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Network desynchronization by non-Gaussian fluctuations
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Many networks must maintain synchrony despite the fact that they operate in noisy environments. Important
examples are stochastic inertial oscillators, which are known to exhibit fluctuations with broad tails in many
applications, including electric power networks with renewable energy sources. Such non-Gaussian fluctuations
can result in rare network desynchronization. Here we build a general theory for inertial oscillator network
desynchronization by non-Gaussian noise. We compute the rate of desynchronization and show that higher
moments of noise enter at specific powers of coupling: either speeding up or slowing down the rate exponentially
depending on how noise statistics match the statistics of a network’s slowest mode. Finally, we use our theory
to introduce a technique that drastically reduces the effective description of network desynchronization. Most
interestingly, when instability is associated with a single edge, the reduction is to one stochastic oscillator.
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I. INTRODUCTION

Networks of coupled oscillators form the basis for complex
physical, biological, and technological systems [1], such as
smart grids [2], Josephson junction arrays [3,4], optical net-
works [5], biological networks [6–10], and coupled mechan-
ical devices [11,12]. From a deterministic viewpoint, most
networks operate in stable attractor regimes, such as synchro-
nized oscillations. However, in reality uncertainties and noise
produce fluctuations from an attractor, which over long time
scales may bring a network into dynamically unstable states
and result in large deviations. Consequently, much recent
attention has been given to the effects of noise on networked
oscillators, e.g., stochastic escape [14–18], noise cancella-
tion [13], noise propagation [19–21], and synchronization
[22,23].

A motivating application for stochastic networked oscil-
lators is that of fluctuating power grids driven by renewable
energy sources, such as wind and solar. Such fluctuations are
highly non-Gaussian [24–26], and may significantly impact
power-grid stability [33–36]. Non-Gaussian noise is under-
stood to exponentially alter the rates for large, rare fluctua-
tions in simple oscillator systems, including Josephson junc-
tions and micromechanical oscillators [27–32]. Yet, predict-
ing escape from synchrony in complex oscillator networks,
subjected to general noise patterns, remains an outstanding
problem.

This work takes a first step in this direction by analyzing
desynchronization in networks of inertial oscillators driven by
broadly distributed Poisson noise. Our approach is the first
to connect desynchronization events to general noise statistics
and network modes and subgraphs. We explicitly show how
higher fluctuation moments control desynchronization rates
near bifurcation points, both speeding up and slowing down
rates depending on whether noise and network statistics are
aligned. Our analytical methods allow us to predict desyn-
chronization rates from power-fluctuation data, and explain

how general noise tends to effectively desynchronize only
certain network subgraphs.

Consider a model for N coupled phase oscillators with
inertia. We assume that the acceleration of the ith oscilla-
tor’s phase φi is determined by the velocity vi ≡ φ̇i, natural
frequencies (input-power) Pi, and coupling between oscilla-
tors

∑
jKi j sin(φ j − φi ). The oscillator dynamics satisfy the

second-order differential equation,

Mv̇i + γ vi = Pi +
∑

j

Ki j sin(φ j − φi ), (1)

where M and γ are inertial and damping constants [37].
Equation (1) gives an approximation to the swing equations
describing the transient dynamics of high-voltage electric
power grids [38,39], which we discuss as an illustration. In
what follows we take Ki j = KAi j , where Ai j is a symmetric
adjacency matrix [14].

In order to study the effects of non-Gaussian fluctuations
on Eq. (1), we take the input power to be

Pi(t ) = P̄i + pi(t ), (2)

where the fluctuation pi(t ) has over-damped dynamics,

ṗi = −αpi + ξi(t ), (3)

with a damping rate α and stochastic drive ξi(t )
[13,14,16,18,40]. Without loss of generality, we take the
average natural frequency to vanish,

∑
iP̄i =0. For electric

power grids this reflects a balance between production and
consumption.

In modeling the noisy drive ξi(t ) we are interested in
cases where pi(t ) exhibits large intermittent fluctuations, as
seen in the output from wind and solar sources [24–26,35].
The non-Gaussian features of such sources can be captured
by tracking the change in pi(t ) (or power increments) over
fixed time intervals τ [25]. In practice, τ may be set by the
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FIG. 1. Non-Gaussian power fluctuations. (a) Wind turbine
power-increment distribution (solid blue) [21]; Gaussian distribution
with the same variance (dashed black). (b) Fluctuation time series
(seconds) given independent and identically distributed Poisson fluc-
tuations for a 30-node network. Amplitudes and rates for Eq. (4)
are taken from (a). Power fluctuations for two oscillators are shown
in blue and red (top). Phase difference �φ between the oscillators
(lower) [42].

time resolution of data. For example, in Fig. 1(a) we show a
histogram of power increments, g(τ )≡ p(t + τ ) − p(t ), from
12 wind turbines in northern Germany as in [21]. The proba-
bility distribution pr(g) is highly non-Gaussian, e.g., the fourth
moment is much larger than for a Gaussian with the same
variance.

In order to build a flexible noise model that approximates
the measured increment distribution, we assign an indepen-
dent Poisson pulse for every bin b in the histogram. Each
Poisson pulse has an amplitude gb, which is equal to the
bin average, and an occurrence rate νb =pr(gb)/τ . Given this
choice, a pulse occurs on average every τ units of time. More
generally, let there be M arbitrary power increments such that
the amplitude for the bth increment on the ith oscillator is gib,
where b∈{1, 2, ...,M}. By denoting the time at which the nth
such increment occurs as tib[n], the stochastic drive ξi(t ) can
be represented by a sum of Dirac delta functions [41],

ξi(t ) =
∑

bn

gibδ(t − tib[n]). (4)

Because the noise ξi(t ) is built from Poisson pulses, each
tib[n + 1] − tib[n] is a stochastic variable with an exponential
distribution whose rate is νib. For simplicity, we take the time
average of the power fluctuations for each oscillator to be zero,
i.e.,

∑
b gibνib =0. An example time series given our model is

shown in Fig. 1(b).

II. LARGE FLUCTUATION PICTURE OF
DESYNCHRONIZATION

When the coupling constant K is sufficiently large a
synchronized state is a stable fixed point of Eq. (1). This
stable phase-locked state (PLS) depends on network topology
and the distribution of P̄i [37]. In general, the PLS emerges
through a saddle-node bifurcation as K is increased [43,44],
implying the existence of unstable, saddle phase-locked states.
Noise on Eq. (1) can cause networks to fluctuate to these
saddles [14,16,18]. Once a saddle is reached the network
can desynchronize by either undergoing a large phase slip
upon returning to the PLS modulo 2π , or exiting its basin of

attraction altogether. An example is shown in Fig. 1(b)
(lower). Such noise-induced desynchronization, whereby fluc-
tuations drive oscillator networks to saddle points, are exam-
ples of the general phenomenon of basin escape [45,46].

Given the non-Gaussian noise discussed in Sec. I, our
strategy is to construct the most likely (optimal) path of
noise and network dynamics that maximizes the probability
of reaching a saddle. When desynchronization is rare, the
optimal path is describable using analytical mechanics tools
[45–47]. Our approach is a generalization of Kramer’s theory
for escape, and is valid as long as typical fluctuations are small
compared to the distances to saddles [45].

We begin our analysis with the network probability distri-
bution ρ(φ, v, p, t ). Its dynamics satisfy a generalized master
equation,

∂ρ

∂t
=

∑
i

⎡
⎣ − ∂

∂φi
[viρ] + ∂

∂ pi
[αpiρ]

− ∂

∂vi

⎡
⎣

⎛
⎝−γ vi

M
+ 1

M

⎛
⎝Pi+

∑
j

Ki j sin(φ j − φi )

⎞
⎠

⎞
⎠ρ

⎤
⎦

+
∑

b

νib[ρ(φ, v, p − gib1i ) − ρ(φ, v, p)]

⎤
⎦, (5)

where the vector 1i = 〈0 1, 0 2, .., 1 i, .., 0 N 〉 [48]. Note that
Eq. (5) is similar to a Fokker-Planck equation, except that,
instead of the typical diffusive term, there is a sum over
discrete increments to p, given in the last line of Eq. (5), as
in a master equation for Poisson processes.

To analyze rare events encoded in the exponential tail
of ρ(φ, v, p, t ), we substitute a WKB ansatz, ρ(φ, v, p, t )∼=
B exp{−S(φ, v, p, t )}, into Eq. (5), assuming S(φ, v, p, t ) �
1, and keep the leading order terms in ∂φS, ∂vS, and
∂pS [48,49]. This approximation converts Eq. (5) to a
Hamilton-Jacobi equation (HJE) for the probability exponent,
S(φ, v, p, t ), called the action, in terms of φ, v, p, and their
conjugate momenta: λφ ≡ ∂φS, λv ≡ ∂vS, and λp ≡ ∂pS. The
network Hamiltonian is

H (φ, v, p,λφ,λv,λp)

=
∑

i

[
λ

φ
i vi − αpiλ

p
i +

∑
b

νib
(

exp
{
gibλ

p
i

} − 1
)

+ λv
i

M

⎛
⎝−γ vi + P̄i + pi +

∑
j

Ki j sin(φ j − φi )

⎞
⎠

⎤
⎦. (6)

For the given function H (φ, v, p,λφ,λv,λp), the optimal-
path dynamics satisfy Hamilton’s equations [50]. Once
Hamilton’s equations are solved, the action can be
calculated as

S(φ, v, p) =
∑

i

[∫
λ

φ
i dφi +

∫
λv

i dvi +
∫

λ
p
i d pi

]
. (7)

In general, solutions are computable numerically subject to
boundary conditions [51]. Once the action is known, so is the
expected waiting time (or inverse rate) for desynchronization
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[16,45,46,52],

ln〈T 〉 ≈ S(φs, 0, 0) + constant. (8)

Optimal paths near bifurcation

Using our desynchronization mechanics, let us first con-
sider the optimal path (OP) from PLS φ∗ to saddles φs near the
saddle-node bifurcation (SN). We denote the critical coupling
KSN, where K =KSN[1 + κ]. When κ 
1, the dynamics slows
onto a one-dimensional manifold with universal properties. As
we will show, statistical moments of the noise first contribute
to the action at specific powers of κ , from which we can
calculate their effects on desynchronization rates. In order to
simplify the analysis, we assume that the noise for all nodes
is independent and identically distributed. Hence, we drop the
subscript i in ν, g, and μ from now on.

First, we construct the lowest-order solution and thereby
demonstrate our natural expansion in κ1/2. Higher order
terms and further calculation details are given in Appendixes
C–D. From the fixed-point boundary conditions we expand
φ∗ and φs around the SN value, φSN, in powers of κ . At the
saddle-node bifurcation, the Fiedler mode [53] of the network
Laplacian, Li j (φ

∗)= Ai j cos(φ∗
j − φ∗

i ) − δi j
∑

k Aik cos(φ∗
k −

φ∗
i ), has zero eigenvalue. In general, the Fiedler mode is the

slowest mode of Li j (φ
∗), and we denote its components ri.

The normalized Fiedler mode is defined up to an overall sign,
and we choose the convention ri >0 if φs

i −φ∗
i >0, so that

r points from φ∗ to φs. Quite remarkably, the fixed points
close to bifurcation can be expressed in terms of ri, φ∗

i =
φSN

i −Cκ1/2ri and φs
i =φSN

i +Cκ1/2ri, where

C =
√√√√ 2

∣∣∑
i j Ai j sin

(
φSN

j − φSN
i

)
ri

∣∣∣∣∑
i j Ai j sin

(
φSN

j − φSN
i

)
[r j − ri]2ri

∣∣ . (9)

Because the sums in Eq. (9) appear when considering the
noise moments, we write C ≡√

2R0/R2. Next, we write the
phases emerging from the SN in terms of a coordinate x(t ),
φi(t )=φSN

i +Cκ1/2rix(t ), where x∈ [−1, 1], which is valid
near bifurcation [54]. Substituting this form into Hamilton’s
equations, and collecting terms at order κ , we find

vi

ri
= KSNκR0[1 − x2]

γ
,

pi

ri
= 2KSNκR0[1 − x2],

λ
φ
i

ri
= 2KSNκR0γα2[1 − x2]

μ2
,

λv
i

ri
= 2KSNκR0Mα2[1 − x2]

μ2
,

λ
p
i

ri
= 2KSNκR0α[1 − x2]

μ2
, ẋ = KSNκ1/2

√
2R0R2[1 − x2]

2γ
,

(10)

where μ2 ≡∑
b νbg2

b is the noise variance. From Eqs. (7) and
(10), we get

S(φs, 0, 0) ≈ 8
√

2KSNκ3/2γα2R3/2
0

3R1/2
2 μ2

. (11)

The structure of Eq. (11) is interesting. The action at
lowest order in κ is proportional to the damping rate for
power fluctuations squared, implying that doubling the rate,
increases the time scale for desynchronization as 〈T 〉→〈T 〉4.

What’s more, each node’s contribution is proportional to μ −1
2 ,

and hence noise distributions with the same variance produce
the same rate of desynchronization at lowest order. Therefore,
the effects of higher fluctuation moments must appear at (and
be suppressed by) higher powers of κ .

Continuing the OP construction at higher powers in κ ,
we notice that the lowest-order contribution to the ac-
tion from the nth moment of the noise, μn ≡∑

b νbgn
b, is

determined by energy conservation for large fluctuations,
H (φ, v, p,λφ,λv,λp)=0, at O(κn) [50]. Interestingly, such
contributions, �(n)S, only depend on Eq. (10) and can be
calculated (see Appendix D for derivation):

�(n)S = −μn
[∑

i ri
n
]

μn
2

× κn− 1
2 Kn−1

SN

× 2n+ 1
2 γαnR

n− 1
2

0

∫ 1
−1(1 − x2)n−1dx

R1/2
2 n!

. (12)

Equation (12) is very useful for comparing non-Gaussian
and Gaussian white noise (GWN) effects. In the latter, the
stochastic drive in Eq. (3) is replaced by a Gaussian process
with time correlation 〈ξi(t )ξ j (t ′)〉=μ2δi jδ(t − t ′) ∀{i, j}, and
Eq. (5) becomes a Fokker-Planck equation. Simple GWN is
considered in most works on stochastic oscillators [14,18,22].
Because the action for GWN is equivalent to keeping only
the noise variance in the Hamiltonian, Eq. (12) represents the
correction to the GWN action from fluctuations with a first
nonzero moment μn (n>2).

Interestingly, we see that desynchronization rates exhibit
a critical behavior characterized by a spectrum of exponents
n − 1

2 depending on the nth moment of the noise distribution.
Most importantly, the sign of the first non-Gaussian correction
in Eq. (12) is given by the product of the nth noise moment
times the nth moment of the Fiedler components. In the
particular case when n=3, the sign of �S is determined by the
product of the skewness of the Fiedler components with that
of the noise. When the two skewnesses are aligned, �S(3) <0,
and desynchronization occurs at an exponentially faster rate.
When they have opposite signs, �S(3) >0, and desynchroniza-
tion occurs at an exponentially slower rate. Generally speak-
ing, the Fiedler modes in high voltage power grids mostly
reside on peripheral nodes—but not all peripheral nodes [55].
Hence, such networks are highly skewed, by our definition,
and will show exponential sensitivity in desynchronization
rates to noise skewness.

Two examples are shown in Fig. 2, where we compare
desynchronization times for GWN (red), positively skewed
μ3 >0 (green), and wind turbine (blue) fluctuations. All power
fluctuations have the same variance. The skewed noise distri-
bution is a simple two-pulse model. Solid lines denote Eq. (7)
computations, while points indicate Monte Carlo simulations.
The dashed lines in green and blue denote the action for GWN
plus Eq. (12), which is in good agreement (in most cases hard
to distinguish). The networks are drawn in each subpanel.
Nodes are blue if ri >0 and red if ri <0; sizes are proportional
to |ri|. In Fig. 2(a), the network has a negatively skewed
Fiedler mode,

∑
iri

3 <0, and hence desynchronization occurs
at an exponentially slower rate, just as predicted. In contrast
in Fig. 2(b) the network has a positively skewed Fiedler mode,
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FIG. 2. Effect of non-Gaussian noise on desynchronization
times. Points denote Monte Carlo simulations and solid lines denote
least-action computations, Eq. (7). Fluctuations follow the color
scheme: Gaussian (red), positively skewed (green), and symmetric
wind turbine (blue)—all with the same variance. Dashed lines are
predictions from Eq. (12). (a) Network with a negatively skewed
Fiedler mode. (b) Network with a positively skewed Fiedler mode.

and therefore desynchronization occurs at an exponentially
faster rate. Note that for both networks, blue lines are always
under the red, meaning symmetric noise (μ3 ≈0) produces an
increase in desynchronization rates.

III. SYNCHRONIZED SUBGRAPH APPROXIMATION

Since we have shown that rare desynchronization occurs
along the Fiedler mode near bifurcation, we expect that nodes
that are topologically nearby in the network and have similar
Fiedler-mode values, do not tend to desynchronize during a
large fluctuation—as a first approximation for general cou-
pling strengths. Partitioning the network according to the
Fiedler mode [53] at bifurcation is a useful approximation
for finding much lower-dimensional desynchronization path-
ways, which we call the synchronized subgraph approxima-
tion (SSA). An algorithm for constructing Hamilton’s equa-
tions for a SSA is given in Appendix E.

First, the SSA can be made exact for networks where the
SN corresponds to a single (overloaded) edge with a phase
difference π/2. This condition is satisfied for tree topologies
and frequently satisfied for sparse networks [44]. For such
single-cut saddle nodes (SCSN), we can always construct a
SSA where the network splits into exactly two subgraphs at
bifurcation and the nodes within each remain synchronized
on average. If we denote the two subgraphs divided by the
overloaded edge S1 and S2, then we can reduce Hamilton’s
equations to a single noisy oscillator system in relative phase-
space coordinates:

V̇ = 1

M

[
−γV + P + KSNN

|S1||S2| (1 − (1 + κ ) cos{�})

]
,

Ṗ = −αP +
∑

m

νmgm[egm�P/|S1| − e−gm�P/|S2|],

�̇� = −KSN(1 + κ )

M

N

|S1||S2|�V sin{�}, V = �̇,

�̇V = −�� + γ

M
�V , �̇P = α�P − 1

M
�V . (13)

In Eq. (13) � is the phase difference between the two
subgraphs, V is the difference in their velocities, P is the
difference in the power fluctuations, and the �’s are conjugate
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FIG. 3. Desynchronization times predicted assuming synchro-
nized subgraphs: (a) UK grid with one overloaded edge (green), a
50-node tree (red), a 100-node tree (blue), a block network (cyan),
and the UK grid without symmetry at bifurcation (magenta). Solid
lines denote computations, while points correspond to Monte Carlo.
(b) Synchronized subgraphs for the UK grid (top) and the block
network (bottom). Subgraphs are drawn with different colors.

momenta (see Appendix E for derivation). The system is
closed since KSN =| ∑i∈S1

P̄i| for SCSN [56]. Remarkably, we
can see that the dynamics is parametrized only by κ and the
sizes of the two subgraphs, |S1| and |S2|, but is otherwise in-
dependent of topology. The action corresponds to a single
stochastic oscillator:

S(�,V, P) =
∫

��d� +
∫

�V dV +
∫

�PdP. (14)

Comparisons between desynchronization times and SSA
predictions are shown in Fig. 3(a) for three networks with
a SCSN: red, blue, and green. In each case N ∼O(100). In
particular, the UK power grid is shown in green, and its two
subgraphs are drawn in the top of Fig. 3(b); the red and blue
examples in Fig. 3(a) correspond to two randomly generated
trees with power-law degree distributions, and an exponent
equal to three. Theory computations are shown with solid lines
[Eq. (14)] and Monte Carlo simulations with points. Examples
show quantitative agreement despite two orders of magnitude
reduction in the effective dynamics. Moreover, in Appendix F
we show that Eqs. (12) and (14) are accurate even in networks
with significant variation in M, γ , and α.

Similarly, the SSA can be applied to networks without a
SCSN, but where there is an exact symmetry in the Fiedler
mode at bifurcation. An example is shown in Fig. 3(a) in
cyan for a block network. In this case the network splits into
exactly four subgraphs at bifurcation. The Fiedler mode has
only four unique component values—one for each subgraph.
The subgraphs are drawn in the lower panel of Fig. 3(b). As
a consequence, the SSA consists of four effectively coupled
oscillators.

Lastly, the SSA can be applied to networks whose Fiedler
modes do not have exact symmetry at bifurcation, by parti-
tioning the network into subgraphs with approximately uni-
form Fiedler-mode values. An example is shown in Fig. 3(a)
(magenta), again for the UK power grid, but with a different
distribution of P̄i. In this case, there is no symmetry at bifur-
cation and each node has a unique Fiedler component value.
The solid line represents a SSA assuming 20 subgraphs.
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IV. CONCLUSION

In this work, we analyzed desynchronization in complex
oscillator networks by non-Gaussian noise. It is often thought
that broad-tailed fluctuations perturb dynamical systems more
strongly. However, we found that such noise does not always
increase the rate of network desynchronization; the latter
depends on whether higher moments of fluctuations and a
network’s slowest mode have the same sign, and is therefore a
topological as well as a noise effect. Our approach was based
on arbitrarily distributed Poisson fluctuations, which we fit
to power-increment data from renewable energy sources. In
addition, we developed a reduction technique for predicting
desynchronization, based on the Fiedler mode at bifurcation,
and the observation that noise tends to effectively desynchro-
nize only certain network subgraphs. Such a reduction should
be valuable for studying rare processes in high-dimensional
oscillator networks more broadly, where predicting rare events
is both analytically and computationally difficult.

Lastly, our approach revealed a spectrum of scaling expo-
nents that determine at what powers in the coupling the nth
moment of noise contributes to desynchronization rates. Our
results are general for escape through a saddle. However, our
methods can be further generalized to rare events induced by
non-Gaussian noise in other dynamical processes in networks
including extinction [57,58], switching [59], and more general
oscillator transitions [60,61].
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APPENDIX A: COMPUTING OPTIMAL PATHS

Optimal paths for rare desynchronization satisfy Hamil-
ton’s equations:

φ̇i = vi, (A1)

Mv̇i = − γ vi + pi + P̄i + K
∑

j

Ai j sin(φ j − φi ), (A2)

ṗi = − αpi +
∑

b

νibgib exp
{
gibλ

p
i

}
, (A3)

λ̇
φ
i = − K

M

∑
j

Ai j cos(φ j − φi )
[
λv

j − λv
i

]
, (A4)

λ̇v
i = − λ

φ
i + γ

M
λv

i , (A5)

λ̇
p
i =αλ

p
i − λv

i /M. (A6)

Numerical solutions of Eqs. (A1)–(A6) were found using
the Iterative-Action-Minimization Method [51] with fixed-
point boundary conditions. Example MATLAB code can be
found in the Supplemental Material of [62], for instance, and

is available upon request. The method requires a trial solution.
For small κ we used Eq. (10) from the main text, and then
bootstrapped to other regions of parameter space.

APPENDIX B: FIXED POINTS

The coupling at which the saddle-node occurs, KSN, can
be computed numerically by solving the following N + 1
equations with a quasi-Newton method:

0 = P̄i + KSN

∑
j

Ai j sin
(
φSN

j − φSN
i

) ∀i, (B1)

0 = z, (B2)

where z is the second smallest (in magnitude) eigenvalue
of the Laplacian matrix Li j (φ

SN)= Ai j cos(φSN
j − φSN

i ) −
δi j

∑
k Aik cos(φSN

j − φSN
i ).

In order to calculate optimal paths as a function of the
distance to bifurcation κ , where K =KSN[1 + κ], we first
calculate the fixed points of Eq. (1) in powers of κ . Let
us substitute φ∗

i =φSN
i +κ1/2qi+κwi+... into Eq. (1), given

v̇i =0 and vi =0 ∀i. Note the sub(super)-script SN implies
evaluation at the saddle node. Our goal is to find qi. At O(κ1/2)
we find the equation,

0i =
∑

j

Ai j cos
(
φSN

j − φSN
i

)
[q j − qi], (B3)

which expresses the saddle-node condition that the network
Laplacian has a Fiedler mode with eigenvalue zero. Hence,
we may write qi =−Cri, where ri is the Fiedler mode at
bifurcation and C is a constant that we wish to determine.
Continuing to O(κ ) gives

0i =
∑

j

Ai j cos
(
φSN

j − φSN
i

)
[w j − wi]

+
∑

j

Ai j sin
(
φSN

j − φSN
i

)

− C2

2

∑
j

Ai j sin
(
φSN

j − φSN
i

)
[r j − ri]

2. (B4)

If we take the product of Eq. (B4) with ri, sum over i, and
solve for C, we get Eq. (9) from the main text. This is easy
to see by expanding wi in the eigenmodes of the Laplacian.
In Eq. (B4), the component parallel to ri vanishes from the
saddle-node condition, while all other components vanish due
to orthonormality. Note that there are two possible solutions
for C: a stable phase-locked state (positive) and a saddle
(negative). Given the definitions in the main text, the Fiedler
value can be shown to be

z = −
√

2R0R2κ
1/2 (B5)

by an analogous expansion.

Single-cut saddle node

The procedure outlined above can be carried out indef-
initely. Here, we restrict ourselves to a particular class of
saddle-node bifurcations, which we call single-cut saddle-
nodes (SCSN). In this special case, a single edge becomes
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(b)

FIG. 4. Error scaling of Eq. (B8) for a SCSN (a) mean (blue) and
standard deviation (red) of the error divided by κ7/2. (b) Example
network.

overloaded at bifurcation (with a π/2 phase difference be-
tween the nodes), and is a cut edge of the network specified by
the adjacency matrix A. The edge partitions the network into
exactly two subgraphs (denoted S1 and S2), whose nodes only
share one edge (the cut edge) in common. For example, tree
networks always have SCSN.

Networks with SCSN have useful properties. For instance,
KSN can be determined by summing Eq. (1) over all nodes in
S1 (or S2), given v̇i =0 and vi =0 ∀i:

0 =
∑
i∈S1

Pi + KSN

∑
i∈S1, j

sin
(
φSN

j − φSN
i

)
. (B6)

Only one term survives in the second sum in Eq. (B6):
corresponding to the cut edge connecting S1 and S2—because
sine is an odd function. Moreover the phase difference for
the cut edge is φSN

j −φSN
i =−π/2. This latter property can be

shown from the saddle-node condition and the fact that for
SCSN ri =

√|S2|/[N |S1|] if i ∈ S1, and ri =−√|S1|/[N |S2|]
if i ∈ S2. Note the specifications for S1 and S2 are given by the
convention that the node in S1 connected to S2 along the cut
edge has a larger phase than its counterpart in S2. Therefore,

KSN
SCSN=

∑
i∈S1

P̄i, (B7)

as first noted for trees in [56].
Using the stated SCSN properties, it is straightforward to

show that

φs
i − φ∗

i = 2Criκ
1/2

[
1 − 5

12
κ + 43

160
κ2 + ...

]
, (B8)

by expanding the fixed-point conditions to higher orders in κ .
In Fig. 4(a) we plot the mean (blue) and standard deviation
(red) of the error vector, Errori = [φs

i − φ∗
i − 2Criκ

1/2(1 −
5

12κ + 43
160κ2)]/ri for an example SCSN shown in Fig. 4(b).

We can see that the fixed-point expression Eq. (B8) is ac-
curate to O(κ7/2) and is parallel to ri. The fixed points were
computed numerically with the choice of zero-average phase
〈φs

i 〉=〈φ∗
i 〉=0.

APPENDIX C: NEAR BIFURCATION PATHS

Using the fixed-point boundaries expressed in powers of
κ , we can construct the optimal paths for sufficiently small
κ . To make the calculation simpler, at this point we restrict
ourselves to iid power fluctuations, and drop the node sub-
script i in the noise moments μ. As mentioned in the main

text, at lowest order in κ , we substitute the ansatz φi(t )=
φSN

i +Cκ1/2rix(t ) + ... into Eqs. (A1)–(A6). For the other
phase-space variables, we have the general expansions:

vi =
∑

m

vi,mκ
m
2 , pi =

∑
m

pi,mκ
m
2 ,

λ
φ
i =

∑
m

λ
φ
i,mκ

m
2 , λv

i =
∑

m

λv
i,mκ

m
2 ,

λ
p
i =

∑
m

λ
p
i,mκ

m
2 , (C1)

where m=2, 3, .... When m=2, we assume that all variables
are parallel to the Fiedler mode according to vi,2 =av (x)ri,
pi,2 =ap(x)ri, λ

φ

i,2 =aφ

λ (x)ri/μ2, λv
i,2 =av

λ(x)ri/μ2, and λ
p
i,2 =

ap
λ(x)ri/μ2.

We note that since ẋ=av (x)κ
1
2 /C, time derivatives for

phase-space variables other than φ are O(κ
3
2 ), and so the LHS

of Eqs. (A2)–(A6) can be ignored at O(κ ). By substituting the
expansion Eq. (C1) into Eqs. (A2) and (A3) and Eqs. (A5) and
(A6), we find the following relations for O(κ ):

−γ av + ap = −KSN(1 − x2)
∑

i j

Ai j sin
(
φSN

j − φSN
i

)
ri,

(C2)

αap = ap
λ, (C3)

aφ

λ = γ

M
av

λ, (C4)

αap
λ = 1

M
av

λ. (C5)

One more equation is needed to close the system. We use the
zero-energy condition H (φ, v, p,λφ,λv,λp)=0, at O(κ2),
which results in

0 = aφ

λav − αap
λap +

[
ap

λ

]2

2
. (C6)

Solving for the nonzero solution gives Eq. (10) from the
main text. Note that we have assumed that the product,∑

i j Ai j sin(φSN
j −φSN

i )ri, is negative in writing Eq. (10),
given our sign convention. This property appears to be
general for the SN. Hence, R0 = −∑

i j Ai j sin(φSN
j −φSN

i )ri =
| ∑i j Ai j sin(φSN

j −φSN
i )ri|.

Single-cut saddle node

As with the fixed-point boundaries in Appendix B, we
restrict ourselves to SCSN for higher-order OPs, since the re-
sults are comparatively simple. First, we start with the ansatz
φi(x)=φSN

i + Cx(t )riκ
1/2[1 − 5

12κ], from Eq. (B8). The next
order in κ requires substituting this ansatz, as well as the
general expansion Eq. (C1) into Eqs. (A2) and (A3) and
Eqs. (A5) and (A6) and collecting terms of O(κ3/2). As noted
in the previous section, the relevant time derivatives are at
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lowest order O(κ3/2):

v̇i

ri
= κ

3
2

C

dav

dx
av (x),

ṗi

ri
= κ

3
2

C

dap

dx
av (x),

λ̇
φ
i μ2

ri
= κ

3
2

C

daφ

λ

dx
av (x),

λ̇v
i μ2

ri
= κ

3
2

C

dav
λ

dx
av (x),

λ̇
p
i μ2

ri
= κ

3
2

C

dap
λ

dx
av (x). (C7)

When m=3, again, all variables are parallel to the
Fiedler mode according to vi,3 =bv (x)ri, pi,3 =bp(x)ri, λ

φ

i,3 =
bφ

λ (x)ri/μ2, λv
i,3 =bv

λ(x)ri/μ2, and λ
p
i,3 =bp

λ(x)ri/μ2. Substi-
tuting into Eqs. (C7), Eqs. (A2) and (A3), and Eqs. (A5) and
(A6), we find

av

C

dav

dx
= −γ bv + bp, (C8)

av

C

dap

dx
= −αbp + bp

λ, (C9)

av

C

dav
λ

dx
= −bφ

λ + γ

M
bv

λ, (C10)

av

C

dap
λ

dx
= αbp

λ − 1

M
bv

λ. (C11)

Equation (C8) requires elaboration. For SCSN, the coupling
term is∑

j

Ai j sin(φ j − φi )

=
∑

j

Ai j sin
(
φSN

j − φSN
i

)

+Cκ
1
2

[
1 − 5

12
κ

]
x
∑

j

Ai j cos
(
φSN

j − φSN
i

)
[r j − ri]

− C2

2!
κ

[
1 − 5

12
κ

]2

x2
∑

j

Ai j sin
(
φSN

j − φSN
i

)
[r j − ri]

2

− C3

3!
κ

3
2

[
1 − 5

12
κ

]3

x3
∑

j

Ai j cos
(
φSN

j − φSN
i

)
× [r j − ri]

3 + ... (C12)

Note that all cosine terms vanish, since if i and j are
in the same subgraph, then ri =r j , and if they are not,
then |φSN

j − φSN
i | = π

2 . This means, for instance, that P̄i +
KSN[1 + κ]

∑
j Ai j sin(φ j − φi ) only contains integer powers

of κ .
To close the system, we again use the zero-energy condi-

tion at O(κ5/2). The resulting equation is

∑
i

[
λ

φ

i,3vi,2 + λ
φ

i,2vi,3 + 1

M
λv

i,2(−γ vi,3 + pi,3)

− αpi,3λ
p
i,2 − αpi,2λ

p
i,3 + μ2λ

p
i,2λ

p
i,3

]
. (C13)

x
-1.0

-1.0 0.0 1.0

(a)

1.0

3.0

5.0

7.0

x
-7.0

-1.0 0.0 1.0

(b)

Error
2

-5.0

-3.0

-1.0

 1.0

FIG. 5. Near bifurcation comparison for SCSN. Computed paths
are shown in blue from Eq. (13). (a) O(κ ) solution (red) Eq. (10). (b)
O(κ2) solution (red) Eq. (C19).

Substituting Eqs. (C2)–(C6) into Eqs. (C8)–(C11) and
Eq. (C13),

bv = −2
1
2 M

γ 3
K2

SNR
3
2
0 R

1
2
2 x[1 − x2], (C14)

bp = −2
3
2 M

γ 2
K2

SNR
3
2
0 R

1
2
2 x[1 − x2], (C15)

bφ

λ = 0, (C16)

bv
λ = −2

3
2 M2α2

γ 2
K2

SNR
3
2
0 R

1
2
2 x[1 − x2], (C17)

bp
λ = −2

3
2

γ

[
1 + Mα

γ

]
K2

SNR
3
2
0 R

1
2
2 x[1 − x2]. (C18)

In order to calculate the action at next order, O(κ5/2), we
need to know λ

φ

i,4. This can be achieved using Eqs. (C14)–
(C18) and the zero-energy condition at O(κ3). If we assume
λ

φ

i,4 ∼ ri, then the calculation only requires a fair bit of alge-
bra. The result is

λ
φ

i,4

ri
= −4R2

0γα3K2
SNμ3[1 − x2]2 ∑

i r3
i

3μ3
2

− 4R2
0R2K3

SNx2[1 − x2]

γμ2
− γα2KSNR

1
2
2 x2[1 − x2]

3R
1
2
0 μ2

.

(C19)

Note that all constants in Eq. (C19) can be given a closed-form
expression for SCSN, and depend only on |S1| and |S2|. In
Fig. 5 we show the accuracy of our expansion for the UK
grid with a SCSN, Fig. 3(b) (top). In Fig. 5(a), solutions
of Eq. (13) are shown in blue for κ =0.001, and the O(κ )
solution, Eq. (10), is shown in red. In Fig. 5(b), we plot the
difference between the two curves in Fig 5(a) in blue, and
compare to the O(κ2) solution Eq. (C19) shown in red. The
agreement is excellent at both orders of κ .

Integrating our expressions for the phase-space variables
to O(κ2) in λ

φ
i and O(κ

3
2 ) for all others, according to Eq. (7),

gives the action for SCSN at O(κ
5
2 ).

APPENDIX D: NON-GAUSSIAN EFFECTS

We would like to know how the higher moments of the
noise distribution contribute to the action in general, for
instance in networks without special symmetry at bifurca-
tion. As in the main text, we restrict ourselves to iid power
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fluctuations. A clue comes from our solution for the OP
at lowest order in κ . Recall from Appendix C, that λ

φ

i,2 is
determined by the zero-energy condition at O(κ2)—where the
noise variance μ2 first appears in H (φ, v, p,λφ,λv,λp). The
general pattern is the following: The contribution proportional
to μn in λ

φ

i,2(n−1) is determined by the zero-energy condition
at O(κn). First, we can check that this pattern holds for μ3,
by looking at H (φ, v, p,λφ,λv,λp)=0 at O(κ3). Using our
general expansion, we get an equation:

0 =
∑

i

[
λ

φ

i,4vi,2 + λ
φ

i,3vi,3 + λ
φ

i,2vi,4 + 1

M
λv

i,4Ti,2

+ 1

M
λv

i,3Ti,3 + 1

M
λv

i,2Ti,4 − αλ
p
i,4 pi,2 − αλ

p
i,3 pi,3

−αλ
p
i,2 pi,4 + μ2λ

p
i,2λ

p
i,4 + μ2

2

[
λ

p
i,3

]2 + μ3

3!

[
λ

p
i,2

]3
]
.

(D1)

Note that we have introduced the notation Ti ≡−γ vi + pi +
P̄i + K

∑
j Ai j sin(φ j − φi )and Ti =

∑
m Ti,mκ

m
2 .

It is important to realize a few properties of the phase-
space coordinates. First, only the conjugate momenta (the
λ’s) depend explicitly on the noise statistics. Second, since
O(κn) is the lowest order at which μn enters the Hamiltonian,
λ

φ

i,2(n−1)− j , λ
v
i,2(n−1)− j , and λ

p
i,2(n−1)− j ∀ j ∈ {1, 2, ..., 2(n − 2)}

depend on μn−1, μn−2,... μ2, but not on μn. Therefore, if λv
i,4

and λ
p
i,4 vanish from Eq. (D1), then only two terms depend on

μ3, i.e., λ
φ

i,4vi,2 and μ3

3! [λp
i,2]3, and we can solve explicitly for

the contribution to λ
φ

i,4 from μ3.
Luckily, the terms proportional to λv

i,4 and λ
p
i,4 in Eq. (D1)

depend on the lowest order solution, for which we have
explicit expressions. In fact, Ti,2 =0 and −αpi,2 + μ2λ

p
i,2 =0.

Finally, we add an additional assumption that λφ

i,4 ∼ ri, as with
the SCSN, Eq. (C19). With this assumption, the lowest-order
(in κ) contribution to λ

φ
i from μ3, denoted �(3)λ

φ
i is found

from Eq. (D1):

�(3)λ
φ
i

ri
= −μ3

∑
j

[
λ

p
j,2

]3

3!
∑

j r jv j,2
. (D2)

Exactly the same argument can be used to calculate �(4)λ
φ
i ,

etc. The general expression is

�(n)λ
φ
i

ri
= −μn

∑
j

[
λ

p
j,2

]n

n!
∑

j r jv j,2
. (D3)

Finally, the lowest-order contribution to the action from μn

is found from Eq.(7)—namely, integrating �(n)λ
φ
i (x) over x.

The result is Eq. (12) in the main text. Note that the integral
contributions from λv

i and λ
p
i can be ignored, since vi and pi

are at lowest order O(κ ), while φs
i − φ∗

i is O(κ1/2).
Equation (12) can be used to compare the actions of two

increment distributions that differ in the nth moment. For
instance, the difference in the action between a symmetric
increment distribution (μ3 =0) and a nonsymmetric distribu-
tion (μ3 �=0), each with the same variance μ2, is given by
Eq. (12) with n = 3. Moreover, as noted in the main text,
if the power fluctuations are assumed to be Gaussian white

noise with a variance μ2, then Eq. (12) gives the exponential
correction to the rate of desynchronization for nonsymmetric
(n = 3) and symmetric (n = 4) increment distributions. Our
expansion gives very accurate results for desynchronization
rates near bifurcation, as demonstrated in Fig. 2.

For completeness, we note that for Gaussian white noise,
Hamilton’s equations are identical, except for Eq. (A3):

ṗi
Guass= −αpi + μi,2λ

p
i , (D4)

and the Hamiltonian Eq. (6):

H (φ, v, p,λφ,λv,λp)

Guass=
∑

i

[
λ

φ
i vi − αpiλ

p
i + μi,2

2
[λp

i ]2

+ λv
i

M

⎛
⎝−γ vi + P̄i + pi +

∑
j

Ki j sin(φ j − φi )

⎞
⎠

⎤
⎦.

(D5)

APPENDIX E: SYNCHRONIZED SUBGRAPH
APPROXIMATION

As mentioned in the main text, in many cases the
SN bifurcation occurs with exact symmetry in the Fiedler
mode; namely, the network is partitioned into N subgraphs,
S1,S2, ...,SN , where two nodes i and j in the same subgraph
Sn have ri =r j = r (n) at bifurcation. As already noted, SCSN
cases have N = 2, including trees. Larger values of N occur
for block networks (or clique trees), such as Fig. 3(b), lower
panel.

Since the Fiedler mode is the weakest stable mode of the
network and the optimal desynchronization path is parallel
to ri over several orders in κ , as demonstrated in previous
sections, we simply assume as an approximation that all nodes
within the same subgraph, e.g., n, are synchronized: φi −
φSN

i = �n, vi = Vn, pi = Pn, λ
φ
i = lφ

n , λv
i = lv

n , and λ
p
i =

l p
n ∀i ∈ Sn. We can find an approximate set of Hamilton’s

equations for such OPs by simply averaging over all nodes
within a subgraph:

�̇n =
∑
i∈Sn

φ̇i

|Sn| , V̇n =
∑
i∈Sn

v̇i

|Sn| ,

Ṗn =
∑
i∈Sn

ṗi

|Sn| , l̇φ
n =

∑
i∈Sn

λ̇
φ
i

|Sn|

l̇v
n =

∑
i∈Sn

λ̇v
i

|Sn| l̇ p
n =

∑
i∈Sn

λ̇
p
i

|Sn| . (E1)

Performing these averages over the original Eqs. (A1)–
(A6) results in network coupling terms,

Xn =
∑

i∈Sn, j /∈Sn

Ai j sin(φ j − φi ) and (E2)

Yn =
∑

i∈Sn, j /∈Sn

Ai j cos(φ j − φi )
[
λv

j − λv
i

]
. (E3)
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Let us specify an index function which maps the node number
i to its subgraph number n, i.e., F (i)=n. Using this notation,
the coupling terms become

Xn =
∑

i∈Sn, j /∈Sn

Ai j
[

sin
(
φSN

j − φSN
i

)
cos(�F ( j) − �F (i) )

+ cos
(
φSN

j − φSN
i

)
sin(�F ( j) − �F (i) )

]
, (E4)

Yn =
∑

i∈Sn, j /∈Sn

Ai j
[

cos
(
φSN

j −φSN
i

)
sin(�F ( j)−�F (i) )

× [
lv
F ( j)−lv

F (i)

] − sin
(
φSN

j − φSN
i

)
cos(�F ( j) − �F (i) )

× [
lv
F ( j) − lv

F (i)

]]
. (E5)

Now, since all phase-space variables are assumed to be
synchronized within subgraphs, we can define the following
coupling matrices between subgraphs n and n′:

Snn′ =
∑

i∈Sn, j∈Sn′

Ai j sin
(
φSN

j − φSN
i

)
, (E6)

Cnn′ =
∑

i∈Sn, j∈Sn′

Ai j cos
(
φSN

j − φSN
i

)
. (E7)

Therefore, the synchronized subgraph equations become

�̇n = Vn, (E8)

MV̇n = −γVn + Pn +
∑
i∈Sn

P̄i

|Sn|

+ KSN[1 + κ]

|Sn|
∑
n′ �=n

[Snn′ cos(�n′ − �n)

+Cnn′ sin(�n′ − �n)], (E9)

Ṗn = −αPn +
∑

m

νmgm exp
{
gml p

n

}
, (E10)

l̇φ
n = −KSN[1 + κ]

M|Sn|
∑
n′ �=n

[
Cnn′ cos(�n′ − �n)

[
lv
n′ − lv

n

]
− Snn′ sin(�n′ − �n)

[
lv
n′ − lv

n

]]
, (E11)

l̇v
n = −lφ

n + γ

M
lv
n , (E12)

l̇ p
n = αl p

n − lv
n /M. (E13)

In general, the matrices Eqs. (E6) and (E7) have to be com-
puted numerically at the saddle-node bifurcation in order to
solve Eqs. (E8)–(E13).

However, for SCSN the results simplify significantly. In
this case n=1, 2, and C2,1 = C1,2 = 0 and S2,1 = −S1,2 = 1.
In addition, we notice that the effective two-oscillator system
for SCSN can be reduced to one by introducing the relative
coordinates: � =�1−�2, V =�̇, P=P1−P2, �� =|S1|lφ

1 =
−|S2|lφ

2 , �V =|S1|lv
1 =−|S2|lv

2 , and �P =|S1|l p
1 =−|S2|l p

2 .
The result is Eq. (13) in the main text.

Beyond symmetric examples, Eqs. (E8)–(E13) can be used
as a coarse-grained approximation for networks without exact
symmetry in the Fiedler mode at bifurcation. One simply
groups together nodes in a subgraph if they have similar
Fiedler-mode values, where similar means within some toler-

0.10

0.0

-0.10

0 40

r

80 120
i

i

FIG. 6. Fiedler mode at bifurcation for the UK grid example
from Fig. 3 without symmetry (magenta). Blue, magenta, green, and
cyan nodes were placed in the same subgraphs, since their values are
within 5%. Each of the red nodes was treated as a subgraph.

ance ε. An example is shown in Fig. 6, for the UK power-
grid example from Fig. 3 without symmetry at bifurcation
[magenta in Fig. 3(a)]. Plotted is the Fiedler mode at bi-
furcation versus the node number i. Blue, magenta, green,
and cyan nodes were placed in the same subgraphs, since
node Fiedler-mode values were within 5% of one another (for
similarly colored nodes). Each of the red nodes was treated as
a subgraph (of size one). The total number of subgraphs was
20 given this partition. The coupling matrices Eqs. (E6) and
(E7) were computed at bifurcation, and the OPs were solved
from Eqs. (E8)–(E13) with 20 subgraphs.

APPENDIX F: PARAMETER HETEROGENEITY

In this section we show that our expansion in κ and
the SSA are robust to parameter variation. Instead of being
homogeneous, we let M, γ , and α be drawn from uniform dis-
tributions, independently for each node. Given a heterogeneity

skewed, cv=0.00

skewed, cv=0.05

skewed, cv=0.20

wind, cv=0.00

wind, cv=0.05

wind, cv=0.20

S

S

0.03 0.05 0.07 0.09 0.11

-2

0

-1. 5

-1

-0.5

S

FIG. 7. Difference in the action between Gaussian and non-
Gaussian noise for several values of parameter heterogeneity.
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skew, SSA

skew, cv=0.20

skew, cv=0.10
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FIG. 8. Action for a network with a single over-loaded edge, i.e.,
Fig. 4(b), with parameter heterogeneity.

scale parameter η, we let Mi =M0[1.0 + η(Ri,M − 0.5)], γi =
γ0[1.0 + η(Ri,γ − 0.5)], and αi =α0[1.0 + η(Ri,α − 0.5)],
where Ri,M , Ri,γ , and Ri,α are independent, random numbers
drawn uniformly over [0,1]. In this section, we take M0 =
0.02546s2, γ0 =0.10053s, and α0 =1s−1.

Figure 7 compares predictions of Eq. (12) with the com-
puted difference in the actions between Gaussian and non-
Gaussian noise. The computed actions were found by solving
Eqs. (A1)–(A6). Note that in Eqs. (A1)–(A6) M →Mi, α→αi

and γ →γi. Results are shown for several levels of the hetero-
geneity parameter η and are labeled by the average coefficient
of variation, i.e., cv≡ [ σM

〈M〉 + σγ

〈γ 〉 + σα

〈α〉 ]/3, where σq and 〈q〉
denote the standard deviation and average for parameter q.
The underlying network corresponds to Fig. 2(b). We see good
agreement between numerics and Eq. (12) despite significant
heterogeneity, particularly for skewed noise distributions.

Similarly, we perform computations using the SSA
for single-cut saddle nodes with homogeneous parameters,
Eqs. (13) and (14), and compare with heterogeneous param-
eters. For example, Fig. 8 shows such a comparison for the
network drawn in Fig. 4(b). The computed actions are shown
in blue and the SSA results are shown with a black line

for skewed noise (see Appendix G). Again, we see good
agreement despite the heterogeneity.

APPENDIX G: SIMULATIONS

Monte Carlo simulations were performed using a com-
bination of Gillespie’s algorithm for power fluctuations pi,
and Euler’s method for integrating Eqs. (1)–(3) between re-
action times. For illustration, let us assume that the noise is
independent and identically distributed (iid) for each node.
The stochastic rate for the next reaction is R=∑

i,m νim =
N

∑
m νm. The next reaction time is stochastically selected

�T = −ln(r1)/R, where r1 is a uniformly distributed random
number over the unit interval. Since the noise is iid , the node
which receives the increment is selected uniformly at random
from the N nodes. Another random number is generated,
P=r2

∑
m νm, where r2 is a uniformly distributed random

number over the unit interval. The nth increment is chosen if∑n−1
m=1 νm < P <

∑n
m=1 νm. Equations (1)–(3) are integrated

with Euler’s method from t to t + �T with time steps dt =
4 × 10−5, at which time the selected node, e.g., i, has its power
incremented: pi → pi+gn. On the other hand, for Gaussian
noise the Euler-Milstein method was used with dt =4 × 10−5.

The wind-turbine data was taken from [21]. The data con-
sists of power measurements at 1-s resolution for 12 turbines,
each rated at 2 MW. We averaged over the available data at
each time step and histogrammed the power increments p(t +
1)−p(t ) using 60 uniformly spaced bins (M=60). The result
is shown Fig. 1(a). In order to make desynchronization less
rare, we artificially increased the occurrence rate for the Pois-
son pulses, such that

∑
m νm =10s−1 (not 1s−1). For reference,

the noise variance for iid wind-turbine noise given our model
is μ2 =5.8317 × 10−4s−1. On the other hand for skewed
noise comparisons, we chose a simple two-pulse model: νm ∈
{10, 3.33333} and gm ∈{−0.0038183, 0.0114549}, which has
the same variance as the wind-turbine model.

Lastly, each Monte Carlo point in Figs. 2 and 3 represent
the log of the average of 200 slip times—defined as the time
it takes to see a phase difference greater than 2π develop
between any connected oscillators. Each of the slips were
generated from the phase-locked state initial conditions and
with different random number seeds. All simulations in Fig. 3
were done with skewed noise except for the block network
(cyan), for which we used the wind-turbine noise.
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