.
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