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Spatial propagation of electrical signals in circular biofilms:
A combined experimental and agent-based fire-diffuse-fire study
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Bacterial biofilms are a risk to human health, playing critical roles in persistent infections. Recent studies
have observed electrical signaling in biofilms and thus biofilms represent a new class of active excitable matter
in which cell division is the active process and the spiking of the individual bacterial cells is the excitable
process. Electrophysiological models have predominantly been developed to describe eukaryotic systems, but
we demonstrate their use in understanding bacterial biofilms. Our agent-based fire-diffuse-fire (ABFDF) model
successfully simulates the propagation of both centrifugal (away from the center) and centripetal (toward the
center) electrical signals through biofilms of Bacillus subtilis. Furthermore, the ABFDF model allows realistic
spatial positioning of the bacteria in two dimensions to be included in the fire-diffuse-fire model and this is
the crucial factor that improves agreement with experiments. The speed of propagation is not constant and
depends on the radius of the propagating electrical wave front. Centripetal waves are observed to move faster
than centrifugal waves, which is a curvature driven effect and is correctly captured by our simulations.
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I. INTRODUCTION

Active excitable matter is extensively studied by both bio-
logical and nonlinear physics communities due to its primary
role in human health, e.g., electrical waves across cardiac
muscle [1–4]. It is challenging in that both the active rear-
rangement of the matter (e.g., growth of bacterial biofilms)
and its excitability (e.g., spiking potentials of the bacteria) can
contribute to emergent behavior.

Bacterial biofilms are communities of bacteria encased in a
self-produced extracellular polymeric substance (EPS) [5–7].
Biofilms are responsible for most clinical infections [8] and
related processes, such as biofouling, are costly to industry
[9]. Central to this mode of growth is the ability of bacteria
to coordinate behavior and act as a multicellular organism
[5–7,10–12]. Therefore, understanding biofilm regulation is
important in trying to control or prevent biofilm formation.

There are strong similarities between bacterial ion channels
(with unknown roles) and eukaryotic ion channels involved in
electrical signaling [13]. It is more difficult to study the elec-
trophysiology of bacteria than eukaryotic cells (∼10–100 μm)
due to their small size (∼0.2–2 μm). Recently, fluorescent
probes were used by Prindle et al. [14] to provide the first
direct evidence of electrical signaling between bacterial cells
in a biofilm. Bacteria are also used in fuel cells to produce
electricity [15], but there are again many fundamental gaps in
our understanding.
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The Prindle study found that Bacillus subtilis cells within
a two-dimensional biofilm (limited to a single cell thickness
to facilitate imaging and modeling) communicate nutrient
stress via electrical signaling. Inner biofilm cells responded
to glutamate starvation by opening their potassium channels.
This nutrient stress was then transferred to outer cells via a
potassium wave. Outer biofilm cells then responded to this
signal with periodic reductions in glutamate usage which al-
lowed sufficient nutrients to reach the interior cells. The result
of this coordinated behavior was an increase in the protection
of the entire community from chemical attack. Further studies
have shown that the role of electrical signaling in B. subtilis
biofilms may extend beyond coordinating metabolic stress.
The potassium signal was also shown to alter the motility of
interacting planktonic B. subtilis and Pseudomonas aerugi-
nosa cells [16]. Electrically conducting pili (nanowires) are
also known to exist in a broad range of bacteria [17], although
their role(s) predominantly remain unknown. This combined
with the detection of voltage gated ion channels in the genome
of a wide range of bacterial species [13] implies that electrical
signaling may be a generic form of communication between
bacteria.

The initiation and propagation of electrical signals in eu-
karyotic excitable tissues has been studied by electrophysiolo-
gists across a broad range of disciplines for well over a century
[18]. Traditional biophysical methods (e.g., patch clamps,
electrocardiograms, electroencephalography, etc.) combined
with computer modeling have been central in this study and
led to significant advances [19–21]. The study of bacterial
electrical signaling is still only in its infancy. For a proper
understanding and to allow comparison between different
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FIG. 1. Radially propagating electrical wave front in a biofilm.
(a) A circular B. subtilis biofilm grown overnight in a microfluidic
device (single cell thickness). Biofilm cells are stained with the
membrane potential dye ThT. (b) ThT fluorescence observed at
4 µm from the center of the biofilm shown in (a) as a function time.
Signals from all angles are shown in blue and the average signal is
shown in red.

biofilm signals, it is important that rigorous methods for
the analysis and modeling of electrical signals in biofilms
are established. Agent-based models are uniquely placed to
offer insights into the behavior of complex systems, such as
biofilms, due to their ability to integrate combinations of spa-
tially heterogeneous processes [22–25]. Our study combines
agent-based simulations with a fire-diffuse-fire (FDF) model.
It provides a convenient extension to simple one-dimensional
FDF models by describing the two-dimensional arrangement
of bacteria in a biofilm and the emergent electrical wave
fronts.

II. MATERIALS AND METHODS

A. Cell preparation and biofilm growth

All our experiments used the B. subtilis strain NCIB 3610.
Biofilm growth was conducted following the protocols of
Prindle [14]. The cells were freshly streaked onto lysogeny
broth (LB) agar plates from glycerol stocks on the day before

the experiment and incubated at 37 °C overnight. The next
day, 3 ml of LB was inoculated with a single colony. The
inoculum was then incubated and shaken at 200 rpm at 37 °C
for approximately 3 h or until the cells reached an OD600 of
0.7–1.2, at which stage the cells were centrifuged at 2100 rcf
for 1 min and then resuspended in a minimal MSgg medium
to promote biofilm growth.

The MSgg medium was made from stock solutions on
the day of the experiment as described by Branda et al.
[26]. It contained: 5 mM potassium phosphate buffer (pH
7.0), 100 mM MOPS buffer (pH 7.0 adjusted using NaOH),
2 mM MgCl2, 700 μM CaCl2, 50 μM MnCl2, 100 μM FeCl3,
1 μM ZnCl2, 2 µM thiamine HCl, 0.5% (v/v) glycerol, and
0.5% (w/v) monosodium glutamate.

Biofilms were grown in the CellASIC ONIX microfluidics
system in Y04D chambers. Immediately after resuspension
in MSgg the cell suspension was pipetted into the cell inlet
well and the plate was sealed onto the microfluidic device.
The chamber was then placed on the microscope which was
incubated at 30 °C.

B. Microscopy

The Zeiss LSM 5 Pascal fluorescence microscope was used
for phase contrast and fluorescence imaging. In general, a
20× objective lens was used to conduct time lapse studies and
images were taken every 5 min.

C. Dyes

Thioflavin-T (ThT) is commonly used to stain amyloid
fibers; however, its positive charge also allows it to be used
as a Nernstian voltage indicator. Its suitability in the role as
a membrane potential indicator in bacterial cells was estab-
lished by Prindle [14]. ThT was supplied by SigmaAldrich
and it was used at 10 µM. It has the advantage over other
commonly used fluorescent voltage dyes of being more sen-
sitive. For example, it was found in this setup by Prindle
to have a threefold higher sensitivity to membrane potential
changes than the commonly used membrane potential indica-
tor DiSC3(5).

D. Data analysis

Image analysis was conducted in MATLAB using custom
made scripts. The B. subtilis cells grew in thin circular
biofilms centered around flow traps [Fig. 1(a)] and this mo-
tivated the use of polar coordinates. Figure 1(b) is a represen-
tative ThT fluorescence profile as a function of time which
shows the signals at all angles in a single radius and the aver-
age signal obtained by averaging these signals. The coefficient
of variation of the signal’s radial mean was always less than
0.07. We therefore assumed that the average radial signal was
representative of the whole radial signal. Background noise
was subtracted and the offset signal due to the cell trap was
negligible. Data were smoothed using a moving average filter.
Graphs and fits were made in both MATLAB and ORIGIN.
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TABLE I. Parameters used for agent-based model of electrical
signaling in a biofilm in GRO.

Parameter Value

Simulation time conversion factor 3.5 min
Simulation time step (dt) 0.35 min
Pixel size 0.1 µm
Signal grid length 20 pixel (px)
Signal grid cell size 20 px2

Cell growth rate 0.034 fl/min
Average cell division size 3.14 ± 0.071 fl
Potassium diffusion coefficient 0.4 (molecules cell grid)/dt
Potassium degradation coefficient 0.07 (molecules)/dt

E. Modeling

Custom made MATLAB scripts were used to obtain solutions
to the FDF model. To create our agent-based model, we used
the extended version of GRO. Biofilm growth was controlled
by CELLENGINE. CELLENGINE was developed to simulate large
colonies and is optimized for rod shaped bacterium, such as P.
aeruginosa, making it well suited for our purposes. During
each simulation time step, each cell grows, which leads to
an overlap. CELLENGINE resolves this overlap using rigid-
body dynamics in two steps: collision detection and collision
response. It does not support the growth of cells in chains and
other more complex structures sometimes observed during
biofilm growth.

The behavior of cells in GRO is controlled by a probabilistic
timed automata–based library, CELLPRO, which encapsulates
and simulates gene expression. In our model the release of
potassium by a cell was implemented by a set of rules defined
using CELLPRO. The propagation of potassium through the
biofilm was implemented using CELLSIGNAL, which models
signal propagation using a finite element model. At each time
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FIG. 2. Normalized cell density as a function of radial distance
from the biofilm center for our experimental centrifugal wave front
data (red), centripetal wave front data (black), and agent-based fire-
diffuse-fire model (blue). The centripetal biofilm had a larger radius
(∼150 μm) than the centrifugal biofilm (∼90 μm).

step of the simulation, diffusion and degradation are applied
to update the concentrations of the signals over a set of
predefined grids. Further details regarding the algorithms used
in CELLENGINE, CELLPRO, and CELLSIGNAL can be found in
Gutiérrez et al. [27].

The GRO simulations were performed using experimentally
relevant parameters. The units of GRO are currently not well
defined. It is therefore necessary to associate units with the
constants defined in a simulation. Table I shows the parame-
ters used in our ABFDF model.

Figure 2 shows the cell density of our model which was
chosen to match the experimental cell densities as closely
as possible within the constraints of the assumptions imple-
mented in GRO regarding cell growth and the cell interactions.

MATLAB was used to analyze the outputs of GRO and to
create the potassium profile contour plots. ORIGIN was also
used to create graphs and fits.

Custom made scripts for data analysis and modeling are
publicly available [28].

III. RESULTS

A. Propagation of electrical signals in biofilms
(experimental results)

Following the work of Prindle [14], we grew B. subtilis
biofilms under flow in the CellASIC ONIX microfluidic sys-
tem and monitored the membrane potential using the mem-
brane potential indicator Thioflavin-T (ThT). The higher the
ThT concentration in the bacteria, the lower their membrane
potential.

In our experiments both outward moving [centrifugal,
Fig. 3(a)] and inward moving [centripetal, Fig. 3(b)] waves
were observed. Figure 3(c) shows the electrical signals ob-
served at different radii for a typical centrifugal electrical
wave traveling outward through a biofilm. To quantify these
electrical signals Prindle [14] defined their half maximal
position (in time) and their amplitude. However, they can be
more accurately described using moments. Moments analysis
provides an alternative method to describe probability distri-
butions [29]. We considered standard parameters based on the
first four moments of the distributions, i.e., the mean, the stan-
dard deviation, the kurtosis, and the skewness, Eqs. (1)–(4),
since they could be robustly calculated from our experimental
data and have relatively simple intuitive interpretations. The
skewness is a measure of the distribution’s symmetry and the
kurtosis is an indicator of whether it is peaked and has a heavy
tail.

The nth moment of a distribution f (x) with N points is
given by

〈xn〉 =
N∑

i=1

xn
i f (x). (1)

The mean (μ ≡ E [X ]) of the distribution is given by the first
moment. The standard deviation is given by the square root of
the variance, which is given by the second central moment,

σ =
√

E [(x − μ)2]. (2)

The third and fourth moments of a distribution can be used
to calculate the skewness and the kurtosis. The skewness is
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FIG. 3. Electrical signal propagation through a two-dimensional
biofilm. Schematics show the spread of (a) centrifugal (“away from
the center”) and (b) centripetal (“toward the center”) electrical wave
fronts through a biofilm. (c) Electrical signal indicated by ThT
fluorescence as a function of time at five different biofilm radii
(r = 2, 10, 15, 100, and 150 µm) from fluorescence microscopy
experiments.

defined as

S = E

[(
X − μ

σ

)3
]
, (3)

and the kurtosis is defined as

K = E

[(
X − μ

σ

)4
]
. (4)

Prindle originally only described electrical wave fronts
which originate at the center of the biofilm (centrifugal wave
fronts [Fig 3(a)]). In addition, we experimentally observed
electrical wave fronts which originate at the outer biofilm
(centripetal wave fronts [Fig 3(b)]). Figure 4 shows both the
membrane potential profile as a function of time observed
experimentally for a centrifugal wave front [Fig. 4(a)] and
a centripetal wave front [Fig. 4(b)]. Biofilms grown in the
microfluidics system grew out from a cell trap, which led
to the small gaps in the data seen in Fig. 4. The fluorescent
energy density [Er (r)] of both centrifugal and centripetal
waves decreased sigmodially with radial distance from the
biofilm center,

Er (r) = 1

1 + e(r−r0 )/x
, (5)

FIG. 4. Propagation of centrifugal and centripetal electrical sig-
nals through a biofilm. (a,b) ThT fluorescent intensity as a function
of time and radial distance for a biofilm in which an electrical signal
has (a) originated from the biofilm center (centrifugal) and (b) from
the biofilm edge (centripetal). (c) The signals’ fluorescence energy
density as a function of radial distance for the centrifugal wave
front (red) shown in (a) and for the centripetal wave front (black)
shown in (b), fitted with sigmoids, Eq. (5). (d) Radial distance for
the maximum intensity as a function of signal mean time for the
centrifugal wave front (red) shown in (a) and the centripetal wave
front (black) shown in (b), fitted with power laws, Eq. (7).

where r0 is the half radial constant and x is the slope constant,
which describes the steepness of the curve.

The average skewness of the centrifugal wave front was
−0.03 ± 0.18 and the centripetal skewness was −0.32 ± 0.15.
The skewness of the centrifugal wave decreased as it traveled,
whereas the skewness of the centripetal wave increased as it
traveled [Fig. 9(a)].

The centrifugal kurtosis was 3.78 ± 0.28 and the cen-
tripetal kurtosis was 2.29 ± 0.17. The kurtosis of the centrifu-
gal wave was greater than 3, (leptokurtic, more peaked than
a Gaussian), whereas the centripetal kurtosis was less than 3
(platykurtic, less peaked than a Gaussian).

The kurtosis values indicated that the signals were not per-
fect Gaussians. However, after the data were smoothed using
moving averages, Kolmogorov-Smirnov tests were performed
at the 5% significance level to confirm that the data were well
approximated by Gaussians of the form

Fr (t ) = are−(t−br )2

cr
, (6)

where Fr (t ) is the average ThT fluorescence as a function of
time at the radius r, ar is the average peak fluorescence of the
signal at radius r, br is the average time of the peak amplitude
of the signal at r, and cr is a constant related to the standard
deviation giving the width of the signal at r.

Gaussian fits were therefore used to robustly obtain the
radial signal amplitude. As expected, the signal ampli-
tude followed the same profile as the fluorescence energy
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density (found directly using radial averages of images) and
decreased sigmoidally with radial distance from the biofilm
center Eq. (5).

Figure 4(d) shows the propagation of the maximum of the
signal through the biofilm (velocity profiles of the maximum).
These velocity profiles followed a power law dependence of
distance on time,

D = A0τ
α, (7)

where D is the radial distance the signal has traveled; τ is the
mean time (μ), which is the time at which the signal maximum
is reached at a specific D; and A0 and α are both constants.

The centripetal wave had a steeper profile than the cen-
trifugal wave, with an exponent (α) of 1.79 ± 0.03 rather than
1.42 ± 0.06. This suggests that it traveled faster. It is well
established that curvature can affect the propagation of a wave
front through an excitable medium [30–32]. For a centripetal
wave front, different parts of the front will excite the same
point concentrating its activity, whereas for a centrifugal
wave front, which expands as it travels, the energy to excite
neighbors is spread out. It was therefore expected that, if
these waves occurred via the same mechanism, the centrifugal
wave should travel slower than the centripetal wave, as was
observed. For both wave fronts (centripetal and centrifugal)
the exponent was significantly larger than 1 (α >1). This
shows that the wave fronts were not propagated constantly as
previously described by Prindle [14].

B. Modeling electrical signaling in biofilms

1. Fire-diffuse-fire model

Fire-diffuse-fire (FDF) models were originally developed
to describe intracellular calcium propagation [33]. We tested
whether potassium propagation in a biofilm may be described
by a similar model. In this model once a threshold con-
centration of potassium (k∗) is reached at a single cell, the
cell fires instantaneously releasing a fixed concentration of
potassium (σ ). A potassium wave was therefore propagated
by the sequential firing of biofilm cells. In this FDF model
in one dimension the potassium profile [K = K (x, t ), where x
is the position and t is the time] obeys the reaction-diffusion
equation,

∂K

∂t
= Dk

∂2K

∂x2
− γ K + σ

∑
i

δ(x − iL)δ(t − ti ), (8)

where Dk is the potassium biofilm diffusion coefficient, iL is
the location of the ith cell, ti is the time when the threshold
value of potassium (k∗) is reached at the ith cell, and γ is the
potassium decay rate. This reaction-diffusion equation has an
exact solution in one dimension given by

K (x, t ) =
∑

i

Ki(x, t ),

Ki(x, t ) = σH (t − ti )√
4πD(t − ti )

exp

[
− (x − iL)2

4D(t − ti )
− γ (t − ti )

]
,

(9)

where Ki(x, t ) is the potassium profile of a single cell and H
is the Heaviside function. For a wave to propagate steadily,

FIG. 5. Fire-diffuse-fire model of electrical signal propagation
through a biofilm. (a) Plot of g(ν ) as a function of ν for a range
of different γ . g(ν ) is a function which may be used to determine
the model’s stability and thus find constantly propagating solutions
to the FDF model. (b) Potassium signal produced by our FDF model
of a biofilm, Eq. (9). (c) Signal amplitude of the potassium wave
shown in (b). (d) Velocity profile (position of the signal maximum as
a function of time) of signal shown in (b).

the time between firing of consecutive cells must be constant
(ti − ti−1 = τ ).

To model the results of Prindle [14], we first took the same
propagation timescale (τ ) as 0.84 s, assumed a cell separation
(L) of 1 µm, and that the potassium diffusion coefficient in
the biofilm was 70% of its aqueous value (Dk is 1380 μm s−1)
[34].

For a wave to propagate steadily the time between firing of
consecutive cells must be constant (ti − ti−1 = τ ) for all cells.
If such a τ exists, then it is a solution of the equation [33]

k∗L

σ
=

∞∑
n=1

1√
4πnν

exp

(−n

4ν
− β2n

)
≡ g(ν), (10)

where ν = Dτ
L2 and β2 = γ L2

D .
In order to determine if constantly propagating solutions

exist, we plotted g(ν) for a range of different experimentally
relevant parameters, for varying values of γ [Fig. 5(a)]. If
k∗L
σ

> g( ν)max propagation failed, we were therefore only in-
terested in solutions 0 < g( ν) < g( ν)max. Figure 5(a) shows
that these solutions existed for all the tested γ values, proving
that the FDF model may be used to obtain a constantly prop-
agating electrical signal in the biofilm within experimentally
relevant parameters.

Figure 5(b) shows profiles produced by our FDF model
using τ = 0.84 s, L = 1 μm, Dk = 1380 μm/s, and β = 0.05.
Figures 5(c) and 5(d) show the amplitude and propagation of
this signal through the biofilm, respectively.

A simple FDF model can therefore be used to model an
electrical signal that propagates constantly through a biofilm.
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This FDF model is a simple 1D model and it is also limited by
the assumptions that the biofilm cells’ positions are modeled
as delta functions and firing is instantaneous. It is, however,
useful due to its simplicity and its exact solution. We suggest
that such a model may be useful for studying propagation
failure or success in biofilms (i.e., how stable electrical sig-
naling waves can be sustained). It is not, however, useful for
interpreting our experimental results, since realistic analytical
solutions for a wave front which does not propagate constantly
do not exist for Eq. (8) in two dimensions.

2. Agent-based model

The propagation of an electrical signal through a biofilm
does not always follow a constant velocity and amplitude as
originally proposed by Prindle [14] (Fig. 3). To understand
more complicated patterns and accurately describe biofilms in
two dimensions, we turned to agent-based modeling (ABM)
[22]. ABMs allow complex global behaviors to be described
which emerge as a result of interactions between individuals
in a multicellular community, e.g., accurate placement of
bacteria in a 2D biofilm with varying density. In our ABM
each cell in the biofilm was modeled as an “agent” which
obeyed simple rules.

A range of different software packages have been devel-
oped to simulate cell colonies. We chose to build our ABM
using the extended version of GRO [27] that functions well in
two dimensions (2D), because it is a simple and fast simulator,
which has been optimized for understanding the effects of
colony spatial arrangement on cell-cell communication. The
extended version of GRO relies on five major components:

(1) A CELLENGINE is a physics engine which was de-
veloped to simulate large colonies and is optimized for rod
shaped bacterium, such as B. subtilis, making it well suited
for our purposes.

(2) PROSPEC is an extension to CCL [35], a guarded
command-based language developed for modeling coopera-
tive systems.

(3) CELLPRO is a probabilistic timed automata–based li-
brary that simulates gene expression dynamics using digital
proteins. These proteins are then used to drive cell behavior.

(4) The additional libraries CELLNUTRIENT and CELLSIG-
NALS can be used in addition to control the external en-
vironment. Intercellular and environmental signaling is im-
plemented through a set of grids that store the signal con-
centration at each grid location. At each time step of the
simulation, diffusion and degradation are applied to update
the concentrations of the signals over the whole grid using a
finite element model and the cell states are then updated.

(5) GRO is the central subsystem of the simulator.
Figure 6 shows the workflow executed for each time step

of our simulations inside GRO.
We built an agent-based model based on the FDF model

(ABFDF model) using GRO. Each bacterial cell in the biofilm
is considered as an agent. In the simulations potassium release
was triggered either at the central cell (centrifugal) or at an
edge ring of cells (centripetal). This potassium wave was then
actively propagated via the triggering of potassium release at
other cells. Following the FDF model, potassium release was
triggered at a cell after a threshold concentration of potassium

FIG. 6. Workflow showing the steps executed by our model per
time step (�t).

was reached at that cell. The release function of a single cell
(k(t ) j ) was described by a rectangular function,

k(t ) j =

⎧⎪⎨
⎪⎩

0 if t < t j

ε if t j � t � t j + tr

0 if t > t j + tr

, (11)

where ε is the amplitude of the potassium concentration; t j is
the time of release at cell j; and tr is the rise time, which is
how long each cell fires potassium.

Figure 7 shows a GRO simulation of this ABFDF model.
The bacterial density profile of the simulated biofilm (i.e.,
the areal concentration as a function of radial distance) was
matched with the experimental data (Fig. 2) and this was
found to be crucial to accurately model the propagation
of electrical waves. Figure 8 shows the potassium profile
produced by our GRO simulation for (a) a centrifugal wave
front and (b) a centripetal wave front. The fluorescent energy
density and amplitude of the signals [Fig. 8(c)] decreased
sigmoidally with radial distance from the biofilm center as
seen for our experimental data [Fig. 4(c)] for both centripetal
and centrifugal waves. However, as reflected by the constants
defining these sigmoids, the amplitude of the signals produced
by our model did not decrease as rapidly with radial distance
as was observed experimentally (Table II).

The average kurtosis of the model centrifugal signal is
3.812 ± 0.004 which matches our experimental results (3.78
± 0.28). The average kurtosis of the centripetal model signal
is 3.21 ± 0.01, which, in agreement with our experimental
results (2.29 ± 0.17), is lower than the average kurtosis of the
centrifugal signal, but was still larger than our experimental
results. The average skewness of the centrifugal model wave
front was 0.548 ± 0.004 and the model centripetal wave front
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FIG. 7. Time-lapse images from a simulation using the agent-
based fire-diffuse-fire model for two-dimensional circularly symmet-
ric biofilms shown in (a) three dimensions and (b) two dimensions.
Snapshots are shown for time since initial firing at the center of the
biofilm; T = 0, 17, 63, and 120 min. (c) A magnified image of a
potassium wave spreading out from the center of the biofilm simu-
lated by our agent-based fire-diffuse-fire model where the bacterial
agents are clearly visible.

had an average skewness of 0.719 ± 0.001. This indicates that
the wave fronts produced by our model had tails to the right
in contradiction with our experimental results.

Closer examination of the changes in skewness observed
with propagation through the biofilm indicated that these

FIG. 8. Propagation of (a) centripetal and (b) centrifugal electri-
cal waves produced by our agent-based fire-diffuse-fire model. The
potassium profiles were produced by our model for a signal triggered
at (a) the biofilm center and (b) the biofilm edge. (c) Fluorescence
energy density, as a function of radial distance, of the centripetal
signal (red) and for the centrifugal signal (black) fitted with sigmoids,
Eq. (5). (d) Radial distance for the maximum intensity as a function
of signal mean time for the centripetal signal (red) shown in (a)
and the centrifugal signal (black) shown in (b), fitted with power
laws, Eq. (7). For (c), (d) data were averaged over three separate
simulations.

differences may be explained by differences in biofilm size
and the presence of the cell trap in the microfluidic flow cell.
Figure 9 shows the kurtosis and skewness of the experimental
results (a) and (b), as well as our model results (c) and (d).
Curves shown in red are centrifugal and black are centripetal.
This Figure shows that the underlying trends in the model and
experimental skewness and kurtosis were more comparable
than the averages suggest that the underlying trends
between the centrifugal and centripetal wave front are more
comparable than the averages may suggest. The skewness
of the centrifugal wave front was larger than the centripetal
wave front, with a decrease in the skewness observed with
the direction of the wave front. The kurtosis of the centrifugal
wave front was also larger than the centripetal wave front.

The velocity profiles were fitted with power laws [Eq. (7),
Table II]. The profile of the simulated centripetal wave
front was steeper than the simulated centrifugal wave front

TABLE II. Fit constants of Eqs. (5) and (7) for our experimental and model wave fronts.

Fit Fit Experimental Experimental Model Model
constant constant centrifugal centripetal centrifugal centripetal
name symbol wave front wave front wave front wave front

Fluorescent energy densities half radial constant (arb. units) r0 41.1 ± 0.5 44.7 ± 0.4 63.4 ± 0.1 68.4 ± 0.1
Fluorescent energy densities slope constant (arb. units) x 7.5 ± 0.5 24.2 ± 0.4 13.5 ± 0.1 9.8 ± 0.1
Power law constant for wave velocity profile A0 0.081 ± 0.021 0.026 ± 0.003 2.441 ± 0.001 0.131 ± 0.006
Exponent constant for wave velocity profile α 1.42 ± 0.06 1.79 ± 0.03 0.76 ± 0.01 1.38 ± 0.01
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FIG. 9. Kurtosis and skewness of the electrical signal as a func-
tion of radial distance. (a) Kurtosis of our experimental centrifugal
wave front (red) and centripetal wave front (black). (b) Skewness of
our experimental centrifugal wave front (red) and centripetal wave
front (black). (c) Kurtosis of our ABFDF model’s centrifugal wave
front (red) and centripetal wave front (black). (d) Skewness of our
ABFDF model’s centrifugal wave front (red) and centripetal wave
front (black).

[Fig. 8(d)] in agreement with our experimental results, as well
as the theory that the curvature affects the propagation speed
[30–32]. However, our model was not fully successful in pro-
ducing the experimental velocity characteristics. The expo-
nents of the power laws fitted to our model results were lower
than was observed experimentally. The simulated centripetal
wave front had an exponent of α = 1.38 ± 0.01, whereas
the experimental exponent was α = 1.79 ± 0.03 (Table II).
The simulated centrifugal wave front had an exponent of
α = 0.76 ± 0.01, whereas the experimental wave front had an
exponent of α = 1.42 ± 0.06. It is likely that these differences
were caused by the complicated experimental set-up, as well
as by the models assumption that cells did not grow in chains
or other complex geometrical arrangements often observed
during biofilm growth. During our experiments outer biofilm
cells clustered and formed chains, which was not accounted
for in our model.

In summary, the spatial arrangement of cells (the curvature
of the biofilm and variations in cell density) can explain
the majority of the differences in the propagation of the
centrifugal and centripetal electrical wave fronts. However
other, more subtle, propagation characteristics (e.g., fractional
power law velocity profiles) were not quantitatively described
by our model owing to the complex nature of biofilm growth.

IV. DISCUSSION AND CONCLUSION

Following the work of Prindle [14] we studied B. subtilis
biofilms and found that the electrical signals did not propa-
gate constantly through the biofilm. We also found that, in

addition to the originally described centrifugal wave fronts,
there were wave fronts which originated at the biofilm edge,
i.e., centripetal wave fronts. The fluorescence energy density
and amplitude of both wave fronts decreased with distance
from the biofilm center, regardless of the signal’s origin. The
shape of the signal, which was characterized by the skewness
and kurtosis, was dependent on the direction of travel. As
previously described for other excitable systems [30–32], the
centrifugal wave traveled slower than the centripetal wave,
demonstrating the effect of curvature on signal propagation.

All these observed behaviors were successfully captured
by our ABFDF model. In particular, this model was used to
describe the behavior of the two different signals (centripetal
and centrifugal). This allowed us to compare the two signals
and demonstrate the model’s versatility.

In our model the potassium diffusion and degradation con-
stants were homogenous across the biofilm and the potassium
release function of all cells in the biofilm was also constant
[ε in Eq. (11)]. Therefore, the spatial arrangement of the cells
alone was enough to explain the varying velocity of the elec-
trical wave fronts. Collectively these experimental and mod-
eling results demonstrate how cell density and curvature can
influence the propagation of an electrical signal in a biofilm.

It remains unclear what caused the centripetal waves that
originated in the outer biofilm. They may be due to cross-talk
with other neighboring biofilms, e.g., centrifugal waves that
excite centripetal waves in neighboring biofilms. However,
potassium has been shown to regulate and affect other key
processes in B. subtilis cells [36,37], indicating a broader role
for electrical signaling. There are also many other bacterial
ion channels, besides Yug0 (a potassium channel), with a
range of gating principles [13,38,39]. It is therefore logical
to infer that electrical communication is likely to extend far
beyond these initial applications. It is expected that signals are
initiated by bacteria in response to a range of stimuli (e.g., a
variety of stress responses) and that these signals illicit a broad
range of different responses. As most cells are responsive to
changes in local ion concentrations and potentials through
the existence of voltage sensitive ion channels, it is probable
that electrical signaling is more diverse than just intraspecies
signaling.

Our ABFDF model can account for different cell behaviors
and environmental conditions. It can therefore be adapted to
model a wide variety of different systems and signals. With
the expected expansion of the field of bacterial electrophys-
iology, such modeling techniques will become increasingly
useful.

Future studies would profit from improved magnification
in microscopy experiments (in the current study it was limited
by the microfluidic cell used). This would allow the exact
positioning of individual cells to be directly input into the
agent-based model. In the current study the cell density was
determined for coarser radial averages of the fluorescence
images (Fig. 2), where individual bacterial positions could
not be determined. A further improvement would be to study
electrical wave propagation in 3D biofilms, since they are
more commonly found in nature, although the interaction
of electrical waves with boundaries of the biofilm that have
widely varying curvatures and experience varying time delays
is expected to markedly complicate matters.

052401-8



SPATIAL PROPAGATION OF ELECTRICAL SIGNALS IN … PHYSICAL REVIEW E 100, 052401 (2019)

In conclusion, we have developed rigorous data analy-
sis techniques and an ABFDF model to describe observed
phenomena in the electrical signals of B. subtilis biofilms
including the effect of spatial heterogeneity in bacterial cell
placements and curvature of propagating wave fronts. More
generally we have demonstrated the power of these methods
in the emerging field of biofilm active excitable matter.
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