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Complex networks with directed, local interactions are ubiquitous in nature and often occur with probabilistic
connections due to both intrinsic stochasticity and disordered environments. Sparse non-Hermitian random
matrices arise naturally in this context and are key to describing statistical properties of the nonequilibrium
dynamics that emerges from interactions within the network structure. Here we study one-dimensional (1D)
spatial structures and focus on sparse non-Hermitian random matrices in the spirit of tight-binding models
in solid state physics. We first investigate two-point eigenvalue correlations in the complex plane for sparse
non-Hermitian random matrices using methods developed for the statistical mechanics of inhomogeneous
two-dimensional interacting particles. We find that eigenvalue repulsion in the complex plane directly correlates
with eigenvector delocalization. In addition, for 1D chains and rings with both disordered nearest-neighbor
connections and self-interactions, the self-interaction disorder tends to decorrelate eigenvalues and localize
eigenvectors more than simple hopping disorder. However, remarkable resistance to eigenvector localization
by disorder is provided by large cycles, such as those embodied in 1D periodic boundary conditions under strong
directional bias. The directional bias also spatially separates the left and right eigenvectors, leading to interesting
dynamics in excitation and response. These phenomena have important implications for asymmetric random
networks and highlight a need for mathematical tools to describe and understand them analytically.
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I. INTRODUCTION

First suggested for the heavy nuclei problem in the mid-
20th century [1], random matrix theory has been an important,
constantly evolving tool in the studies of large systems with
otherwise intractable numbers of degrees of freedom. The
first random matrix ensembles, motivated by applications to
quantum many-body systems, imposed Hermitian symmetry
and all-to-all interactions. However, the past two decades
have seen a surge of theoretical and experimental progress
identifying and understanding the structure and dynamics of a
much wider variety of real-world complex systems. Because
interactions within these systems often have a directional bias
and depend on spatial or functional locality, their representa-
tions as networks and graphs require matrices that are both
asymmetric and sparse [2–6].

The spectral characteristics of sparse non-Hermitian ran-
dom matrices provide information on the stability, suscep-
tibility to perturbations, and synchronization of biological
networks [6–13], guide the construction of practical methods
such as graph partitioning and community detection [14,15],
and help evaluate search algorithms [16–18]. In addition,
advancements in technology in recent years have mapped out
the connectivity of large biological systems, such as neural
and gene regulatory networks [19–22]. These developments
motivate the study of sparse random matrices with spatial
structure. For example, in neural networks, the anatomical or
functional distance between neurons or neural clusters signifi-
cantly affects their connection probabilities [12,23]. Likewise,
layered or recurrent architectures of artificial neural networks
can also be trained by exploiting existing knowledge about the
network structure.

Unfortunately, classic random matrix theory tools, origi-
nally developed for symmetric matrices with dense connectiv-
ity [24–27], are not always directly applicable to these prob-
lems. Thus, a better understanding of sparse non-Hermitian
random matrices not only provides rich opportunities for
analyzing and constructing complex networks, but also opens
new doors in mathematics. Recent theoretical progress in-
cludes analytical formulations for the spectral distribution
and its support, as well as statistics of eigenvalue outliers
and their corresponding eigenvector probability distribution
[28]. However, one key spectral observable that has re-
ceived less attention is the two-point eigenvalue correlation,
which controls the interplay between eigenmodes central to
the behavioral response to external perturbations and small
fluctuations.

In this work, we uncover connections between two-point
eigenvalue correlations and the localization of eigenvectors of
structured sparse non-Hermitian random matrices. We focus
here on matrices with the structure of one-dimensional (1D)
tight-binding models in solid-state physics [29], which arise
naturally in, e.g., ring attractor neural nets [23,30] and in
more highly connected networks that nevertheless contain a
spatial scale over which the connections fall off [31]. We
also focus on the effect of random self-interactions on the
eigenvalues and eigenvectors, for both undirected and directed
ring networks.

A. Structured sparse non-Hermitian matrices
and neural networks

In general, statistics about the eigenspectra and eigen-
functions are critical for understanding the dynamics of any
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system in a linear regime that can be described by a coupled
system of differential equations, which we’ll represent by
a random matrix M. When only a dilute concentration of
weakly localized states is activated, the eigenfunctions can
also be useful for describing the nonlinear dynamics [32].
Of course, level statistics have different physical meanings
depending on the specific type of system being modeled. In
this paper, for concreteness, we will motivate our results in
terms of a continuous time recurrent neural network. If M
represents the connectivity matrix of the neurons, the full
nonlinear firing rate model is

τ
dri(t )

dt
= −ri(t ) + f

⎡
⎣hi(t ) +

∑
j

Mi jr j (t )

⎤
⎦, (1)

where ri is the deviation from the background firing rate of
the neuron on the ith site, τ is the relaxation time scale for
the local firing rate, hi is the external input to the ith neuron
(from, say, a sensory system), Mi j describes what is in general
an asymmetric connectivity matrix from neuron j to neuron
i, and f [·] is a nonlinear activation function (often with a
sigmoidal shape).

When neural activities are not near saturation, it is conve-
nient to take an activation function of the “threshold linear”
form, f (x) = (x + 1)�(x + 1) ≡ [x + 1]+ [30,33]. When the
stimuli exceeds the threshold (x + 1 > 0) so as to trigger a
response, the firing model describes a linear recurrent neural
network [23,31],

τ
dri(t )

dt
= −ri(t ) + hi(t ) +

∑
j

Mi jr j (t ), (2)

where the Heavyside function � is implied and the offset
can be taken to be 0 without loss of generality by redefining
hi(t ) → hi(t ) + 1. Such a linearized model is capable of
both selective amplification and input integration [23]. Each
eigenmode of the matrix M corresponds to a different neural
firing pattern; the corresponding complex eigenvalues indicate
the frequency and growth or decay of the firing pattern, while
the spatial support of the eigenvector indicates the spatial
distribution of the active neural cluster. In the simplest mod-
els, the eigenfunction corresponding to the eigenvalue with
the largest real part dominates the sustained activity. More
generally, the superposition of firing patterns corresponding
to nearby eigenvalues in spectral space typically controls the
information transfer and computation carried out by the neural
network in response to various external stimuli.

B. Random matrix models

We study 1D networks, whose interactions are dominated
by local spatial couplings. As shown schematically in Fig. 1,
this connection scheme corresponds to a banded matrix, fa-
miliar in condensed matter physics as a tight-binding model,
written here in a compact Dirac bra-ket notation as

M =
N∑

j=1

[s+
j eg| j + 1〉〈 j| + s−

j e−g| j〉〈 j + 1| + d jε| j〉〈 j|],

(3)

FIG. 1. (a) Schematic representation of Eq. (3) studied in this
work. The parameters s+, s−, and d denote site-specific random vari-
ables whose distributions describe the randomness of the counter-
clockwise connections, clockwise connections, and self-interactions,
respectively. (b) The form of the independent probability distribu-
tions for s+, s− [Pu(s)], and d [Pv (d )], where the half-box widths u
and v control the ratio of the variance of the connectivity strengths to
their mean magnitude.

where s+
j , s−

j , and d j are random variables that can take
on both positive and negative values (thus allowing for both
excitatory and inhibitory connections), g controls a potential
asymmetry of the hopping directional bias (g > 0 indicates
stronger connections in a counterclockwise direction for ring
geometries), and ε controls the strength of the random self-
interactions relative to the random nearest-neighbor connec-
tions. Following previous work [34], we assume balanced
inhibition and excitation and investigate symmetric bimodal
double-box probability distributions centered on ±1, for
both the diagonal and off-diagonal randomness, with box
half-widths u and v as tuning parameters (Fig. 1). As pre-
sented in Eq. (3), this class of models appears to violate
Dale’s law (connections originating from the same neuron
must be all excitatory or all inhibitory [10]). However, as
shown in Ref. [31], the spectra for Eq. (3) are identical
with those of related models that do obey the constraint.
Moreover, if each site in Eq. (3) is regarded as a coarse-
grained representation of a cluster of neurons, we expect
that the same site can exhibit both excitatory and inhibitory
characteristics.

In Secs. II to IV, we study the spectra of Eq. (3) both with
and without disordered self-interactions (ε > 0 and ε = 0)
but no directional bias (g = 0). An important parameter in
the problem then becomes the ratio ε of the self-interaction
strength to the neighboring interaction strength. In the limit
of ε = 0 with zero variance in the magnitude of the hopping
interaction Pu=0(s), Eq. (3) is the random sign model, first
proposed in Ref. [35]. We find that its spectrum (shown
in Fig. 2) is a fractal and, via the box-counting algorithm
[36], calculate its boundary fractal dimension to be Dbound =
1.086 ± 0.004 and its area fractal dimension to be Darea =
1.912 ± 0.003. [For comparison, the Hausdorff dimension of
the Julia boundary set for f (z) = z2 + 1

4 and the Sierpinski
carpet are 1.082 and 1.8928, respectively [36].]

In Sec. V we examine Eq. (3) in the case of strong
directional bias g � 1 both with and without periodic bound-
ary conditions, |n〉 = |N + n〉. In particular, we study a
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FIG. 2. (a) Spectrum from a single N = 5000 realization of the
random sign model [Eq. (3) with random sign connection probabil-
ity distribution Pu=0(s) and no self-interaction and directional bias
ε = g = 0]. (b) Spectra in the first quadrant of the complex plane,
averaged over 18 000 realizations of N = 5000 matrices. Color in-
dicates the natural logarithm of the spectral density. Calculation via
the box-counting algorithm [36] gives its boundary fractal dimen-
sion to be Dbound = 1.086 ± 0.004 and its area fractal dimension as
Darea = 1.912 ± 0.003.

“one-way” model, such that counterclockwise interactions on
the subdiagonal vanish. We find particularly striking spectra in
the limit when the strengths of the diagonal and superdiagonal
randomness are equal, for which eigenvalues condense onto
the infinity symbol (lemniscate) curve in the complex plane,
along which there is a continuous variation in the spatial
extent of both the left and right eigenfunctions.

C. Summary of main results

This paper focuses on three main themes: (1) eigenvalue
repulsion in the complex plane and how it correlates with
eigenvalue delocalization in 1D non-Hermitian random ma-
trices; (2) what happens when random self-interactions are
added to random nearest-neighbor interactions in 1D tight-
binding random matrices; and (3) the effect of directional bias
on the localization and spatial separation of the left and right
eigenvectors.

We find that significant eigenvalue repulsion in the com-
plex plane occurs only in the presence of eigenfunction de-
localization and vice versa. Similar results were obtained for
localized and extended states in Hermitian tight-binding mod-
els with diagonal disorder in both three and two dimensions by
Shklovskii et al. [37]. We demonstrate this remarkable corre-
lation numerically for 1D non-Hermitian matrices described
by Eq. (3) with neither self-interaction nor directional bias in
Secs. II and III, but emphasize that similar results are obtained
for all 1D non-Hermitian random matrices we have examined.
In Sec. II and Appendix A, we describe the procedure used
for extraction of the local pair correlation function, whose
behavior as a function of the eigenvalue separation depends on
the region of the complex spectrum being sampled. In Sec. III
we discuss the relation between the size of the eigenvalue
correlation hole in the complex plane and the eigenvector
localization length.

Second, we find that adding disordered self-interactions
reduces eigenvalue correlations and enhances eigenvector lo-
calization more than random nearest-neighbor connections
alone in Eq. (3). We study this phenomenon for systems
both with and without directional bias, and with and with-
out periodic boundary conditions. Along the way, we make
several interesting observations: In Sec. IV, upon adding
disordered self-interactions to zero directional bias random
nearest-neighbor connections, we observe the formation of
intricate spectral horns in the complex plane, which eluci-
dates the nature of level mixing under increasing intersite
interactions. First-order perturbation theory about basis sets
focused on collections of self-inhibiting and self-exciting
nodes successfully captures eigenvalue spreading in the limit
of weak interactions, and we observe a two-dimensional (2D)
analog of electronic band structure in the complex plane for
this disordered system.

Finally, in Sec. V we study the interplay between direc-
tional bias and boundary effects. The large cycle embodied in
a ring with periodic boundary conditions, coupled with strong
directional bias, leads to eigenvalues confined to a collection
of 1D spectral curves with a nontrivial continuous spectral
flow connected with eigenvector localization. We identify
the spectral curves with equipotential surfaces, generated by
charges placed in the complex plane according to the prob-
ability distribution of the diagonal coefficients. Interestingly,
nonzero directional bias leads to the spatial separation of left
and right eigenvectors with the same eigenvalue. The formal
and physical implications of the asymmetry between left and
right eigenvectors is explored in Appendix B.

This paper concludes with a discussion of the physical
implications of these results as well as open mathematical
questions.
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II. EIGENVALUE CORRELATIONS

A. Random matrix eigenliquid and the statistical
mechanics of interacting particles

To identify two-point eigenvalue correlations, we treat the
eigenvalues as interacting particles in the complex plane and
utilize concepts from statistical mechanics. In this section,
we outline and demonstrate this method using the complex
Ginibre ensemble. The reader is referred to Appendix A for
more details.

The complex Ginibre ensemble [24] consists of random
matrices whose every element has real and imaginary parts
drawn separately from independent Gaussian distributions
[Mjk = Mx, jk + iMy, jk where P(Mx/y, jk ) ∼ exp(−M2

x/y, jk/2)].
Its eigenvalue joint probability distribution function is known
analytically:

P({λ}) ∼ exp

⎡
⎣−βN

⎛
⎝ N∑

i=1

1

2
|λi|2 − 1

2N

∑
i �= j

ln |λi − λ j |
⎞
⎠
⎤
⎦,

(4)

where the inverse temperature β = 2 and the eigenvalues have
been scaled as λi → λi/

√
2N . From Eq. (4), it is apparent that

the eigenvalue distribution map exactly onto a 2D Coulomb
gas under a central harmonic potential. The resulting spectrum
follows a “circular law,” in the sense that eigenvalues are
uniformly distributed inside a unit circle in the complex plane,
with the fraction of eigenvalues lying outside the circle van-
ishing in the limit N → ∞ [see Fig. 3(a)] [38]. As also shown
in Fig. 3(b), similar results are obtained when the Gaussian
distribution is replaced by a box distribution, illustrating that
the results for the Ginibre ensemble are universal for a large
collection of random matrices with all-to-all connectivities
[39].

Within the uniform disk, however, Eq. (4) predicts that
eigenvalues experience logarithmic interparticle repulsion.
The key quantity used to characterize correlations among
interacting particles in equilibrium statistical mechanics is the
radial distribution function g(r), defined in two dimensions as
[40]

ρ̄g(r) = 1

N

〈∑
i �= j

δ(r − |�ri − �r j |)
〉
, (5)

where ρ̄ = N
A is the particle density averaged over the region

of area A containing N particles, and the brackets 〈· · · 〉
denote averaging over the ensemble. Note that if the density
distribution for a single realization is ρ(�r) = ∑N

j=1 δ(�r − �r j ),

then ρ̄ = 1
A

∫
	

d2rρ(�r), where 	 denotes the space of area
A containing all particles. For a particular realization of the
ensemble, g(r) determines the probability of finding a second
particle a distance r away from some first particle, given that
the first particle exists in that realization. Since the right-hand
side of Eq. (5) scales as ∼ 1

N
N2

A , g(r) is expected to be on the
order of unity, as shown in the rest of this paper. Note that the
radial distribution function g(r) from equilibrium statistical
mechanics in two dimensions is also the pair correlation
function of eigenvalues in the complex plane. Henceforth, we

FIG. 3. (a) Left: spectrum of a single N = 1000 realization of
the complex Ginibre ensemble, where the real and imaginary parts
of every matrix element are independently drawn from a Gaussian
distribution with mean 0 and variance 1/2N . Right: pair correlation
function g(r), where �r = [Re(λ − λ′), Im(λ − λ′)] is the separation
between two eigenvalues λ and λ′ on the complex plane, numerically
extracted from and averaged over 20 realizations of N = 5000 matri-
ces from the Ginibre ensemble. Blue shading describes a correlation
hole between g(r) and 1 when g(r) < 1; red shading highlights
the small region between g(r) and 1 where g(r) > 1. The radial
distribution function g(r) vanishes quadratically as r → 0, indicating
logarithmic interparticle repulsion at short distances with β = 2
and eventually approaches 1 as r increases, indicating the decay of
correlations at large separation distances. The black dashed line plots
the analytical expression obtained from direct mapping to a one-
component 2D plasma, as shown in Ref. [38]. (b) Left: spectrum of
a single N = 1000 realization of a random matrix where the real and
imaginary parts of every matrix element is independently drawn from
a uniform distribution with mean 0 and variance 1/2N . The spectrum
looks qualitatively similar to that of the Ginibre ensemble. Right: pair
correlation function g(r), averaged over 20 realizations of N = 5000
random matrices draw from the uniform distribution. The g(r) curve
follows the same functional form as that of the Ginibre ensemble
in (a), illustrating the universality of the correlations embodied in
Eq. (4).

will use “pair correlation function” and “radial distribution
function” interchangeably.

By generating multiple realizations, and upon identifying a
2D vector �rn = (Reλn, Imλn) with each complex eigenvalue
λn, we can count all eigenvalue pairs within a range of
separation distances. After properly normalizing, we obtain
numerically the radial distribution function for the Ginibre
ensemble. As seen in Fig. 3(a), g(r) for the Ginibre ensemble
contains a correlation hole at small r, with a size that scales as
1/

√
N , the typical separation distance between the rescaled

eigenvalues in the complex plane. In fact, g(r) vanishes
quadratically as r → 0, consistent with the logarithmic inter-
particle repulsion in Eq. (4) with β = 2. As r increases, g(r)
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grows and approaches 1, indicating the decay of correlations
at long separation distances, at which particles no longer affect
each other. These behaviors are consistent with the analytical
expression g(r) = 1 − e−Nr2

, derived from direct mapping
onto a one-component 2D plasma [38]. Note the qualitatively
similar behavior for the box distribution shown in Fig. 3(b),
again illustrating the universality of the Ginibre results for
large rank random matrices with independent elements se-
lected from two different probability distributions.

In evaluating the pair correlation function g(r) for the
Ginibre ensemble, we were able to assume a uniform
ensemble-averaged density (ρ̄ is uniform in space). However,
as seen in Fig. 2, the eigenspectra of the random sign model
correspond to a 2D fluid with both anisotropy and an inho-
mogeneous density. In this case, the pair correlation function
does not depend only on the distance between two particles,
but more generally also on the global coordinates of the two
particles (�r1, �r2). Thus, we will now let g(r) → g(r) �R, which
describes the probability of finding a particle at some point �r2

that is a distance r away from some particle at �r1, given that
there is a particle at �r1 and the mean location of the particle
pair is �R ≡ (�r1 + �r2)/2.

B. Level repulsion in nearest-neighbor
hopping models in one dimension

We first examine a nearest-neighbor hopping model in 1D
with no directional bias and no self-interaction [g = ε = 0
in Eq. (3)], while varying the box-width parameter u of the
probability distribution for the hopping term Pu(s) (Fig. 1)
from u = 0 (random sign model) to u = 1 (single box model).
The reason for these choices of parameters will become clear
in Sec. III; the resulting spectra strongly suggest that our
findings apply more generally to a broad class of sparse non-
Hermitian random matrices.

Due to a singular spike in eigenvalue densities on the real
and imaginary axes (see Fig. 2 and Ref. [31]), we extract
our local pair correlation function g(r) �R [denoted as g(r)
henceforth] for the bulk eigenvalues inside quadrants I–IV
and along the real and imaginary axes separately. We treat
the former as a 2D inhomogeneous fluid and the latter as
a 1D inhomogeneous fluid (see Appendix A for details on
numerical methods and normalization procedure). We ap-
proximate the 2D eigenfluid inside the various quadrants to
be isotropic and justify this approximation in Appendix A3
by examining the weak directional variation of g(r) when
r is fr from the coordinate axes. Each local pair correlation
function g(r) shown in Figs. 4 and 5 is averaged over a small
region of the spectrum within which the eigenvalue density
is approximately homogeneous. The right column of Fig. 4
shows the spectra for u = (0, 0.1, 0.5, 0.9), averaged over
100 realizations for each value of u. As u increases, one
can observe that the exact and statistical symmetries of the
eigenvalue distribution, as well as its overall diamondlike
shape, stay the same [31], but details of the fractal edges
become smeared out. Our findings for two-point eigenvalue
correlations are as follows.

First, eigenvalues at a distance sufficiently far from the
origin, and also not too close to the spectral edges so as
to experience boundary effects, are uncorrelated (as in an

FIG. 4. Panels (a)–(d) show the local eigenvalue pair correlation
functions (left) and eigenvalues colored according to the IPR of their
corresponding eigenvectors (right) for random hopping strength vari-
ance u = (0.0, 0.1, 0.5, 0.9) [see Fig. 1 for Pu(s)], zero diagonal ran-
domness (ε = 0), and no directional bias (g = 0) in Eq. (3). Correla-
tion functions in (a)–(d) are averaged over (710 770, 54 000, 54 000,
423 000) realizations of rank N = 5000 matrices, and IPR values are
averaged over (100, 100, 100, 100) realizations of rank N = 5000
matrices. The numbers of realizations are chosen to be sufficiently
large such that the pair correlation functions have converged. The
mean eigenvalue pair locations �R of the pair correlation functions
g(r) are located within the small white box on each spectrum. For
small u, the region near the origin of the eigenspectra contains more
highly delocalized eigenstates; eigenvalues in that region experience
interparticle repulsion. As u increases, the localization lengths near
the origin of the complex plane decrease, and the eigenvalues there
become decorrelated.

ideal gas) for all values of u. However, eigenvalues close to
the origin behave differently. For u = 0, where the nearest-
neighbor matrix elements are randomly chosen to be ±1, g(r)
dips significantly below 1 as r approaches 0 and vanishes for
r = 0, whereas for large r, g(r) grows and plateaus to 1 (Fig. 5
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FIG. 5. (a) The u = 0 random sign spectra, colored by eigen-
vector IPR. Local pair correlation functions g(r) are examined for
eigenvalue pairs in the 9 (0.05 × 0.05) square grids closest to the
origin of the complex plane, enclosed by the magenta box. (b) Nu-
merical correlation data of the random sign spectra fit to gs(r) =
1 − exp [−( r

rcorr
)α]. (c) Quantities corresponding to eigenvalues in

each of the nine square grids. As eigenvalue magnitude increases,
the correlation hole width rcorr decreases, the exponent α decreases,
and the average IPR of the corresponding eigenvectors increases.
(d) Logarithm of the inverse correlation hole width r−1

corr versus IPR,
corresponding to eigenvalues in the 16 square grids closest to the
origin of the complex plane [including the nine shown in (b) and
(c)]. The linear fitting shows exponential dependence, from which
Eq. (8) follows.

and Fig. 4). This behavior is reminiscent of that of the bulk
eigenvalues of the Ginibre ensemble in Fig. 3. In other words,
we discover that for the random sign model, eigenvalues near
the origin experience interparticle repulsion.

The exact form of the repulsion is different from that of
the Ginibre ensemble, as g(r) approaches 0 for small r with
a different functional form than the quadratic vanishing we
see in Fig. 3 (Sec. III). The left of Fig. 4 shows examples
of g(r) for the eigenvalues close to the origin, averaged
over (710 770, 54 000, 54 000, 423 000) realizations for u =
(0, 0.1, 0.5, 0.9), respectively. The regions of the spectra for
which we evaluate the local g(r) are indicated by small, white,
off-center squares on the right of Fig. 4. As the box width u
increases, the region near the origin of the complex plane in
which eigenvalue pairs experience repulsion with each other
shrinks. When u is large enough, the eigenvalues are entirely
uncorrelated, and the correlations approximate those of an
ideal gas everywhere in the spectrum.

We have applied the same analysis to eigenvalues on the
real and imaginary axes, treating them as 1D ensembles. The
statistical symmetry of the spectra under 90◦ rotation [31] en-
sures identical behavior on these two axes. Since axial eigen-
values near the edge of the spectra exhibit fractal modulations
in the eigenvalue density, we examine axial eigenvalues in
the region near the origin of the complex plane, where the
average eigenvalue density increases linearly along the axis,
with increasing distance from the origin [31]. The behavior of
g(r) for the axial eigenvalues in this region, as a function of
probability distribution box width u, is qualitatively consistent
with that of the bulk correlations. Specifically, the range
and strength of 1D eigenvalue repulsion along the axes, as
well as the radial extent along the axes in which eigenvalues
experience that repulsion, are largest for u = 0 and decrease
as u increases. The correlations vanish as u → 1.

Finally, we also examined the evolution of the eigenspectra
under other balanced bimodal distributions, specifically a
bimodal Gaussian distribution centered at ±1. The results are
qualitatively similar: as the variance of the Gaussian increases,
delocalized states and eigenvalue repulsion both disappear.

III. EIGENVALUE REPULSION AND EIGENFUNCTION
DELOCALIZATION

What determines the regions in the eigenspectra over
which the eigenvalues experience interparticle repulsion? To
better understand our findings in the previous section, we
examine the localization properties of the eigenfunctions.

The main metric we use to characterize the degree of
localization of an eigenfunction is the inverse participation
ratio (IPR), defined as follows: For the nth eigenvalue λn, the
IPR of the right eigenfunction ψR

n is

IPR(λn) ≡

⎧⎪⎨
⎪⎩
[∑

i

∣∣ψR
n (i)

∣∣2]2

∑
i

∣∣ψR
n (i)

∣∣4
⎫⎪⎬
⎪⎭

−1

, (6)

where |ψR
n (i)| is the amplitude of the nth right eigen-

function at site i. Here we focus on localization proper-
ties of the right eigenfunctions of the asymmetric random
matrices. The left eigenfunctions, as well as the the inner
product of the left and right eigenfunctions, behave in a simi-
lar fashion for g = 0 (see Appendix B). The IPR varies from
being O(1/N ) for eigenfunctions spread uniformly across all
sites to O(1) for those localized near a specific site. For each
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spectrum examined in this work, we have also calculated the
Lyapunov exponents and confirmed that they are consistent
with the behavior of the IPR.

Heat maps of the IPR for the random hopping eigenspectra
with box widths u = (0.0, 0.1, 0.5, 0.9) are shown on the
right of Fig. 4. For u = 0, the localization lengths of the
eigenfunctions diverge as their eigenvalues approach the ori-
gin, as analyzed in detail in Ref. [31]. More generally, for
small u, there is a region near the origin of the eigenspectra
that contains rather delocalized eigenstates. Note that as u
increases, the region of extended states centered at the origin
of the complex plane shrinks and disappears, such that the
complex plane is eventually populated entirely by localized
eigenstates as u → 1.

These findings correlate strongly with our results on eigen-
value repulsion from the previous section: the eigenvalue re-
pulsion near the origin is present only when the more extended
eigenvectors are also present. Conversely, when states are
highly localized, as near the edge of the spectrum for u = 0, or
everywhere in the complex plane for u = 0.9, there is no level
repulsion and the eigenvalues behave like an ideal gas. We
have observed this connection between eigenvalue repulsion
and extended eigenstates for all non-Hermitian random matri-
ces we have examined. There is no way for highly localized
eigenfunctions at very different locations in a 1D lattice to
know about each other, so it is plausible that their eigenvalues
are uncorrelated. Similar correlations for eigenvalue spacings
along the 1D real axis and Anderson localization have been
seen in various Hermitian disordered systems by studying
the nearest-neighbor spacing distribution (see, for example,
Refs. [37,41]). We conjecture here, for non-Hermitian random
matrices with a complex spectrum, that when the eigenfunc-
tions are delocalized, their complex eigenvalues repel each
other, and conversely, when eigenvalues repel each other, their
eigenfunctions are delocalized.

We can make this connection more precise using the spec-
tra of the u = 0 random sign model. Figure 5 shows the local
correlation functions g(r) in the nine (0.05 × 0.05) square
grids closest to the origin of the complex plane, enclosed
by the magenta box in the spectra shown in the top panel.
Motivated by the correlation function of the Ginibre ensemble
gG(r) = 1 − exp(−Nr2) (Fig. 3), we fit the numerical corre-
lation data of the spectra for the u = 0 random sign model to
the function

gs(r) = 1 − exp

[
−
(

r

rcorr

)α]
, (7)

which allows us to extract the width of the correlation hole
rcorr and the exponent α characterizing the vanishing of the
correlations as r goes to 0. As shown in Fig. 5(c), as the
magnitude of the eigenvalue (i.e., its distance from the origin)
increases, the correlation hole rcorr decreases (the spatial
extent of the interparticle repulsion shrinks) and the exponent
α decreases [the correlation function g(r) approaches 1 more
sharply as r increases]. Furthermore, the inverse correlation
hole width r−1

corr appears to depend exponentially on the IPR
[Fig. 5(d)]. In 1D systems, the IPR is in fact just the inverse
of the localization length lloc [42]. Upon rescaling r̄corr =
rcorr

√
N and l̄loc = lloc/N , where 1/

√
N is the average inter-

particle spacing of N eigenvalues spanning a 2D complex

spectrum of area O(1) and l̄loc measures the fraction of the
N-site ring occupied by an eigenfunction, we find that the
eigenvalue correlation hole width r̄corr and the eigenvector
localization length l̄loc are related as follows:

r̄corr = c1 exp

(
− c2

l̄loc

)
, (8)

where c1 = 2.4 ± 0.2 and c2 = 0.196 ± 0.005. According to
the conjecture embodied in Eq. (8), r̄corr vanishes in the limit
of strongly localized eigenvectors (l̄loc → 0) and increases
when eigenvectors become more delocalized (l̄loc increases).

The interpretation of this relation between eigenvalue re-
pulsion and eigenvector delocalization for neural networks
is as follows: The nth eigenmode of the connectivity matrix
M in a dynamical model like Eq. (1) corresponds to a firing
pattern ψn(i); the pattern is selectively distributed over certain
neurons according to the sites i at which the eigenfunction
amplitude is nonzero, and these neurons collectively fire,
with growth or decay, and oscillations of the firing rates
controlled by the complex eigenvalue λn. Given two distinct
firing patterns corresponding to two eigenmodes of the con-
nectivity matrix M, the higher the number of active neurons
participating in each of these firing patterns (i.e., the more
delocalized the normal modes), the more separated their firing
frequencies and growth and decay rates, represented by the
eigenvalues in the complex plane.

We also comment on the universality of eigenvalue corre-
lations for large rank random matrices. First, recall that, as
illustrated in Fig. 3, eigenvalue correlations of dense non-
Hermitian random matrices are insensitive to changes in the
specific shape of the matrix element probability distribution.
For example, in the Ginibre ensemble, each matrix element is
independently drawn from a Gaussian distribution, yielding
the correlations in Fig. 3(a). If the elements were instead
drawn from a box distribution with the same mean, the
pair correlation function g(r) does not change except up to
a possible rescaling of r [43], as illustrated in Fig. 3(b).
In contrast, the sparse 1D non-Hermitian random matrices
studied here are more sensitive to variations in the matrix
element probability distribution (see Fig. 4). The eigenvalue
correlations change qualitatively with the parameter u in
the matrix element probability distribution. Nevertheless, the
behavior of the spectra for the large N random 1D hopping
models considered so far are invariant to changes in boundary
conditions (open or periodic). This insensitivity to boundary
conditions will be violated dramatically for the models with
directional bias examined in Sec. V.

IV. EFFECTS OF SELF-INTERACTION

Generally, network models incorporate self-interactions
via nonzero diagonal elements. In biological networks, these
feedback effects are referred to as “self-inhibition” (or “self-
regulation”) when the diagonal matrix element is negative and
“self-excitation” when the diagonal matrix element is positive.
In condensed matter physics, such couplings are exemplified
by “onsite disorder” [44]. In this section, we take ε > 0, the
strength of the diagonal disorder in Eq. (3), in order to study
the effects of self-interactions through probabilistic on-site
elements with random signs in the connectivity matrix M of,
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say, a neural network. In general, one could consider a wide
variety of probability distributions for the self-interacting
coefficients. We focus our attention here on the case of the
random sign distribution Pv=0(d ) for the diagonal matrix ele-
ments [identical in form to the probability distribution Pu=0(s)
for the random nearest-neighbor connections], because it
exhibits important new features and is tractable enough for
analysis.

A. Eigenfunctions in an eigengas generated
by diagonal disorder are localized

How do disordered self-interactions affect the spectrum
and the localization of its eigenfunctions compared to the
hopping-only random sign model? To answer this question,
we first study Eq. (3), with g = 0 and strictly bimodal ±1 in-
teractions for both the hopping and diagonal matrix elements,
i.e., with probability distributions Pu=0(s) and Pv=0(d ) shown
in Fig. 1. However, we now vary the relative magnitude of the
diagonal disorder by tuning the parameter ε > 0.

Upon turning on the random self-interaction strength ε

with diagonal probability distribution Pv=0(d ) (i.e., the diag-
onal matrix elements are ±ε, each with probability 1/2), the
nearly extended states shown near the origin at the top panel
of Fig. 4 start to disappear. By the time ε reaches 1, such
that the self-interactions have the same level of disorder as
the hopping interactions, all eigenstates are strongly localized.
The resulting eigenvalue distribution and variation in eigen-
vector localization, averaged over 200 realizations, are shown
in Fig. 6. Examination of eigenvalue correlations reveal the
radial distribution function g(r) ≈ 1 for all regions in the com-
plex plane within the spectral support. An example is shown
in the inset of Fig. 6. In other words, the addition of strong
diagonal randomness decorrelates all eigenvalues; the eigen-
fluid studied in Sec. II has lost its interparticle interactions and
behaves instead as a 2D ideal gas. We performed the same
analysis for nonzero distribution box width u > 0 and found
the same results qualitatively—eigenvalues do not experience
correlations and all eigenvectors are strongly localized. These
results are consistent with our findings from Sec. III and
confirm our conjecture that localized eigenfunctions lead to
no level repulsion.

B. Spectral horn formation and complex
level mixing in the complex plane

The second intriguing feature of Fig. 6 is the accumulation
of eigenvalues onto a pattern of spectral “horns,” whose
real parts are predominantly at ±1 on the complex plane.
(For large N random matrices with g = 0, these and other
features of the spectra described here and in the following are
insensitive to applying open or periodic boundary conditions,
as for the random hopping model.)

It is useful to observe the formation of these spectral horns
from a different regime, starting with strong self-interactions
and negligible interactions between sites (ε → ∞). As ε is
gradually reduced, the random hopping terms, with proba-
bility distribution Pu=0(s), become more important, and the
eigenspectra evolve as in Fig. 7. The spectral horns at ±ε

emerge because the self-interaction coefficients are distributed

FIG. 6. (a)–(c) Spectra of Eq. (3) with random sign nearest-
neighbor coupling probability Pu=0(s) and random sign self-
interactions distribution Pv=0(d ) as the self-interaction strength ε is
increased from 0. (d) Spectra of Eq. (3) when random self-interaction
and random hopping have equal strengths, with g = 0 and ε = 1.
Eigenvalues form four new hornlike boundaries hovering above and
below ±1 along the real axis, which are the values of the diagonal
elements ±ε. Compared to the random sign hopping spectrum at
the top of Fig. 4, the addition of random on-site disorder removes
both the eigenvalue repulsion and the weakly localized eigenstates
near the origin of the complex plane. The lower inset shows the
radial distribution function g(r) with mean pair location �R in the
small white box near the origin, averaged over 9000 realizations of
N = 5000 matrices. The pair correlation function g(r) is a flat line
at 1, showing the eigenvalues behaving like an ideal gas with no
correlations.

at ±ε. When hopping interactions are turned on, eigenvalues
bloom from their degenerate point condensations on the real
line into almost-continuous patches in the complex plane. This
phenomenon is the non-Hermitian analog of band theory in
quantum condensed matter, where, when isolated identical
atoms are brought closer together and begin interacting as they
do in dense solids, single-atom energy levels broaden into a
continuous electronic band structure.

In the context of neural networks, the atomic orbitals which
lead to discrete energy levels are replaced by self-inhibiting
and self-exciting neurons. For large ε, if one scales out ε,
these neurons at first do not interact with each other and
exhibit locally either purely growing and saturating or purely
decaying firing rates. As ε is decreased and connections
between neurons become more important, the eigenspectrum
expands about ±ε on the real axis, and the firing patterns each
spread out over more participating neurons (marked by the
small but noticeable decrease in the IPR for eigenfunctions
with eigenvalues close to the origin in Fig. 6) and experience
a richer set of oscillatory and growth and decay behavior.
However, the presence of self-inhibition and self-excitation
still dominates the dynamics. For the situation shown in Fig. 7,
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FIG. 7. (a)–(c) Spectra of Eq. (3) with random sign hopping
Pu=0(s) (i.e., s+

j and s−
j = ±1 with equal probabilities) and random

sign self-interactions Pv=0(d ), where the self-interaction strength
is much greater than the hopping interaction strength, ε � 1. The
clustering of eigenvalues around the spectral horns at ±ε is due
to the self-interaction coefficients being distributed at these values.
When hopping interactions are turned on, eigenvalues bloom from
their degenerate point condensations at ±ε on the real line into two
almost-continuous patches in the complex plane. (d) First-order per-
turbation theory in 1/ε about a system of two disconnected subnet-
works, consisting of only self-exciting neurons or only self-inhibiting
neurons, captures the start of the spectral blooms at ε=104.
The neural connections kept in this approximation are shown in the
schematic.

with the spectrum centered on the origin, the eigenmodes
separate into a group of mostly growing modes and a group
of mostly decaying modes, as indicated by the high-density
patches of eigenvalues within the spectral horns centered
at ±ε. We study this phenomena quantitatively and extract
further physical insights using a perturbative approximation
in the following section.

C. Perturbation theory in 1/ε

Given a connectivity matrix M, one can always reshuffle
the basis to restructure M in terms of the following matrix
blocks: the matrix of all connections between neurons that
are self-excitatory M+1, the matrix of connections between
all neurons that are self-inhibitory M−1 (we explicitly exclude
diagonal matrix elements from M+1 and M−1), the matrix of
connections from self-exciting neurons to self-inhibiting neu-
rons C+−, and the matrix of connections from self-inhibiting
neurons to self-exciting neurons C−+:

M = ε

[
1N+ 0

0 −1N−

]
+
[

M+1 C+−
C−+ M−1

]
, (9)

where N+ and N− are the number of self-exciting and self-
inhibiting neurons, respectively, and M±1 and C±∓ all contain
elements of order O(1). For 1/ε � 1, one can neglect the off-
diagonal matrices C+− and C−+, since their contribution to
the eigenvalue vanishes to first order in perturbation theory.
M can then be approximated in block diagonal form:

M ≈
[
ε1N+ + M+1 0

0 −ε1N− + M−1

]
. (10)

Upon comparing the eigenvalues of Eq. (10) to those from the
exact diagonalization of the full matrix M, we see that this
perturbative approximation captures the start of the spectral
bloom perfectly [Fig. 7(d)].

For neural networks, this approximation implies that when
the random hopping interaction strengths are weak compared
to the self-interactions, the neural network can be approxi-
mated by two subnetworks of only self-exciting neurons and
only self-inhibiting neurons, and connections between the
subnetworks can be neglected (see schematic at top left of
Fig. 7).

V. COUPLING SELF-INTERACTIONS WITH STRONG
DIRECTIONAL BIAS

Thus far, we have examined Eq. (3) for different scenar-
ios all without directional bias [i.e., g = 0 in Eq. (3)]. The
parameter g controls the directionality, or orientability, of the
network and has been examined in the context of random hop-
ping models motivated by vortex physics in high-temperature
superconductors and neural networks [31,45]. In this section,
we study the infinite bias limit of an oriented network (the
“one-way” model of Feinberg and Zee [35]) with the addition
of random self-interactions.

Mathematically, an “oriented graph” is a graph where there
can exist only one directed connection between any pair of
nodes. In the language of the matrix model in Eq. (3), only
one of Mi j and Mji can be nonzero. In the case of a 1D ring
network, the most interesting case is when all connections
are pointed in the same direction. If the directionality is
counterclockwise, M has only a nonzero superdiagonal and a
zero subdiagonal, as well as a nonzero corner matrix element
in the lower left. (Clockwise directionality leads to similar
structure on the subdiagonal and in the upper right corner.)
Such systems can be understood via the recursion relation for
the cofactor expansion of a cyclic, tridiagonal matrix, from
which one can easily show that the eigenvalues all condense
onto ±ε for all other cases. A schematic of such a network,
which we examine in the following subsections, is shown at
the top left of Fig. 8.

A. From resolvent to eigenvalue distribution:
An electrostatics connection

There are well-known connections [28,32,46–49] between
non-Hermitian random matrix theory and 2D electrostatics in
the complex plane. For example, the trace of the resolvent (or
Green’s function) of a random matrix M,

G(z) = 1
M − z

, (11)
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FIG. 8. (a) Comparison of the spectra under open boundary
conditions (OBCs) and periodic boundary conditions (PBCs) cor-
responding to one realization (N = 300) of the matrix M′ shown
in Eq. (15), which arose from the large g limit of Eq. (3),
with equal strength random hopping and random self-interactions
(ε ′ = 1). Breaking a single link of the ring (dashed arrow in the
top left schematic) changes the spectrum entirely; the spectrum
condenses onto two points with degeneracy N/2 when the cycle
is broken. (b) Amplitudes of the right and left eigenvectors |ψR|
and |ψL| corresponding to an eigenvalue close to 0 in the PBC
spectrum [large blue dot in (a)]. (c) Amplitudes |ψR| and |ψL|
corresponding to the eigenvalue with the largest real part in the PBC
spectrum [large red dot in (a)]. The eigenvectors in (b) and (c) show a
drastic difference in their degrees of localization. In addition, the left
and right eigenvectors corresponding to the same eigenvalue show
different centers of localization.

is related to an electrostatics potential φ, whose corresponding
charge distribution gives us the eigenvalue density of states
ρ(z) in the complex plane:

4

N
∂z̄ Tr G(z) = − ∂2

∂z∂ z̄
φ(x, y) (12)

= −
(

∂2

∂x2
+ ∂2

∂y2

)
φ = −4πρ(z), (13)

where x and y, respectively, denote the real coordinate and the
imaginary coordinate, and z and z̄ denote a complex number
x + iy and its conjugate. Note that TrG(z) is itself closely
related to the electric field associated with the charge distri-
bution ρ(z). For sparse, oriented, and locally treelike graphs
with no cycles, the trace of the resolvent can be calculated via
the cavity method [28]:

Tr G(z) =
N∑

j=1

1

d j − z
. (14)

Note that this result depends on the random diagonal ele-
ments of M and is independent of any random off-diagonal
elements of M. According to Gauss’s law of electrostatics,
the charge distribution on an equipotential surface generates,
in the region of space that is otherwise without charge, the
same electric field that results when all charges act as if they
are concentrated at the origin of the complex plane.

For a bidiagonal “one-way” matrix M [accessible by taking
an appropriate g → ∞ limit in Eq. (3); see below] with
no corner element [i.e., Eq. (3) without periodic boundary
conditions] and hence no cycles, Eq. (14) says that ρ(z) =
0 for |z| > max j d j [28]. This conclusion also holds for any
noncyclic bidiagonal matrix, where the eigenvalues simply
take on the values of the diagonal elements λ j = d j .

However, upon imposing periodic boundary conditions, the
spectral distribution changes dramatically and leads to a rich
variety of eigenvalue correlations and eigenvector localization
within the spectrum. In the next subsection, we examine
the model in Eq. (3) with self-interactions ε � 0 and strong
(counterclockwise) directional bias g → +∞. To have a well-
defined limit, we rescale the matrix M in Eq. (3) and study
the properties of M′ = e−gM in the limit g → ∞, setting
ε′ = εe−g. Thus, we shall be interested in the spectra and
eigenvalues of

M′ =
∑

j

[s+
j | j + 1〉〈 j| + ε′d j | j〉〈 j|], (15)

where ε′ is fixed and {s+
j } and {d j} are random numbers drawn

from the bimodal probability distributions Pu(s) and Pv (d )
displayed in Fig. 1.

B. Spectral curve confinement:
Another electrostatics connection

As shown in Fig. 9, upon imposing absolute directionality
onto the network in Eq. (3), the spectrum becomes confined
to a 1D locus in the 2D complex plane. Spectral curves of
one-way non-Hermitian random matrices with onsite disorder
were studied previously in Ref. [50]. We repeat these calcula-
tions here to elucidate the shape of the spectral curves studied
in this section; in particular, we show that curves such as
those in Fig. 9 correspond exactly to equipotential surfaces
resulting from a charge distribution placed in the complex
plane according to the probability distribution of the diagonal
elements Pu(d ), with the potential determined by the log-mean
of ratio of the superdiagonal hopping magnitude s+ to the
strength of the rescaled diagonal disorder ε′, 〈ln |s+/ε′|〉.

To derive this result, consider the oriented random connec-
tivity matrix M′ defined by Eq. (15),

M′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε′d1 s+
1 0

0 ε′d2 s+
2 0

. . .
. . .

0 ε′d j s+
j+1
. . .

. . .
0 0 ε′dN−1 s+

N−1
s+

N 0 ε′dN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(16)

and use a cofactor expansion to calculate the characteristic
polynomial for the eigenvalues,

N∏
j=1

(
d j − λ

ε′

)
= (−1)N−1

N∏
j=1

(
s+

j

ε′

)
. (17)
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FIG. 9. When the network in Eq. (3), rescaled as M′ in Eq. (15),
has absolute directionality [the limit g → +∞ in Eq. (3) up to
rescalings], the eigenvalue spectrum collapses onto a 1D curve that
corresponds exactly to an equipotential surface resulting from a set
of charges placed on the complex plane according to the probability
distribution of the diagonal coefficients Pv (d ). The potential V of
the spectral curve is determined by ln ε ′ [Eq. (19)]. Equipotential
curves with negative potentials V = ln ε ′ < 0 expand outwards away
from the two central charges and, in the limit of ε ′ � 1, recover
the radially symmetric eigenvalue distribution for a zero-diagonal
one-way hopping matrix. As the random self-interactions start to
dominate over hopping disorder (ε ′ � 1), the eigenvectors of the
spectrum also become more localized, with the most localized states
occurring near the central charges on the complex plane. (a) The
evolution of spectral curves (left) and their eigenvector IPRs (right)
when the diagonal coefficients follow the random sign distribution,
corresponding to the equipotential surfaces resulting from two like
charges placed at ±1 on the real line. (b) The evolution of spectral
curves (left) and eigenvector IPRs (right) when the distribution of
the diagonal coefficients corresponds to the placement of four like
charges at ±1 and ±0.5 on the real line. The IPRs of each spectral
curve is averaged over 20 realizations of matrices with rank N = 300.

We first multiply Eq. (17) by its complex conjugate, and then
take the square root and logarithm of both sides. We then note
that, by applying the law of large numbers,

lim
N→∞

1

N

N∑
j=1

ln

∣∣∣∣∣ s
+
j

ε′

∣∣∣∣∣ ≡
〈
ln

∣∣∣∣ s+

ε′

∣∣∣∣
〉
, (18)

as also shown in Ref. [50]. In the continuous limit, relabeling
d j → d , and rescaling λ

ε′ → λ, the spectral curves of Fig. 9
satisfy ∫

dd ′ρ(d ′) ln
1

|d ′ − λ| = −
〈
ln

∣∣∣∣ s+

ε′

∣∣∣∣
〉

≡ V, (19)

where ρ(d ′) ≡ Pv (d ′) is the probability distribution of the
diagonal random variable.

From Eq. (19), an analogy with 2D electrostatics is im-
mediately apparent: ρ(d ) is the distribution of like charges in
the complex plane, while the potential V experienced by a test
charge on the equipotential surface is given by the log-mean of

the absolute value of the hopping variable times the ratio of the
hopping interaction strength and the self-interaction strength:
−〈ln | s+

ε′ |〉. In the special case of the bimodal box distribution
Pu(s) with box distributions centered at ±1 for the hopping
matrix elements, 〈ln |s+|〉 = 0, and the potential determining
the spectral curve is just ln ε′.

This connection is explicitly illustrated in Fig. 9. For
a random sign diagonal distribution Pv=0(d ) and bi-
modal hopping term distribution Pu(s) with equal self-
interactions and hopping strengths ε′ = 1, ρ(d ) ≡ Pv=0(d ) =
1
2 [δ(d − 1) + δ(d + 1)] and Pu(s+) = U (−1 − u,−1 + u) +
U (1 − u, 1 + u), where U denotes the bounded uniform dis-
tribution shown in Fig. 3. Equation (19) for the eigenvalue
distribution then assumes a particularly simple form,

1
2 (ln |1 − λ| + ln |1 + λ|) = 0, (20)

which explains the infinity-shaped spectral shapes shown in
the top panels of Fig. 9. This relation holds true regardless of
the value of the box width u of bimodal distribution of the
nearest-neighbor connections s+, as long as N is large enough
for central limit theorem to apply. Equation (20) reveals that
the complex eigenvalues must lie on the V = 0 equipotential
surface resulting from two like charges placed at ±1 on the
real line.

On the other hand, if the random self-interaction strength
becomes stronger than the hopping strength ε′ > 1, then
the potential V of the equipotential curve as indicated
on the RHS of Eq. (19) becomes positive. With increasing
ε′, the eigenvalues condense onto equipotential surfaces ever
closer to the central source charges on the real line.

When the nearest-neighbor connections instead exceed the
self-interaction strength, ε′ < 1, the potential V of the equipo-
tential curve decreases to negative values and the spectral
curves expand farther away from the charges determined by
the diagonal elements. In the limit of ε′ � 1, i.e., V → −∞,
the complex eigenvalues are large enough so that the charge
distribution created by the diagonal disorder appears as a
single point charge at the origin, which recovers the radially
symmetric eigenvalue distribution for a zero-diagonal one-
way hopping matrix [31].

Equation (19) holds true for any probability distribution
ρ(d ) of the diagonal element. The bottom panels of Fig. 9
show the evolution of equipotential spectral curves for vari-
able Pu(s) and with the diagonal probability distribution
ρ(d ) = 1

4 [δ(d − 1) + δ(d − 1
2 ) + δ(d + 1

2 ) + δ(d + 1)].
It is important to note, however, that although Eq. (19) tells

us where the eigenvalues are allowed to be—on an equipoten-
tial curve—it does not reveal how they are distributed on the
curve, nor does it reveal how the IPR behaves on this curve.
These issues are addressed in the next section.

C. Continuous evolution of eigenvector localization length
and eigenvalue correlations along the spectral curve

It is known that the eigenspectra for the directional net-
works, with s+

j = ±1 random hopping but no disorder on
the diagonal, have strongly delocalized eigenvectors similar
to plane waves [31]. Indeed, after making a simple similarity
transformation determined by the particular realization of the
superdiagonal disorder, eigenvalues and eigenvectors can be
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FIG. 10. (a) and (b) The evolution of eigenvalue positions (a) and
right eigenvector localization measured by the IPRR (b), for a fixed
set of ±1 self-interacting and ±1 hopping elements [N = 300 ma-
trices drawn from Pv=0(d ) and Pu=0(s)], with the relative strength
of the self-interactions ε ′ tuned from 0 (green points) to 1 (purple
points). (c)–(f) The eigenfunction localization behavior, quantified
by ln IPRR(λkn ), as a function of ε ′, following seven individual
eigenvalue trajectories originating from four distinct wave numbers
kn in the ε ′ = 0 spectrum. These images suggest that the ε ′ = 0 wave
numbers play a role in “assigning” localization properties to the
eigenvectors of certain eigenvalues as the nonzero self-interactions
are turned on. The eigenvector of the eigenvalue with the largest
real part localizes drastically. On the other hand, the eigenvector
of the eigenvalue closest to 0 stays delocalized. (g) IPRR(λkn ) as ε ′

increases from 0 to 1 for four distinct values of kn corresponding to
(c)–(f).

found analytically to be

λkn = eg+ikn , (21)

〈x|ψkn〉 = 1√
N

eiknx, (22)

where

kn = 2πn

N
, n = 0, 1, 2, . . . , N − 1. (23)

Note that Eq. (21) and (22) imply extended eigenfunctions and
a spectrum with an elliptical shape in the complex plane in the
limit ε′ → 0.

Remarkably, however, upon incorporating nonzero self-
interactions with strength ε′ = 1 with a random sign distri-
bution Pv=0(d ), we find that the spectra not only transforms
into the distinct shape of an infinity symbol (as shown in
Fig. 9) but also acquires right eigenstates with an entire range
of localization lengths (see the two eigenfunctions shown
in Fig. 8). The top of Fig. 10 shows, for a fixed set of
±1 self-interactions and ±1 hopping elements drawn from
Pv=0(d ) and Pu=0(s), respectively, the variation in eigenvalue
position (left) and eigenvector localization (right) as the self-
interaction strength ε′ is tuned from 0 to 1. The rest of Fig. 10
shows how the localization indicator ln |IPRR(λkn )| evolves as
a function of ε′ for seven individual trajectories originating
from four distinct wave numbers kn, shown in Eq. (23) for
the ε′ = 0 spectrum. Similar to the winding numbers studied
in Ref. [32], these wave numbers can be used to classify
localization properties of the eigenvectors in the presence of
nonzero self-interactions. Importantly, when self-interactions
are incorporated into the oriented ring network, the principal
eigenvector (the eigenvector corresponding to the eigenvalue
with the largest real part) transforms from being completely
delocalized to being highly localized [see Fig. 8(c) and
Fig. 10]. Such eigenvectors dominate long-term dynamics of
systems linearized about some equilibrium state (see the next
section and Appendix B). As shown for the ring network
studied in Ref. [23], the principal eigenvector of the connec-
tivity matrix of a neural network dictates the sustained activity
associated with short-term memory, and the presence of a
localized principal eigenvector is associated with short-term
memory storage of information regarding a specific spatial
direction.

We leave for future work an elucidation of both the density
of states along this family of continued spectral curves and
the intriguing continuous variation of eigenvector localization
properties. We emphasize again that both strong directionality
and cycle lengths of the order of the system size appear to be
necessary ingredients for producing these striking spectra.

D. Consequences of nontrivial distinction
between left and right eigenvectors

In this work, we have focused on the localization properties
of the right eigenvectors ψR

n ( j), which appear naturally in,
say, neural dynamics problems such as Eq. (2) when the
firing rate is expanded according to r j (t ) = ∑

n cnψ
R
n ( j)eλnt .

In systems with no directional bias (e.g., the random sign
model examined in Sec. II), we find that the left and right
eigenvectors are identical (see Appendix B). However, when
nonzero directionality bias is present, left and right eigen-
functions corresponding to the same eigenvalue can differ in
both localization lengths and the positions of their centers
of localization (see Fig. 8). This dichotomy has interesting
consequences, both formally and physically. Formally, the
distinction between left and right eigenvectors means that one
can define an alternative metric of localization using left-right
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eigenvector inner products,

IPRLR(λn) =
{[∑

i

∣∣ψL
n (i)ψR

n (i)
∣∣]2

∑
i

∣∣ψL
n (i)ψR

n (i)
∣∣2
}−1

, (24)

which yields different results from the IPR defined by Eq. (6)
for systems with nonzero directional bias. Physically, the spa-
tial separation between left and right eigenvectors manifests
in a nontrivial distance between the response and excitation
signals in a neural network. This can be seen via the signal
propagator. For zero input hi(t ) in Eq. (2), the propagator takes
the following form [51]:

Gi j (t ) =
N−1∑
n=0

ψR
n (i)ψL

n ( j)eλnt−t/τ . (25)

Upon applying the biorthogonality property of left and right
eigenvectors with proper normalization

∑
n ψR

n (i)ψL
n ( j) =

δi, j , one can verify that Eq. (25) reduces to the Kronecker
delta function δi, j at t = 0. As seen in Eq. (25), for a pair of
right and left eigenvectors peaked, respectively, at i and j, an
excitation signal at j triggers a response at i. When directional
bias is nonzero, the right and left eigenvectors peak at different
locations separated in space. Thus, even when the left and
right eigenvectors are individually localized, they can com-
municate over a large spatial region. Various aspects of the left
and right eigenvectors are further explored in Appendix B.

VI. DISCUSSION AND OUTLOOK

A. Implications for more complicated networks

Knowledge of the spectral properties of sparse non-
Hermitian random matrices is critical for determining the
behavior of real-world networks and also necessary for de-
vising practical methods for understanding network data. In
this paper, we briefly highlighted the implications of our
results for the dynamics of a ring neural network. However,
spectral properties of eigenvalues and eigenvectors can be
key for analyzing other types of networks, including those
with a percolation threshold and networks where the relative
importance (centrality) of nodes plays a key role [4].

Focusing on a simple 1D network allowed us to iden-
tify important network ingredients, such as random nearest-
neighbor connections, random self-interactions, large loop
structure, and strong directional bias. Ideas and results from
this paper may shed light, on different levels, on more gen-
eral networks with higher node degrees (dimensionality) and
structure types, as summarized below.

1. Eigenvalue repulsion and eigenvector localization

The phenomena of eigenvalue repulsion arising only for
more extended eigenstates (Sec. III) might conceivably be a
property of all non-Hermitian random matrices, regardless of
their degree of sparsity and underlying spatial structure. Al-
though the numerical evidence in this paper is consistent with
this conjecture, new mathematical tools may be necessary to
prove this connection convincingly. Note that although the
inverse participation ratio (IPR) may no longer be precisely

the inverse of a physical localization length outside of strictly
1D networks, it can still be used as a measure of the inverse
cluster size for eigenmodes in more general sparse networks.

2. Properties of random 1D systems

In Sec. III and Sec. IV, we studied how nonzero ran-
dom self-interactions and a spreading distribution in nearest-
neighbor connection strengths lead to eigenvector localization
and eigenvalue decorrelation for 1D models. When random-
ness in the self-interactions is strong enough, all eigenvectors
become highly localized, and there are negligible correlations
among the eigenvalues in the spectra, though strong direc-
tional bias [large g in Eq. (3)] makes the system more resistant
to this outcome.

Unlike the more general conjectures in the section immedi-
ately above, our computations focused on a 1D network rep-
resented by a tridiagonal random matrix, with corner matrix
elements used to implement periodic boundary conditions.
Random graphs with this structure can arise in the analysis of
certain complex systems, which contains spatial scales where
spatially local couplings are prevalent. Examples include bi-
ological networks such as the ring attractor neural network
[30], matrices that describe DNA single-nucleotide polymor-
phism data [52], and even complex systems in economics,
which can sometimes be approximated by decomposable ma-
trices [53–55]. An alternative set of unidimensional systems
also arise naturally in the temporal ordering of time series
data [56]. In these areas, eigenvector localization properties
are critical to the functioning of different spectral algorithms
used for detecting network boundaries and temporal patterns
[55,57–59].

3. Extendibility to low-dimensional graphs

It would be interesting to explore whether the results of the
1D models studied in this paper are extendible to similarly
structured networks with more degrees of freedom associated
with each node, similar to the three sites per node model
studied in Ref. [31]. More generally, we can ask: What is the
effect of competing self-interaction disorder and connectivity
disorder on eigenvector localization and eigenvalue repulsion
in low-dimensional graphs?

Low-dimensional graphs are ubiquitous in nature and ap-
pear often in the form of planar networks, such as leaf
vasculature and water networks [60]. Both diffusion between
nodes [analogous to the hopping terms in Eq. (3)] and directed
motion [controlled by the parameter g for Eq. (3)] appear
naturally in these models. The higher-dimensional connec-
tivity embodied in the branching networks, however, raises
interesting questions, such as different ways of distributing
the connection number per node within a connected space.

B. Challenges in mathematics

Rigorous results for sparse non-Hermitian matrices are
difficult to obtain since it is challenging to apply standard
random matrix theory tools, and proofs of convergence for
eigenvalues and eigenvectors in the thermodynamic limit of
large rank matrices remain elusive [28].
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In this work, we explored properties of sparse non-
Hermitian random matrices, predominantly through numer-
ical random matrix experiments that highlight the need for
more precise mathematical descriptions.

One question is: How can we derive a mathematical de-
scription of the relation between complex eigenvalue repul-
sion and eigenstate delocalization? Eigenvalue repulsion and
eigenstate delocalization with interactions in sparse Hermi-
tian systems are currently of interest in quantum many-body
systems [61,62]; it would be interesting to see if methods
developed for quantum systems could be carried over to non-
Hermitian systems.

Another question is: What is the effect of large cycles
on the spectral properties of sparse random matrices? An
important technique used for calculating the spectral density
of sparse non-Hermitian random matrices is the cavity method
[7], which has been successful in determining the spectral
gap and distribution of outlier eigenvalues and eigenvectors.
The presence of large cycles, however, breaks the method’s
assumption of a local treelike structure. Another potential
analytical relation is the non-Hermitian generalization of the
Thouless relation relating the localization length and the
density of states [42], which also exploits an electrostatics
analogy (in terms of the Lyapunov exponent) for random
1D systems [49]. However, it may be challenging to apply
this method in the combined presence of periodic boundary
conditions and delocalized eigenfunctions. Many works have
examined the effects of small cycles (cycles with constant
number of nodes that do not grow with system size) [63–66].
Nevertheless, as shown in this paper, the presence of a single
large cycle on a sparse graph can drastically change the sys-
tem’s spectral correlation and localization behavior, making
large cycles a worthwhile problem for future studies.
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APPENDIX A: PAIR CORRELATION FUNCTION
g(r) CALCULATION FOR EIGENFLUIDS

In this Appendix we describe in detail our numerical ex-
traction of pair correlation functions. We first review the pair
correlation function for a homogeneous fluid, appropriate for
the Ginibre random matrix “eigenliquid” and then generalize
the procedure for inhomogeneous eigenvalue distributions.

1. Pair correlation function of the homogeneous eigenliquid
generated by the Ginibre ensemble

For an isotropic homogeneous fluid, g(r) is the probability
of finding a particle distance r away from a reference particle

at the origin in one realization of the ensemble,

g(r) = 1

ρ̄

1

N

∑
i �= j

δ(r − |�ri − �r j |), (A1)

where ρ̄ = N
A is the particle density averaged over a region

of area A. The number of particles in a shell of width dr at
distance r away from the central particle is then given by

dn(r) ≈ ρ̄g(r)2πr dr. (A2)

For N total particles in the realization, the number of particle
pairs that are separated by distances between r and r + dr,
which we denote G(r, dr), is then given by

G(r, dr) = N

2
dn(r) = N

2
ρ̄g(r)2πr dr. (A3)

Thus, the pair correlation function (or radial distribution
function) g(r) is given by [40]

g(r) = G(r, dr)

N ρ̄πr dr
, (A4)

where we found G(r, dr) numerically using a binary search
tree (CKD_Tree python package). We tested this procedure for
the Ginibre ensemble, for which the scaled eigenvalues are
contained in a disk of radius 1, and the eigenvalue density
is ρ̄ = N/π everywhere inside this unit disk. Then Eq. (A4)
leads to a radial distribution function for the Ginibre ensemble
gG(r) given by

gG(r) = GG(r, dr)

N2r dr
, (A5)

which we used to obtain the pair correlation function shown
in Fig. 3.

2. Pair correlation function of inhomogeneous eigenfluids

For an inhomogeneous, anisotropic fluid in two dimen-
sions, the correlation function does not depend only on the
distance r between two particles but more generally on the
positions of both particles g(r) → g(�r1, �r2). The number of
particles in a box of area d2r centered at �r2, provided that
there is a particle at �r1, is then given by

dn(�r2) ≈ ρ̄�r2 g(�r1, �r2) d2r, (A6)

where the average particle density ρ̄�r ≡ 〈∑ j δ(�r − �r j )〉 now
depends on the location in space that we perform the ensem-
ble average over. Note that if the particles are uncorrelated
g(�r1, �r2) = 1, then Eq. (A6) reduces to dn(�r2) ≈ ρ̄�r2 d2r. Upon
implementing a change of coordinates from (�r1, �r2) to (�r =
�r2 − �r1, �R = (�r1 + �r2)/2), where �r is the separation vector be-
tween the two particles and �R is the mean location of particle
pair, we consider eigenvalue correlations in a small area about
�R, over which the eigenvalue density is appropriately constant.
Following the same procedure as in the previous section, for
sufficiently isotropic correlations where the angular depen-
dence can be neglected (see Sec. A 3 below), we arrive at

g(r, �R) = G(r, dr, �R)

N ρ̄ �R+ �r
2
πr dr

, (A7)

where the local pair correlation function g(r, �R) determines the
probability of finding two particles distance r apart given that
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their mean location is �R, G(r, dr, �R) is the number of particle
pairs with separation distance r and mean pair location �R, and
N is the number of eigenvalues in the reference area.

To properly examine the local correlation function av-
eraged over a small grid in space, g(r, �R)�R, the box size
�R should be much larger than the average particle spacing
but small enough such that the fluid contained in the box
is approximately homogeneous. In this case we can apply
Eq. (A4) and obtain

G(r, dr, �R)�R ≈
N2

�R,�R

�R2
πr dr × g(�r, �R)�R, (A8)

where NR,�R is the number of particles in the box of size �R
centered at �R, and G(r, dr, �R)�R is the total number of particle
pairs separated by distances between r and r + dr, averaged
over mean locations inside the reference box.

Partitioning of the eigenfluid into smaller, approximately
homogeneous boxes requires averaging over many realiza-
tions of the ensemble (diagonalization of many matrices)
in order to achieve an adequate amount of statistics. Then,
obtaining the proper normalization via comparison to an
uncorrelated eigenfluid,

G0(r, dr, �R)�R = 1

M

∑M
j=1

(
N ( j)

R,�R

)2

2�R2
2πr dr, (A9)

where M is the total number of realizations, the local pair
correlation function is

g(r, �R)�R ≡ G(r, dr, �R)�R

G0(r, dr, �R)�R

. (A10)

To calculate g(r, �R)�R, the probability of finding particles with
separation distances ∈ [r, r + dr) given that the mean loca-
tions of the particle pairs are within a box of size �R centered
at �R, we thus find the numerator numerically via binary search
trees and calculate the denominator from Eq. (A9).

For this method to work, we require that g(r, �R)�R does not
change significantly with the box size �R. If �R is too large,
we average over areas with significantly different correlations
(or eigenvalue densities), and the homogeneity assumption
fails. We also avoid applying this method near the fractal
edges of the random sign spectrum (see Fig. 2), where the
density of states change abruptly, and there are fine, singular
density spikes in the spectrum.

3. Angular dependence of the pair correlation function

In deriving Eq. (A7), we assumed that the angular de-
pendence of the local pair correlation function g(�r, �R) =
g(r, θ, �R) ≈ g(r, �R) can be neglected, thus improving our
statistics by counting all particle pairs separated by distance
r regardless of the direction of their separation vector. More
generally, however, there could exist eigenfluids where cor-
relations between particles can have significant dependence
on the direction. Here we explore angular dependence of the
pair correlation function for the random sign model studied
in Sec. II and show that the angular dependence of the
correlations is weak, justifying the approximation leading to
Eq. (A7).

FIG. 11. Directional variation of the pair correlation function in
the first quadrant of the random sign model, obtained from counting
eigenvalue pairs centered in the nine (0.05 × 0.05) square grids
closest to the origin, enclosed by the magenta box in the top left
spectra. The top right schematic shows four different angular sectors
(centered at 0, π/4, π/2, and 3π/4) within which the angle of an
eigenvalue pair separation θ can be binned. In the bottom plots,
the color of each line corresponds to the pair correlation function
derived from counting eigenvalue pairs within that angular range.
The smooth black line is the fit of the functional form gs(r) shown
in Fig. 5, i.e., angular-averaged pair correlation function. Since
the colored lines do not deviate significant from the black line,
isotropy of the eigenvalue correlations appears to be a reasonable
approximation for the random sign model.

To test for directional variation of the two-point eigen-
value correlations, we again examine correlations of eigen-
value pairs within the nine (0.05 × 0.05) square grids closest
to the origin in the first quadrant, examined previously in
Fig. 5. The top left spectrum of Fig. 11 shows these regions
enclosed by a magenta box. We bin eigenvalue pairs in these
regions, based on the angle θ characterizing each of their
separation vectors �r, into four angular sectors (see top right of
Fig. 11). Since eigenvalue correlations should be symmetric
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under θ ↔ −θ , we only study θ spanning a range of π . In
the bottom plots, the color of each line then corresponds to
the pair correlation function derived from counting eigenvalue
pairs within that angular range, normalized as in Eq. (A10)
and multiplied by 4 (since we are binning into four angular
sectors). The black smooth line is the fitting function gs(r)
used in Fig. 5, i.e., the rotationally averaged pair correlation
function, obtained by counting all eigenvalue pairs of sepa-
ration r regardless of direction. Although the colored angular
counts are noisier due to the reduction in sample size, we find
no significant angular dependence. Finding and examining
spectra for which the two-point eigenvalue correlations do
exhibit nontrivial angular dependence would be an interesting
topic for future investigations.

APPENDIX B: EIGENSTATE LOCALIZATION FOR
NONIDENTICAL LEFT AND RIGHT EIGENVECTORS

1. Left and right eigenvectors with directional bias
but no diagonal disorder

For a non-Hermitian matrix, the left and right eigenvectors
are in general not identical. There then exist three distinct
ways to measure localization for an eigenstate, by using the
magnitude of the right eigenvector [Eq. (6)], by using the
magnitude of the left eigenvector,

IPRL(λn) =

⎧⎪⎨
⎪⎩
[∑

i

∣∣ψL
n (i)

∣∣2]2

∑
i

∣∣ψL
n (i)

∣∣4
⎫⎪⎬
⎪⎭

−1

, (B1)

or by using the product of the left and right eigenvectors [51],

IPRLR(λn) =
[(∑

i

∣∣ψL
i ψR

i

∣∣)2

∑
i

∣∣ψL
i ψR

i

∣∣2
]−1

, (B2)

where i labels the ith site of the left or right eigenvector.
In the 1D systems that we study using Eq. (3), the left and

right eigenvectors can be related through the equation

ψL(g) = ψR(−g)SST, (B3)

where S is a diagonal matrix with elements Sj j = ∏ j−1
i

√
s−

i

s+
i

,

responsible for transforming M into a symmetric matrix [31].
When there is no directional bias in Eq. (3) (i.e., g = 0),
and the hopping probability distribution is narrow, the left and
right eigenvectors are identical up to sign flips at each site,

ψL
n (i) = ±ψR

n (i), (B4)

where i labels some site index and the ±1 is determined by the
matrix SST, which in turn depends on the particular realization
of the disorder. Thus, without directional bias, the left and
right eigenvectors with the same eigenvalue have the same
magnitude at each site and hence share the same localization
properties. In this case, all three definitions of IPR [Eqs. (6),
(B1), and (B2)] give the same result for every eigenvalue
in the spectrum. However, when there is nonzero directional
bias [g �= 0 in Eq. (3)], the left and right eigenvectors sepa-
rate spatially, and the results change. As shown explicitly in
Sec. V D, the left and right eigenvectors corresponding to the
same eigenvalue can take on entirely different shapes. Figure 8

FIG. 12. Comparison of IPRR and |ψR| and |ψL| (top), and IPRLR

and |ψLψR|1/2 (bottom) corresponding to the principal eigenvalue
for one realization of the asymmetric random sign model with no
self-interaction disorder, with increasing g. As g increases from 0, the
spectrum exhibits a band gap at the origin of the complex plane with
a rim of weakly delocalized states, and the right and left eigenvectors
spatially separate and gradually spread out. When g is sufficiently
large such that the spectral rim reaches the principal eigenvalue, the
left and right eigenvectors experience a jump in separation and the
left-right inner product |ψR| and |ψL| are abruptly delocalized.

shows the spectra of the one way hopping (infinite directional
bias) and random sign self-interaction model, where the right
and left eigenvectors can be separated by a significant distance
on the ring. In these cases, IPRLR returns significantly differ-
ent values compared to IPRR and IPRL.

Figure 12 compares the magnitude of the left eigenvector
and the right eigenvector, and the square root of the product
of left and right eigenvectors for the asymmetric random

052315-16



EIGENVALUE REPULSION AND EIGENVECTOR … PHYSICAL REVIEW E 100, 052315 (2019)

FIG. 13. IPRR (a) and IPRLR (b) as a function of the eigenvalue
magnitude (distance away from the origin) for eigenvalues around
the 45◦ line in the complex plane, as indicated by the colored portions
of the spectrum (left). Data extracted from 150 diagonalizations of
the random sign hopping matrix N = 500 (right) show that IPRR

decreases gradually as the eigenvalue gets closer to the rim, while
IPRLR abruptly drops when the eigenvalue is right at the rim.

sign model with no self-interaction disorder. The localization
properties of this spectrum for just the right eigenvectors were
studied in detail in Ref. [31]. We show a sequence of spectra
with increasing g, focusing in particular on the eigenvalue
with the largest real part and the three eigenvector quantities
associated with it, |ψL|, |ψR|, and |ψLψR|1/2. When g = 0
(no directional asymmetry), all three quantities are identically
localized. However, when g becomes nonzero, a hole opens
up in the middle of the spectrum, converting the eigenvalues
originally near the origin of the complex plane into a band gap
with an expanding rim of weakly delocalized eigenstates. As
g increases (counterclockwise hopping bias), the eigenvalue
with the largest real part initially stays the same, despite
the changes in the middle of the spectrum, but the peaks of
the localized right and left eigenvectors start to separate in
opposite directions, and gradually widen as well. When g
reaches a high enough value such that the rim of the hole
envelopes the principal eigenvalue, the separation between the
left and right eigenvector peaks experiences a sudden jump,
while the peak widths continue to gradually spread out. On
the other hand, the profile of the product of the left and
right eigenvectors [Fig. 12(b)] does not change at all when
g initially increases from 0, provided that the location of
the principal eigenvalue remains fixed in the complex plane.
However, when the expanding rim reaches the principal eigen-
value, |ψLψR|1/2 suddenly becomes completely delocalized.

The behavior of the three eigenvector quantities for the
principal eigenvalue as a function of g, namely, the gradual
spreading of |ψL| and |ψR| as g increases, and the sudden
complete delocalization of |ψLψR|1/2 when the eigenvalue is
enveloped by the opening rim, is in fact experienced by all
eigenvalues in the spectrum. A related phenomenon appears
when IPRR, IPRL, and IPRLR are evaluated for all eigenvalues

as a function of their distance from the expanding rim, at a
fixed value of g. Figure 13 plots IPRR and IPRLR as a function
of the eigenvalue magnitude (distance away from the origin)
for eigenvalues around the 45◦ line in the complex plane, as
indicated by the colored portions of the spectrum on the left.
The data is extracted from 150 diagonalizations of the random
sign hopping matrix N = 500. Although these plots are rather
noisy, IPRR decreases gradually as the eigenvalue gets closer
to the rim, while IPRLR abruptly drops when the eigenvalue is
right at the rim.

Insight into these two behaviors follows from approxi-
mating the wave-function magnitudes as wave packets expo-
nentially decreasing from their centers of localization [45].
Then, using the similarity transformation in Ref. [31], in a
convenient continuum notation, we have∣∣ψR

n (x, g)
∣∣ ∼ e−κn|x−xn|+gx, (B5)∣∣ψL

n (x, g)
∣∣ ∼ e−κn|x−xn|−gx, (B6)

where n labels the eigenfunction corresponding to the nth
eigenvalue, xn denotes the center of localization for g = 0, and
κn is the Lyapunov exponent characterizing the exponential
decay of the right and left eigenfunctions at g = 0. An ap-
proximate inverse participation ratio (i.e., effective Lyaupnov
exponent κeff ) can then be calculated using Eqs. (6) and (B2),

IPRR(λn) ≈
∫ +∞
−∞ dx

∣∣ψR
n (x, g)

∣∣4[ ∫ +∞
−∞ dx

∣∣ψR
n (x, g)

∣∣2]2 ≡ κeff,R
n , (B7)

IPRLR(λn) ≈
∫ +∞
−∞ dx

∣∣ψR
n (x, g)ψL

n (x, g)
∣∣2[ ∫ +∞

−∞ dx
∣∣ψR

n (x, g)ψL
n (x, g)

∣∣]2 ≡ κeff,LR
n , (B8)

with the results

κeff,R
n ∼ κ2

n − g2

κn
, (B9)

κeff,LR
n ∼ κn. (B10)

Thus, κeff,R
n vanishes continuously as g → κ−

n , while κeff,LR
n

appears independent of g. Of course, we must remember
that the approximate wave functions in Eq. (B5) become
unormalizable when g = κn, and therefore κeff,LR

n and IPRLR

must cease to exist when g = κn. These rough arguments are
consistent with the continuous evolution of IPRR as a function
of g and the distance of the eigenvalue from the spectral rim
[Figs. 12(a) and 13(a), respectively] and the sudden change
in IPRLR(g) and IPRLR(|λ|) [Figs. 12(b) and 13(b) for both].
Although the delocalization of the left and right eigenvectors
is more gradual as g → κ−

n , they nevertheless mediate the
sudden delocalization transition of the left-right inner product
IPRLR, when they leave the Hilbert space of localized states.

2. Consequences of directionality bias on dynamics

In this final section, we comment briefly on the dynamics
of a signal propagating in the 1D one-way hopping model
[large g limit of Eq. (3)] with and without disordered self-
interactions.
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a. Signal current and eigenvalue velocity in the absence
of diagonal disorder

We first study the behavior of the mean and variance of a
signal location in space as it propagates on a ring in the large-g
limit without onsite disorder [Eq. (15) with ε′ = 0]. We study
a simple linear model like Eq. (3), with M replaced by M′
in Eq. (15). A more complete study would allow for multiple
eigenvalues with positive real parts and include the effects of
nonlinearities [23].

For the random sign hopping model studied in Sec. II, the
subdiagonal terms (clockwise connections) are to first order
negligible in the large-g limit. One can then “gauge away” the
random signs on the counterclockwise connections through a
similarity transformation and find the eigenvalues λn and the
strongly delocalized left and right eigenvectors ψL

n and ψR
n

analytically [see also Eq. (23)] [31],

λn(g) = eikn+g, (B11)

ψL
n ∼ e−ikn j, (B12)

ψR
n ∼ eikn j, (B13)

where

kn = 2π

N
n, n = 0, 1, . . . , N − 1. (B14)

Let φ0(x) denote a spatially localized signal at time t = 0.
Then, by expanding this initial state in a complex set of right
eigenvectors, and then using the left eigenvectors to project
out the expansion coefficients, we find the average position of
the wave packet at time t ,

〈x〉t ∼
∫ L

0
dx x

∑
n

ψR
n (x)eλn(g)t

∫ L

0
dx′ψL

n (x′)φ0(x′). (B15)

Since the integral over x′ does not depend on x, we denote

fn ≡
∫ L

0
dx′ ψL

n (x′)φ0(x′) (B16)

in all subsequent equations. Normalizing Eq. (B15) then gives
the following:

〈x〉t =
∫ L

0 dx x
∑N−1

n=0 ψR
n (x)eλn(g)t fn∫ L

0 dx
∑N−1

n=0 ψR
n (x)eλn(g)t fn

. (B17)

Upon integrating by parts, we find

〈x〉t − 〈x〉0 = −λ0(g)t = −egt = −t
dλ0

dg
, (B18)

where λ0 denotes the “ground state” eigenvalue corresponding
to the lowest wave number k0, which for this problem is
the eigenvalue with the largest real part. The minus sign is
present in Eq. (B18) because the hopping is biased in the
counterclockwise direction.

The time evolution of the second moment associated with
this initial condition is found from

〈x2〉t =
∫ L

0 dx x2 ∑N−1
n=0 ψR

n (x)eλn(g)t fn∫ L
0 dx

∑N−1
n=0 ψR

n (x)eλn(g)t fn

, (B19)

FIG. 14. IPRR and |ψR| and |ψL| (top), and IPRLR and |ψRψL|1/2

(bottom) corresponding to the principal eigenvalue of one realiza-
tion of the one-way hopping model and random sign connections
[Eq. (15)] with decreasing ε ′, the ratio between the disordered self-
interaction strength and the strength of the one-way connection dis-
order. At large ε ′, the spatially separated left and right eigenvectors
are fairly localized, spreading out more as ε ′ decreases. Meanwhile,
the left-right inner product is delocalized at all values of ε ′ for the
one-way model.

which leads to

〈x2〉t − 〈x2〉0 = tλ0(g)[1 + λ0(g)t]. (B20)

After incorporating Eq. (B18), we find that the variance
describing the spreading of this wave packet grows linearly
in time:

(〈x2〉t − 〈x〉2
t

)− (〈x2〉0 − 〈x〉2
0

) = t
dλ0

dg
. (B21)
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One can also obtain the same behavior by directly calculating
the signal at time t , φt (x), starting with a Gaussian initial
condition φ0(x) ∼ exp(−x2/2a) at t = 0.

To summarize, a signal propagating on the ring with one-
way random sign hopping and no onsite disorder travels with
a constant speed eg and has a standard deviation that increases
as

√
teg/2. In the long time limit, the signal stops spreading

when it covers the entire ring and converges to a flat stationary
state, given by ψR

0 in Eq. (B13).

b. Localized response mediated by spatially separated left
and right eigenvectors with diagonal disorder

In the previous section, we saw that regardless of the initial
condition (excitation signal), the one-way hopping model
without onsite disorder allows a signal to propagate and
spread out on a ring of connections as a function of time, even-
tually converging to a stationary delocalized state. However,
this behavior is dominated by delocalized eigenvectors. When
self-interaction disorder is incorporated, the dynamics is quite
different, because a large portion of the spectrum exhibits
localized eigenvectors in the presence of onsite disorder, even
for models with one-way connections.

In addition to localization effects, the response of hopping
models with directional bias has an additional interesting

property that is not present in nonbiased hopping models.
Because of the separation of the left and right eigenvectors
when there is nonzero directional bias, a localized response
(at the peak of the right eigenvector) can be triggered at a
considerable distance away from the location of the excitation
signal (at the peak of the left eigenvector) via the propagator
of the dynamical models associated with matrices M′ studied
in Sec. V,

G(x, x′, t ) =
N−1∑
n=0

ψR
n (x)ψL

n (x′)eλnt . (B22)

Figure 14(a) shows the left and right eigenvectors corre-
sponding to the principal eigenvalue, for one realization of
the random sign one-way hopping model [Eq. (15)]. Here
the tuning parameter is ε′, the ratio between the disordered
self-interaction strength and the strength of the one-way con-
nection disorder. Even at large ε′, although the onsite disorder
essentially pins down the signal such that it does not travel
or spread, the system can nevertheless sense the excitation
signal and respond at distances on the order of the system size.
Interestingly, as shown in Fig. 14(b), the product of the left
and right eigenvectors |ψRψL|1/2 is completely delocalized
for all eigenvalues in the spectra at all values of ε′.
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