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Proximity networks are time-varying graphs representing the closeness among humans moving in a physical
space. Their properties have been extensively studied in the past decade as they critically affect the behavior of
spreading phenomena and the performance of routing algorithms. Yet the mechanisms responsible for their
observed characteristics remain elusive. Here we show that many of the observed properties of proximity
networks emerge naturally and simultaneously in a simple latent space network model, called dynamic-S1. The
dynamic-S1 does not model node mobility directly but captures the connectivity in each snapshot—each snapshot
in the model is a realization of the S1 model of traditional complex networks, which is isomorphic to hyperbolic
geometric graphs. By forgoing the motion component the model facilitates mathematical analysis, allowing us to
prove the contact, intercontact, and weight distributions. We show that these distributions are power laws in the
thermodynamic limit with exponents lying within the ranges observed in real systems. Interestingly, we find that
network temperature plays a central role in network dynamics, dictating the exponents of these distributions,
the time-aggregated agent degrees, and the formation of unique and recurrent components. Further, we show
that paradigmatic epidemic and rumor-spreading processes perform similarly in real and modeled networks. The
dynamic-S1 or extensions of it may apply to other types of time-varying networks and constitute the basis of
maximum likelihood estimation methods that infer the node coordinates and their evolution in the latent spaces
of real systems.
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I. INTRODUCTION

Understanding the time-varying proximity patterns among
humans in a physical space is important in various contexts.
These include the analysis and containment of spreading
phenomena, like respiratory transmitted diseases, the design
of routing algorithms for mobile networks, and the under-
standing of social relationships and influence [1–8]. To this
end, proximity networks have been captured in different en-
vironments [5,7–13]. Each snapshot in these networks cor-
responds to an observation interval, which typically spans a
few seconds to several minutes depending on the devices used
to collect the data. The agents (nodes) in each snapshot are
individuals and an edge between two agents means that they
are within proximity range.

At the finest granularity level an edge between two agents
represents a close-range face-to-face proximity (to 1.5 m,
detected using wearable sensors). Such networks have been
captured over the period of few days or weeks in different
closed settings, such as hospitals, schools, scientific con-
ferences, and workplaces [9–13]. The main motivation for
obtaining these data has emerged in epidemiological studies
of infectious diseases. Other proximity networks have been
captured for longer periods of time (months) and over larger
areas, such as university campuses, using Bluetooth sensing
or WiFi tracking [5,7,8]. These methods yield information
only on proximity at a range, e.g., up to 10 m using Bluetooth
devices and up to 40 m or more using WiFi tracking [7,8,14].
Thus, proximity in these networks does not imply face-to-face
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interaction. The collection of these data has been motivated by
research in mobile networking [4–6] and social studies [7,8].

Irrespectively of the context, measurement period, and
measurement method, different proximity networks have been
shown to exhibit similar statistical properties [1,5,6,15]. The
most widely studied properties are the aggregated—obtained
by considering the samples from all pairs of nodes together—
distributions of contact and intercontact durations. The former
is the distribution of time that a pair of nodes spends in con-
tact, i.e., remains within proximity range, while the latter is the
distribution of time separating two contacts between the same
pair of nodes. These metrics are important in determining
the capacity and delay of a network, and the dynamics of
spreading processes [16–20]. It has been found that both of
these distributions are broad in real data and compatible with
power laws, P(t ) ∝ t−γ , with or without exponential cutoffs
[4–6,15]. Studies have reported exponents γ � 2 for contact
durations [21,22] and γ ∈ (1, 2) for intercontact durations
[4,5,23,24]. Further, it has been shown that aggregated power
laws can emerge from pairwise distributions that are power
laws, exponentials, or log-normals, with the latter two bet-
ter fitting most pairwise intercontact durations in real data
[25–27]. Another property of interest is the distribution of
the total duration of contacts between two agents throughout
the observation period, called weight distribution [15,20,28].
The aggregated weight distribution is also roughly compatible
with power laws [15], while an exponent γ = 1.4 has been
reported for this distribution in the contact network of high
school students [24].

These and other distinctive features of real proximity
networks can be well reproduced by minimal models of
mobile interacting agents [15,29,30]. Minimal models, i.e.,
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FIG. 1. Probability that two agents are connected in a snapshot
as a function of their effective distance χ in FDM-simulated coun-
terparts of the hospital, primary school and high school face-to-face
interaction networks [9–11]; and of the Friends & Family proximity
network [8]. The simulations are performed as in Ref. [30], while
the connection probabilities are computed excluding agents that are
inactive [30] in each snapshot. The solid lines are Fermi-Dirac con-
nection probabilities with temperatures T = 0.84, 0.72, 0.61, 0.53,
corresponding, respectively, to the temperatures of the hospital,
primary school, high school, and Friends & Family (Sec. IV B).

models that reproduce many of the observed properties un-
der minimal assumptions, are crucial for generating realistic
synthetic networks and understanding the mechanisms that
are responsible for the observed behaviors. In particular, the
recently developed force-directed motion (FDM) model [30]
utilizes the idea of a latent metric space where the agents
reside and where the distance d between two agents abstracts
their similarity. Attractive forces that decrease exponentially
with the similarity distance direct the agents’ motion toward
other agents in the physical space and determine the duration
of their interactions. One can also consider the effective dis-
tance between two agents, χ = d/(κκ ′), where κ and κ ′ are
the agents’ expected degrees per snapshot, abstracting their
popularity [31]. In this case, dissimilar agents can still be
attracted by strong forces if their popularities are high. The
FDM casts the problem of modeling proximity networks as an
N-body problem akin to molecular dynamics [32]. However,
mathematically proving the properties of generated networks
by the FDM is not straightforward, and the model has been so
far studied only in simulations.

The FDM has been inspired by the S1 model of traditional
(nonmobile) complex networks [33,34]. In the S1, nodes are
also separated by effective distances χ , and are connected
with the Fermi-Dirac connection probability p(χ ) = 1/(1 +
χ1/T ), where T ∈ (0, 1) is the network temperature, control-
ling clustering [35] in the network. The S1 is isomorphic to
hyperbolic geometric graphs [33]. It can generate network
snapshots that possess many of the common structural prop-
erties of real networks, including heterogeneous or homoge-
neous degree distributions, strong clustering, and the small-
world property [31,33,34]. Figure 1 shows the probability that
two agents are connected in a snapshot of FDM-simulated net-
works as a function of their effective distance. Interestingly,
we see that this probability resembles qualitatively the Fermi-

Dirac connection probability in the S1 model, even though this
form of connection probability is not enforced into the FDM.
Specifically, we see in Fig. 1 that the connection probability
in the FDM has a smooth steplike form, where connection
probabilities at small distances are orders of magnitude larger
than connection probabilities at large distances.

Motivated by the observation in Fig. 1, here we consider
a simple latent space model for human proximity networks,
where each snapshot is a realization of the S1 model. We
call this model dynamic-S1 and show that it simultaneously
reproduces many of the observed properties of real systems.
The dynamic-S1 does not model node mobility directly but
captures the connectivity in each snapshot. By forgoing the
motion component it facilitates mathematical analysis, allow-
ing us to prove the contact, intercontact, and weight distri-
butions. We show that these distributions are power laws in
the thermodynamic limit, with exponents 2 + T , 2 − T , and
1 + T , respectively, where T ∈ (0, 1) is the temperature in
the Fermi-Dirac connection probability. These exponents are
within the ranges observed in real systems. We also show
that temperature controls the agents’ time-aggregated degrees
and the formation of unique and recurrent components [30].
Additionally, we consider paradigmatic epidemic and rumor-
spreading processes [36,37] and find that they perform re-
markably similar in real and modeled networks.

The rest of the paper is organized as follows. In Sec. II we
review the S1 model. In Sec. III we introduce the dynamic-S1.
In Sec. IV we juxtapose the properties of modeled and real
networks. In Sec. V we compare the performance of epidemic
and rumor-spreading processes running on them. In Sec. VI
we mathematically analyze the main properties of the model.
In Sec. VII we elucidate the crucial role of temperature in the
formation of components. Finally, in Sec. VIII we conclude
the paper with future work directions.

II. S1 MODEL

In the S1 model [33] each node has latent (or hidden)
variables κ, θ . The latent variable κ is proportional to the
node’s expected degree in the resulting network. The latent
variable θ is the angular similarity coordinate of the node on
a circle of radius R = N/2π , where N is the total number of
nodes. To construct a network with the model that has size
N , average node degree k̄, and temperature T ∈ (0, 1), we
perform the following steps:

(1) coordinate assignment: for each node i = 1, 2, . . . , N ,
sample its angular coordinate θi uniformly at random from
[0, 2π ], and its degree variable κi from a probability density
function (PDF) ρ(κ );

(2) creation of edges: connect every pair of nodes i, j with
the Fermi-Dirac connection probability

p(χi j ) = 1

1 + χ
1/T
i j

. (1)

In the last expression, χi j is the effective distance between
nodes i and j,

χi j = R�θi j

μκiκ j
, (2)
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FIG. 2. Snapshots from the simulated counterpart of the hospital face-to-face interaction network generated by the dynamic-S1 (Sec. IV).
The snapshots correspond to time slots t = 2425–2429. Each snapshot shows the interacting agents in their similarity space and the connections
between them. The agents are colored according to the connected component where they belong, while the noninteracting agents in each
snapshot, i.e., the agents with zero degree, are not shown to avoid clutter. The contact duration between agents 60 and 61 is three slots
(2426–2428), while the intercontact duration between agents 9 and 36 is two slots (2427, 2428). Agents 1, 8, and 33 belong to a component
forming both at t = 2425 and t = 2427 (recurrent component).

where �θi j = π − |π − |θi − θ j ||. Parameter μ in (2) is de-
rived from the condition that the expected degree in the
network is indeed k̄, yielding

μ = k̄ sin (T π )

2κ̄2T π
, (3)

where κ̄ = ∫
κρ(κ )dκ . The expected degree of a node with

latent variable κ is [33]

k̄(κ ) = k̄

κ̄
κ. (4)

For sparse networks (k̄ � N) the resulting degree distribution
P(k) has a similar functional form as ρ(κ ) [38]. For instance,
a power-law degree distribution with exponent γ > 2 is ob-
tained if ρ(κ ) ∝ κ−γ , while a Poisson degree distribution with
mean k̄ is obtained if ρ(κ ) = δ(κ − k̄), where δ(x) is the Dirac
δ function [34,38]. Smaller values of the temperature T favor
connections at smaller effective distances and increase the
average clustering [35] in the network, which is maximized at
T = 0, and nearly linearly decreases to zero with T ∈ [0, 1).
At T → 0 the connection probability in (1) becomes the step
function p(χi j ) → 1 if χi j < 1, and p(χi j ) → 0 if χi j > 1.

III. DYNAMIC-S1

The dynamic-S1 models a sequence of network snapshots,
Gt , t = 1, . . . , τ , where τ is the total number of time slots.
Each snapshot is a realization of the S1 model. Therefore,
there are N agents that are assigned latent variables κ, θ

as in the S1 model, which remain fixed in all time slots.
The temperature T is also fixed, while each snapshot Gt

is allowed to have a different average degree k̄t . Thus, the
model parameters are N, τ, ρ(κ ), T , and k̄t , t = 1, . . . , τ . The
snapshots are generated according to the following simple
rules:

(1) at each time step t = 1, . . . , τ , snapshot Gt starts with
N disconnected nodes, while k̄ in Eq. (3) is set equal to k̄t ;

(2) each pair of nodes i, j connects with probability given
by Eq. (1);

(3) at time t + 1, all the edges in snapshot Gt are deleted
and the process starts over again to generate snapshot Gt+1.

We note that the snapshots are conditionally independent
given the agents’ latent variables κ1, θ1, . . . , κN , θN , but not
independent. In other words, even though each snapshot Gt is
constructed anew, there are correlations among the snapshots
that are induced by the nodes’ effective distances χi j . In
particular, nodes at smaller effective distances have higher
chances of being connected in each snapshot, as dictated by
the connection probability in (1). Figure 2 provides a visual-
ization of snapshots generated by the model, where we see that
agents at smaller similarity distances tend to stay connected
in consecutive time slots and form recurrent components. We
make the code implementing the model available at [39]. Next
we compare the properties of synthetic networks generated by
the model and real networks.

IV. MODELED VS. REAL NETWORKS

A. Overview of real networks

We consider four face-to-face interaction networks from
SocioPatterns [40], which correspond to (i) a hospital ward
in Lyon [9], (ii) a primary school in Lyon [10], (iii) a high
school in Marseilles [11], and (iv) a scientific conference in
Turin [13]. These networks were captured over a period of
5, 2, 5, and 2.5 days, respectively. Each of their snapshots
corresponds to a time slot of 20 s. We also consider the
Bluetooth-based proximity network of the members of a res-
idential community adjacent to a research university in North
America, taken from the Friends & Family dataset [8]. The
snapshots here correspond to slots of 5 min, spanning the
period October 2010 to May 2011. In all cases we number
the slots and assign node IDs sequentially, t = 1, 2, . . . , τ and
i = 1, 2, . . . , N . Table I gives an overview of the data.

We define the average degree per slot of agent i as

d̄i = 1

τ

τ∑
t=1

di,t , (5)

where di,t � 0 is agent’s i degree in slot t , while the average
agent (snapshot) degree in slot t is

k̄t = 1

N

N∑
i=1

di,t . (6)
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TABLE I. Overview of the considered real networks. N is the
number of agents, τ is the total number of time slots, n̄ is the
average number of interacting agents per slot, d̄ is the average agent
degree per slot, and k̄aggr is the average degree in the time-aggregated
network (defined in Sec. IV C). Average values above 10 have been
rounded to the nearest integer.

Network N τ n̄ d̄ k̄aggr

Hospital 75 17376 2.9 0.05 30
Primary school 242 5846 30 0.18 69
High school 327 18179 17 0.06 36
Conference 113 10618 3.3 0.03 39
Friends & Family 131 57961 52 1.1 97

Figure 3 shows the distribution of d̄i and k̄t in the considered
networks. The average agent degree per slot is

d̄ = 1

N

N∑
i=1

d̄i = 1

τ

τ∑
t=1

k̄t . (7)

B. Modeled networks

For each real network we construct its synthetic counter-
part using the dynamic-S1. Each counterpart has the same
number of nodes N and duration τ as the corresponding
real network, while the latent variable κi of each agent i =
1, . . . , N is set equal to the agent’s average degree per slot in
the real network,

κi = d̄i. (8)

Thus, the distribution of κi is the corresponding empirical
distribution in Fig. 3 (left). The target average degree k̄t in
each snapshot Gt , t = 1, . . . , τ , is set equal to the average
degree in the corresponding real snapshot at slot t . Finally,
the temperature T is set such that the resulting average
time-aggregated degree, k̄aggr, is similar to the one in the
real network—we analyze the dependence of k̄aggr on T in
Sec. VI D.

In the counterparts, the expected degree of agent i in slot t
is [Eq. (4)]

k̄t (κi ) = k̄t

d̄
κi, (9)

FIG. 3. Distribution of the average agent degree per slot (left)
and of the average snapshot degree (right) in the considered
networks.

TABLE II. Modeled counterparts. The values of n̄, d̄ , and k̄aggr

are averages over 20 simulation runs except from the Friends &
Family where the averages are over 5 runs. Average values above
10 have been rounded to the nearest integer.

Modeled network N τ n̄ d̄ k̄aggr T

Hospital 75 17376 2.5 0.04 30 0.84
Primary school 242 5846 33 0.17 69 0.72
High school 327 18179 18 0.06 35 0.61
Conference 113 10618 2.9 0.03 30 0.85
Friends & Family 131 57961 67 1.1 96 0.53

while agent’s i expected degree per slot is
∑τ

t=1 k̄t (κi)/τ = κi.
The counterparts aim at capturing the variability in the number
of interacting agents per slot since the probability that an agent
i interacts with at least one other agent in slot t is

Ii,t = 1 −
[

1 − k̄t (κi )

N − 1

]N−1

, (10)

while k̄t (κi ) ∝ k̄tκi.

C. Properties of modeled vs. real networks

Table II gives an overview of the counterparts. We see
that their characteristics are overall very similar to the ones
of the real networks (Table I). Further, Fig. 4 shows that the
counterparts indeed capture the variability in the number of
interacting agents per slot.

In Figs. 5 and 6 we compare a range of other proper-
ties between real and modeled networks, considered also in
Refs. [29,30,41]. These properties are as follows:

(a) The aggregated contact distribution, i.e., the distribu-
tion of the number of slots that a pair of nodes remains
connected.

(b) The aggregated intercontact distribution, i.e., the dis-
tribution of the number of slots that a pair of nodes remains
disconnected.

(c) The aggregated weight distribution, which is the distri-
bution of the edge weights in the time-aggregated network. In
this network two nodes are connected if they were connected
in at least one slot, while the weight of an edge is the total
number of slots that the two endpoints of the edge were
connected.

(d) The strength distribution, which is the distribution
of the node strengths in the time-aggregated network. The
strength of a node is the sum of the weights of all edges
attached to the node.

(e) The distribution of component sizes, which is the dis-
tribution of the number of nodes in the connected components
formed throughout the observation period τ .

(f) The distribution of the shortest time-respecting path
lengths across all pairs of nodes. As an example, consider
three nodes i, k and j, where i and k connect at slot t
and k and j connect at slot t ′ > t . The time-respecting path
between i and j is i → k → j and has length 2. The shortest
time-respecting path between i and j is the shortest such path
throughout the observation period.
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FIG. 4. Number of interacting agents per slot in real and modeled networks. In the first four plots the cycles of activity, i.e., the periods
with high numbers of interacting agents, correspond to the consecutive observation days where the agents were present in the corresponding
premises (5, 2, 5, and 2.5 days, respectively.) There is a single activity cycle in the last plot, spanning the whole observation period—proximity
in the Friends & Family was constantly captured using mobile phones.

(g) The average total duration of a group as a function
of its size. A group is a set of nodes forming a connected
component. The total duration of a group is the total number
of slots where the exact same set of nodes formed a connected
component. For each group size we compute the average of
this duration among groups with that specific size.

(h) Finally, we consider the average number of recurrent
components where an agent participates as a function of its
total number of interactions (strength) throughout the obser-
vation period. A connected component formed in a slot t is
called recurrent if a connected component with exactly the
same nodes was formed in a previous slot t ′ < t [30]. We
consider recurrent components consisting of at least three
nodes.

Figures 5 and 6 show that the dynamic-S1 reproduces
all the above properties remarkably well. A main exception
are the longer paths in the conference [Fig. 5(f)], which can
not be captured by the model. We also note that k̄aggr in
conference’s counterpart could not exceed ≈30 (vs. 39 in the
real network). Thus, the dynamic-S1 does not totally capture
the characteristics of this network. Interestingly, this was also
the case with the FDM [30]. Finally, we note that the ability of
the model to capture the properties of the considered networks
is not due to mere calibration of expected node degrees. In
Appendix, we show that the configuration model [42,43] with
the same calibration of expected node degrees, Eqs. (8) and

(9), cannot reproduce the abundance of recurrent components
or the broad contact, intercontact, and weight distributions
observed in the real systems. Further, in Sec. VI we prove
these distributions in the dynamic-S1 and show that they
do not depend on the distribution of the degree variables
ρ(κ ). Below, we also investigate the pairwise contact and
intercontact distributions in modeled and real networks.

D. Pairwise contact and intercontact distributions

If the expected snapshot degrees, k̄t , t = 1, . . . , τ , are inde-
pendent and identically distributed, then the pairwise contact
and intercontact distributions in the dynamic-S1 are geometric
at τ → ∞ [44]. Indeed, in this case the probability for two
nodes i, j with latent variables κi, κ j and angular distance �θi j

to remain connected for t = 1, 2, . . . slots, is

Pc(t ; κi, κ j,�θi j ) = p̄t−1
i j (1 − p̄i j ),

p̄i j ≡
∫

p[χi j (k̄)] f (k̄)dk̄, (11)

where p[·] is the connection probability in Eq. (1), while
χi j (k̄) is the effective distance between the two nodes, which
depends on the average snapshot degree k̄ [Eqs. (2) and (3)],
whose PDF is denoted by f (·). Similarly, the probability that

FIG. 5. Real face-to-face interaction networks vs. simulated networks with the dynamic-S1. (a) Contact distribution. (b) Intercontact
distribution. (c) Weight distribution. (d) Strength distribution. (e) Distribution of component sizes. (f) Distribution of shortest time-respecting
path lengths. (g) Average total duration of a group as a function of its size. (h) Average number of recurrent components where an agent
participates as a function of the total number of interactions of the agent. The results with the model are averages over 20 simulation runs
and correspond to the counterparts of the hospital and primary school. Similar results hold for the rest of the counterparts, not shown to avoid
clutter. The probabilities in (a)–(f) represent relative frequencies, i.e., they are computed as ni/

∑
j n j , where ni is the number of samples that

have value i. Panels (a)–(d) have been binned logarithmically. Durations are measured in numbers of time slots.
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FIG. 6. Same as Fig. 5 but for the Friends & Family proximity network and its modeled counterpart. The results with the model are
averages over five simulation runs.

the two nodes remain disconnected for t = 1, 2, . . . slots is

Pic(t ; κi, κ j,�θi j ) = (1 − p̄i j )
t−1 p̄i j . (12)

In general, these distributions are not geometric in the model
as they depend on the stochastic process that describes the
time evolution of the expected snapshot degrees.

Previous studies have reported that a significant portion
of pairwise intercontact durations in real data can be fitted
with exponential distributions [25,27]. Since the geometric
distribution is the discrete analog of the exponential distri-
bution, these studies are in line with Eq. (12). Given these
results, we check below how well the geometric distribution
captures the pairwise contact and intercontact distributions in
the considered real systems and their modeled counterparts.

For each pair of nodes we consider the sets of its contact
and intercontact durations in each of the activity cycles shown
in Fig. 4. We consider sets with at least three distinct duration
values. For each set we estimate the parameter of the geomet-
ric distribution, i.e., the success probability p = 1/m, where
m is the mean of the durations in the set. Then we draw the
same number of samples as the number of durations in the set
from a geometric distribution with parameter p. Subsequently,
we use the two-sample Kolmogorov-Smirnov (KS) goodness-
of-fit test [45,46] to test the hypothesis that the values in the
set and the sampled values have the same distribution. We
recall that such a statistical test can only reject or fail to
reject a given hypothesis for a given significance level α. This
level corresponds to the probability of incorrectly rejecting the
hypothesis, while if the test fails to reject the hypothesis, we
only know that this is true to a confidence level 1 − α. We use
α = 0.01 and find for each activity cycle the percentage of
pairs for which the test failed to reject the hypothesis. Table III
shows the average of this percentage across the activity cycles
in each network, averaged across 10 repetitions of the above
procedure. The results for each counterpart are also averaged
across 10 different temporal network realizations.

We see in Table III that the geometric distribution fits a
high percentage of contact durations in both modeled and
real networks. It also fits a high percentage of intercontact
durations in modeled networks and a significant percentage of
intercontact durations in the real systems, which, however, is
not as high as in the modeled networks. These results suggest
that the model captures the variability of the contact durations

in the real systems. However, it does not totally capture the
variability of the intercontact durations.

To verify the last statement we also consider a log-normal
distribution for the intercontact durations, which offers a
more versatile model to capture the variability in the dis-
tributions [25]. We recall that the PDF of the log-normal
is f (x) = 1/(xσ

√
2π )e−(ln x−μ)2/(2σ 2 ), while its skewness is

(eσ 2 + 2)
√

eσ 2 − 1. For each pair of nodes, the parameters
μ and σ 2 are the mean and variance of the logarithms of
its intercontact durations. We see in Table III that the log-
normal better fits the intercontact durations, especially in the
real systems, as also observed in Ref. [25]. Further, Fig. 7
shows that the intercontact distributions in the real networks
are indeed more skewed on average than in their counter-
parts. Nevertheless, the aggregated intercontact distributions
are very similar in real and synthetic systems [Figs. 5(b)
and 6(b)]. In the next section we also see that paradigmatic
dynamical processes perform similarly in the two.

TABLE III. Percentage of pairs (rounded to the nearest integer)
where the KS test failed to reject the hypothesis that their contact-
intercontact distribution is geometric. The table also shows the re-
sults where a log-normal distribution is assumed for the intercontact
durations; samples from the log-normal are rounded to the nearest
integer before applying the KS test. (HP, Hospital; PS, Primary
school; HS, High school; CF, Conference; F & F, Friends and
Family.)

Contact dist. Intercontact dist.

Network geometric Geometric Log-normal

HP (model) 98% 97% 99%
HP (real) 97% 69% 100%
PS (model) 100% 100% 99%
PS (real) 98% 69% 100%
HS (model) 98% 98% 98%
HS (real) 94% 65% 100%
CF (model) 95% 92% 99%
CF (real) 97% 64% 100%
F & F (model) 80% 85% 87%
F & F (real) 77% 60% 78%
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HP | σ̄ = 1.69
HS | σ̄ = 1.65
F & F | σ̄ = 2.60
HP (Model) | σ̄ = 1.04
HS (Model) | σ̄ = 1.14
F & F (Model) | σ̄ = 1.21
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FIG. 7. Empirical complementary cumulative distribution func-
tion (ECCDF) of the estimated log-normal’s σ in real and modeled
networks. The average (σ̄ ) of each distribution is indicated in the
legend.

V. DYNAMICAL PROCESSES ON
MODELED VS. REAL NETWORKS

We consider the susceptible-infected-susceptible (SIS)
epidemic-spreading model [36] and the Daley and Kendall
(DK) model for rumor spreading [37]. In the SIS each agent
can be in one of two states, susceptible (S) or infected (I).
At any time slot an infected agent recovers with probability
β and becomes susceptible again, whereas infected agents
infect the susceptible agents with whom they interact with
probability α. Thus, the transition of states is S → I → S.
In the DK model each agent can be in one of three states,
ignorant (I), spreader (S), or stifler (R). An ignorant agent that
interacts with a spreader receives the rumor with probability
α and becomes a spreader, while a spreader that interacts with
another spreader or a stifler becomes a stifler with probability
β and no longer communicates the rumor. The transition of
states is I → S → R.

To simulate the SIS process on temporal networks we use
the dynamic SIS implementation of the Network Diffusion
Library [47]. We have also modified this library to implement
the DK model. For the SIS process we consider the average

percentage of infected agents per slot (prevalence), while for
the DK process we consider the percentage of stiflers at the
final slot (size of the rumor). Figure 8 shows that the two
processes perform remarkably similarly in real and modeled
networks. The only exception is in the performance of the SIS
in the conference and its counterpart at low infection proba-
bilities [Fig. 8(d)]—a similar behavior has been observed in
the FDM [30] and it may be due to the fact that the models do
not totally capture the characteristics of this network, as noted
in Sec. IV C.

VI. MATHEMATICAL ANALYSIS

Here we perform a detailed mathematical analysis of the
main properties of the dynamic-S1. To facilitate the analysis,
we assume that the expected snapshot degree is the same in all
time slots, k̄t = k̄, ∀t . This assumption renders the connection
probability between two nodes [Eq. (1)] the same in all slots.
However, we illustrate that the analytical results match closely
the simulation results from the modeled counterparts of real
systems, where this assumption does not hold.

We show that for sparse snapshots, k̄ � N , and large
durations τ , the aggregated contact, intercontact and weight
distributions can be approximated by power laws with expo-
nents 2 + T , 2 − T , and 1 + T , respectively, where T ∈ (0, 1)
is the temperature in the connection probability. Technically,
we consider these distributions in the thermodynamic limit,
N → ∞, and show that they are power laws with the afore-
mentioned exponents at τ → ∞. Interestingly, these results
do not depend on the distribution of the latent degree variables
ρ(κ ). Further, we analyze the expected degree in the time-
aggregated network, and show that in finite networks the
expected strength of a node grows superlinearly with its time-
aggregated degree, as empirically observed in prior studies
[15,29]. We begin with the contact distribution.

A. Aggregated contact distribution

The probability rc(t ; κi, κ j,�θi j ) to observe a sequence of
exactly t = 1, 2, . . . , τ − 2 consecutive slots where two nodes

FIG. 8. Performance of the SIS and DK processes in real and modeled networks. Top row: Prevalence of the SIS process as a function of
the infection probability α for two recovery probabilities β. Bottom row: Size of the rumor in the DK process as a function of the probability to
communicate the rumor α for two stifling probabilities β. The results are averages over 10 runs of each process in the activity cycles indicated
in the plots. Each run of the SIS-DK process starts with a random set of infected or spreader agents that consists of 10% of agents. The results
for the modeled counterparts are also averaged across 10 different temporal network realizations.
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i, j with latent variables κi, κ j and angular distance �θi j are
connected, is the percentage of time τ where we observe a
slot where these two nodes are not connected, followed by
t slots where they are connected, followed by a slot where
they are not connected [48]. For each duration t , there are
τ − t − 1 possibilities where this duration can be realized. For
instance, if t = 2, then the two nodes can be disconnected in
slot i − 1, connected in slots i, i + 1, and disconnected in slot
i + 2, where i = 2, . . . , τ − 2. Therefore, the percentage of
observation time where a duration of t slots can be realized is
(τ − t − 1)/τ . Since the two nodes are connected in each slot
with probability p(χi j ) with χi j in Eq. (2), we have

rc(t ; κi, κ j,�θi j ) =
(

τ − t − 1

τ

)
p(χi j )

t [1 − p(χi j )]
2. (13)

Removing the condition on �θi j , which is uniform on [0, π ],
yields

rc(t ; κi, κ j ) =
(

τ − t − 1

τ

)
1

π

∫ π

0
p(χi j )

t [1 − p(χi j )]
2d�θi j

=
(

τ − t − 1

τ

)
2μκiκ j

N

×
∫ N

2μκiκ j

0
p(χi j )

t [1 − p(χi j )]
2dχi j

=
(

τ − t − 1

τ

)(
N

2μκiκ j

)2/T (
T

2 + T

)

× 2F1

[
t + 2, 2 + T, 3 + T,−

(
N

2μκiκ j

)1/T
]
,

(14)

where 2F1[a, b, c; z] is the Gauss hypergeometric function
[49]. At N → ∞, the integral in (14) simplifies for T ∈ (0, 1)
and t � 1, to∫ ∞

0
p(χi j )

t [1 − p(χi j )]
2dχi j = T �(2 + T )�(t − T )

�(t + 2)
, (15)

where �(z) is the complete Gamma function, �(z) =∫ ∞
0 xz−1e−xdx, z > 0 [50]. From (14) and (15), we have

Nrc(t ; κi, κ j )
N→∞−−−→

(
τ − t − 1

τ

)
2μκiκ j

×T �(2 + T )�(t − T )

�(t + 2)
. (16)

Removing the condition on κi and κ j , gives

Nrc(t ) = N
∫∫

rc(t ; κi, κ j )ρ(κi )ρ(κ j )dκidκ j

N→∞−−−→
(

τ − t − 1

τ

)
2μκ̄2T �(2 + T )�(t − T )

�(t + 2)
.

(17)

The aggregated contact distribution, Pc(t ), is the probabil-
ity that two nodes are connected for exactly t consecutive slots
given that t � 1,

Pc(t ) = rc(t )∑τ−2
t=1 rc(t )

. (18)
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FIG. 9. Aggregated contact distribution in the simulated counter-
parts of the hospital and Friends & Family (Sec. IV B) vs. theoretical
prediction in (20) with T = 0.84, 0.53. Similar results hold for the
rest of the counterparts.

From (17) and (18), we have

Pc(t )
N→∞−−−→ (τ − t − 1)

g(τ )

�(t − T )

�(t + 2)
≈ (τ − t − 1)

g(τ )

1

t2+T
,

(19)

where

g(τ ) ≡ [(τ − 1)T − 1]�(1 − T )

T + T 2
+ �(τ − T )

(T + T 2)�(τ )
.

The approximation in (19) uses the facts �(t − T ) ≈ t−T �(t )
and �(t + 2) ≈ t2�(t ), which hold for t � 1. We see from
(19) that for t � τ , Pc(t ) is approximately a power law with
exponent 2 + T . At τ → ∞, we have a pure power law,

Pc(t )

N → ∞
τ → ∞−−−−→ 1 + T

�(1 − T )

�(t − T )

�(t + 2)
≈ 1 + T

�(1 − T )

1

t2+T
. (20)

Figure 9 shows that (20) provides an excellent approximation
to simulation results.

From (19), the expected contact duration in the thermody-
namic limit is

t̄c
N→∞−−−→

τ−2∑
t=1

t
(τ − t − 1)

g(τ )

�(t − T )

�(t + 2)

= �(2 − T )�(τ + 1) − �(τ − T )[(1 + T )τ − 2T ]

�(2 − T )[(τ − 1)T − 1]�(τ ) + �(τ − T )(1 − T )
.

(21)

At τ → ∞, the last relation simplifies to

t̄c

N → ∞
τ → ∞−−−−→ 1

T
. (22)

Next we derive the aggregated intercontact distribution fol-
lowing the same steps.

B. Aggregated intercontact distribution

Let ric(t ; κi, κ j,�θi j ) be the probability to observe a slot
where two nodes i, j with latent variables κi, κ j and angular
distance �θi j are connected, followed by t slots where they
are not connected, followed by a slot where they are again
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connected. We have

ric(t ; κi, κ j,�θi j ) =
(

τ − t − 1

τ

)
p(χi j )

2[1 − p(χi j )]
t .

(23)

Removing the condition on �θi j yields

ric(t ; κi, κ j ) =
(

τ − t − 1

τ

)
1

π

∫ π

0
p(χi j )

2[1−p(χi j )]
t d�θi j

=
(

τ − t − 1

τ

)
2μκiκ j

N

×
∫ N

2μκiκ j

0
p(χi j )

2[1 − p(χi j )]
t dχi j

=
(

τ − t − 1

τ

)(
N

2μκiκ j

)t/T (
T

t + T

)

× 2F1

[
t +T, t +2, t +T +1,−

(
N

2μκiκ j

)1/T
]
.

(24)

At N → ∞, the integral in (24) simplifies for T ∈ (0, 1), to∫ ∞

0
p(χi j )

2[1 − p(χi j )]
t dχi j = T �(2 − T )�(t + T )

�(t + 2)
. (25)

From (24) and (25), and after removing the condition on κi

and κ j , we have

Nric(t )
N→∞−−−→

(
τ − t − 1

τ

)
2μκ̄2T �(2 − T )�(t + T )

�(t + 2)
.

(26)

The aggregated intercontact distribution, Pic(t ), is the prob-
ability that two nodes are disconnected for exactly t consecu-
tive slots given that t � 1,

Pic(t ) = ric(t )∑τ−2
t=1 ric(t )

. (27)

From (26) and (27), we have

Pic(t )
N→∞−−−→ (τ − t − 1)

h(τ )

�(t + T )

�(t + 2)
≈ (τ − t − 1)

h(τ )

1

t2−T
,

(28)

where

h(τ ) ≡ [(τ − 1)T + 1]�(1 + T )

T − T 2
− �(τ + T )

(T − T 2)�(τ )
.

The approximation in (28) holds for t � 1. For t � τ , Pic(t ) is
approximately a power law with exponent 2 − T . At τ → ∞,
we have a pure power law,

Pic(t )

N → ∞
τ → ∞−−−−→ 1 − T

�(1 + T )

�(t + T )

�(t + 2)
≈ 1 − T

�(1 + T )

1

t2−T
. (29)

Figure 10 juxtaposes (29) against simulation results.
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FIG. 10. Aggregated intercontact distribution in the simulated
counterparts of the hospital and Friends & Family (Sec. IV B) vs.
theoretical prediction in (29) with T = 0.84, 0.53. Similar results
hold for the rest of the counterparts.

From (28), the expected intercontact duration in the ther-
modynamic limit is

t̄ic
N→∞−−−→

τ−2∑
t=1

t
(τ − t − 1)

h(τ )

�(t + T )

�(t + 2)

= �(τ + T )[(1 − T )τ + 2T ] − �(2 + T )�(τ + 1)

�(2 + T )[(τ − 1)T + 1]�(τ ) − �(τ + T )(1 + T )
.

(30)

The above relation increases approximately exponentially
with T ∈ (0, 1), and diverges at τ → ∞,

t̄ic

N → ∞
τ → ∞−−−−→ ∞. (31)

We proceed with the weight distribution.

C. Aggregated weight distribution

The probability that two nodes i, j with latent vari-
ables κi, κ j and angular distance �θi j are connected in t =
0, 1, . . . , τ slots, is given by the binomial distribution

rw(t ; κi, κ j,�θi j ) =
(

τ

t

)
p(χi j )

t [1 − p(χi j )]
τ−t . (32)

Removing the condition on �θi j , yields

rw(t ; κi, κ j ) = 1

π

(
τ

t

)∫ π

0
p(χi j )

t [1 − p(χi j )]
τ−t d�θi j

= 2μκiκ jT

N

(
τ

t

)∫ 1

umin
i j

ut−T −1
i j (1−ui j )

τ−t+T −1dui j

= 2μκiκ j

N

T �(τ + 1)

�(τ − t + 1)�(t + 1)

×
[
�(τ − t + T )�(t − T )

�(τ )
−

(
umin

i j

)t−T

t − T

× 2F1
(
t −T, 1−τ −T + t, t −T +1, umin

i j

)]
,

(33)
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where

umin
i j ≡ 1

1 + (
N

2μκiκ j

)1/T . (34)

To reach (33), we perform the change of integration variable
ui j ≡ p(χi j ) and express the binomial coefficient in terms of

Gamma functions, (τt ) = �(τ + 1)/[�(τ − t + 1)�(t + 1)].

At N → ∞, umin
i j → 0, and the second term inside the

brackets in (33) vanishes for T ∈ (0, 1) and t � 1. Removing
the condition on κi and κ j , we have

Nrw(t )
N→∞−−−→ 2μκ̄2T τ�(τ − t + T )�(t − T )

�(τ − t + 1)�(t + 1)
. (35)

For t = 0, we can write

N[1 − rw(0)]

= N
τ∑

t=1

rw(t )
N→∞−−−→ 2μκ̄2�(1 − T )�(τ + T )

�(τ )
. (36)

The aggregated weight distribution, Pw(t ), is the probabil-
ity that two nodes are connected in t slots given that t � 1,

Pw(t ) = rw(t )∑τ
t=1 rw(t )

. (37)

From (35) and (37), we have

Pw(t )
N→∞−−−→ 1

w(τ )

�(τ − t + T )�(t − T )

�(τ − t + 1)�(t + 1)
(38)

≈ 1

w(τ )(τ − t )1−T

1

t1+T
, (39)

where

w(τ ) ≡ �(1 − T )�(τ + T )

T �(τ + 1)
.

The approximation in (39) holds for 1 � t � τ . We see from
(39) that for t � τ , Pw(t ) is approximately a power law with
exponent 1 + T . At τ → ∞, we have a pure power law,

Pw(t )

N → ∞
τ → ∞−−−−→ T

�(1 − T )

�(t − T )

�(t + 1)
≈ T

�(1 − T )

1

t1+T
. (40)

From (38), the expected weight in the thermodynamic limit
is

t̄w
N→∞−−−→

τ∑
t=1

t

w(τ )

�(τ − t + T )�(t − T )

�(τ − t + 1)�(t + 1)

=�(1 + T )�(τ + 1)

�(τ + T )
≈ �(1 + T )τ 1−T . (41)

The above relation decreases approximately exponentially
with T ∈ (0, 1) and diverges at τ → ∞,

t̄w

N → ∞
τ → ∞−−−−→ ∞. (42)

We next turn our attention to the expected degree in the time-
aggregated network.

0 0.2 0.4 0.6 0.8 1
10-2

100

102

Eqs. (44,45)
Eq. (46)
Simulation
N=75

FIG. 11. Average time-aggregated degree as a function of the
temperature T in simulated networks vs. (44), (45), and (46). The
simulation parameters are N = 75, k̄ = 0.05, and τ = 17376 (as in
the hospital), while κi = k̄, ∀i, i.e., the PDF of κ is the Dirac δ

function, ρ(κ ) = δ(κ − k̄).

D. Time-aggregated degree and finite-size effects

The probability that two agents i, j with latent variables
κi, κ j do not interact is obtained by setting t = 0 in (33),

rw(0; κi, κ j ) = 2μκiκ j

N

[
T �(τ + T )�(−T )

�(τ )

+ (
umin

i j

)−T
2F1

( − T, 1−τ − T, 1−T, umin
i j

)]
,

(43)

where umin
i j in (34). Removing the condition on κi and κ j gives

the probability that two agents do not interact,

rw(0) =
∫∫

rw(0; κi, κ j )ρ(κi )ρ(κ j )dκidκ j . (44)

The expected time-aggregated degree is

k̄aggr = (N − 1)[1 − rw(0)]. (45)

At N → ∞, k̄aggr is given by (36). Substituting μ in (36) with
its expression in (3) gives

k̄aggr
N→∞−−−→ �(τ + T )κ̄

�(1 + T )�(τ )
≈ τ T κ̄

�(1 + T )
, (46)

which increases exponentially with T and linearly with κ̄ . Fig-
ure 11 juxtaposes simulation results against (44) and (45) and
the limit in (46). We see an excellent agreement between (44)
and (45) and simulations, while (46) is a good approximation
only at sufficiently low temperatures.

Similarly, the expected time-aggregated degree of a node
with latent variable κi is

k̄aggr(κi ) = (N − 1)

[
1 −

∫
rw(0; κi, κ j )ρ(κ j )dκ j

]
, (47)

N→∞−−−→ �(τ + T )κi

�(1 + T )�(τ )
≈ τ T κi

�(1 + T )
. (48)

Figure 12 juxtaposes simulation results against (47) and (48).
We again see an excellent agreement between the exact
prediction (47) and simulations, while (48) is a good ap-
proximation only for sufficiently small k̄aggr(κ ). Therefore,
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FIG. 12. Average time-aggregated degree as a function of the
latent degree variable κ in the simulated counterpart of the Friends
& Family (Sec. IV B) vs. (47) and (48). The simulation results are
averages over five runs.

one in general needs to use exact expressions [(44), (45),
and (47)] to accurately compute expected time-aggregated
degrees. The thermodynamic limit approximations [(46) and
(48)] are accurate only at sufficiently low temperatures.

We also note that the normalization factor w(τ ) of the
weight distribution in (38) can be rewritten as

w(τ ) = �(1 − T )�(T )k̄aggr

τ κ̄
, (49)

where k̄aggr in (46). Figure 13 juxtaposes (38) against simu-
lation results, where in view of Fig. 11, we use in (49) the
actual value of k̄aggr in the simulations instead of its limit in
(46). We see again a very good agreement between theory and
simulations.

E. Strength-degree correlations

We now analyze the strength-degree correlations in the
time-aggregated network and justify previous empirical ob-
servations reporting a superlinear dependence between an
individual’s expected strength and its time-aggregated degree
[15,29].
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FIG. 13. Aggregated weight distribution in the simulated coun-
terparts of the hospital and Friends & Family (Sec. IV B) vs. theoret-
ical prediction given by (38) and (49) with τ , T , k̄aggr, and κ̄ = d̄ as
in Table II. The upward bendings at the tails of the distributions are
due to the finite observation time τ . Similar results hold for the rest
of the counterparts.
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FIG. 14. Normalized average strength s̄(κ )/τ as a function of the
latent degree variable κ in the simulated counterparts of the hospital
and Friends & Family (Sec. IV B). The results are averages over 20
and 5 runs, respectively. In the counterparts k̄ = κ̄ (= d̄), canceling
out in (52).

The expected weight between two nodes i, j with latent
variables κi, κ j , is

w(κi, κ j ) =
τ∑

t=1

trw(t ; κi, κ j ), (50)

where rw(t ; κi, κ j ) in (33). At N → ∞, the second term
inside the brackets in (33) vanishes for T ∈ (0, 1) and t � 1,
yielding

Nw(κi, κ j )
N→∞−−−→2μκiκ jT τ

τ∑
t=1

t
�(τ − t + T )�(t − T )

�(τ − t + 1)�(t + 1)

=τ k̄κiκ j

κ̄2
. (51)

The expected strength of a node with latent variable κi, is

s̄(κi) = N
∫

w(κi, κ j )ρ(κ j )dκ j
N→∞−−−→ τ k̄κi

κ̄
. (52)

Figure 14 juxtaposes (52) against simulation results. We see
that (52) can be a good approximation in finite networks.
This is because the second term inside the brackets in (33)
vanishes even for finite networks as t increases. The smaller
the temperature the faster this term vanishes and the better the
approximation in (52) is for finite networks.

We also see from (48) and (52) that in the thermodynamic
limit the expected strength of a node grows linearly with its
expected time-aggregated degree,

s̄(κi) ∝ k̄aggr(κi ). (53)

However, in the counterparts k̄aggr(κi ) grows sublinearly
with κi (Fig. 12), while s̄(κi ) grows approximately linearly
(Fig. 14). Thus, in the considered systems we expect the
strength of a node to grow superlinearly with its time-
aggregated degree, as verified in Fig. 15 and empirically
observed in prior studies [15,29].
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FIG. 15. Average strength as a function of the time-aggregated degree in real and simulated networks. Similar results hold for the rest of
the real networks and their counterparts from Sec. IV B.

VII. COMPONENT DYNAMICS AND TEMPERATURE

Finally, we elucidate the important role of the temperature
T in the formation of components. To this end, we consider
the connected components formed in all time slots throughout
the observation period τ , which consist of at least three
nodes. We consider both unique and recurrent components.
A component in a slot is called unique if it is seen for the first
time, i.e., it is a component that does not consist of exactly
the same nodes as a component seen in a previous slot. Oth-
erwise, the component is recurrent. Figure 16 shows that as T
increases, the number of unique components increases almost
exponentially up to a point and then decreases. This is because
larger values of T increase the connection probability [Eq. (1)]
at larger distances (χi j > 1), while decreasing it at smaller dis-
tances (χi j < 1). Since there are more pairs of nodes separated
by larger distances, the number of unique components formed
increases. However, at larger T closer to 1, the probability of
connections is relatively small at smaller and larger distances,
which causes this number to decrease. The inset in Fig. 16
shows the size of the largest component formed.

Further, Fig. 16 shows that the ratio of the total number
of components formed to the number of unique components
formed decreases with T ∈ (0, 1). This means that as T
increases fewer recurrent components are formed per unique
component. This is expected since at larger T unique com-
ponents consist of pairs separated by larger distances, and
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FIG. 16. Number and size of components formed vs. temperature
T . The simulation parameters are the same as in the counterpart of
the hospital (Sec. IV B) except that T varies in (0, 1).

the probability to form again the same such components is
vanishing.

VIII. CONCLUSION

Despite its simplicity the dynamic-S1 reproduces ade-
quately many of the observed properties of real proximity
networks. At the same time the model is amenable to math-
ematical analysis. We have proved here the model’s main
properties (Sec. VI). Other properties were studied only via
simulations (Sec. IV C) and it would be interesting in future
work to prove those properties as well. We have seen that
network temperature plays a central role in network dynamics,
dictating the contact, intercontact, and weight distributions,
the time-aggregated degrees, and the formation of unique and
recurrent components.

The dynamic-S1 may not capture the properties of a real
network exactly. For instance, the aggregated contact, inter-
contact and weight distributions may deviate from pure power
laws, may follow power laws with exponential cutoffs, may
have different exponents than exactly 2 + T, 2 − T, 1 + T ,
etc., cf. Fig. 6(a). Further, we have seen that the pairwise
intercontact distributions are on average more skewed in real
networks than in the model. As future work, it would be
also interesting to investigate what mechanisms need to be
introduced into the model in order to be able to capture such
variations.

We also note that memory in the dynamic-S1 is induced
only via the nodes’ latent variables (κ, θ ). Extensions to the
model with link persistence, where connections and discon-
nections can also be copied from the previous to the next
snapshot [51,52], would allow additional control over the rate
of dynamics, i.e., on how fast the topology changes from snap-
shot to snapshot. Further, generalizations of the model that
would allow the nodes’ latent variables (κ, θ ) to change over
time are desirable. However, for this purpose, one would first
need to find the equations that realistically describe the motion
of nodes in their latent spaces. The dynamic-S1 or extensions
of it may apply to other types of time-varying networks, such
as the ones considered in Refs. [53,54], and constitute the
basis of maximum likelihood estimation methods that infer
the node coordinates and their evolution in the latent spaces
of real systems [55]. Taken altogether, our results pave the
way toward generative modeling of temporal networks that
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FIG. 17. Real face-to-face interaction networks vs. simulated networks with the configuration model (CM). [(a), (e), (i), (m), and (q)]
Average number of recurrent components where an agent participates as a function of the total number of interactions of the agent. [(b), (f),
(j), (n), and (r)] Contact distribution. [(c), (g), (k), (o), and (s)] Intercontact distribution. [(d), (h), (l), (p), and (t)] Weight distribution. For
comparison the results with the dynamic-S1 considered in the main text are also shown. The results with the models are averages over 20
simulation runs except from the Friends & Family where the averages are over five runs.

simultaneously satisfies simplicity, realism, and mathematical
tractability.
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APPENDIX: DYNAMIC-S1 VS CONFIGURATION MODEL

The dynamic-S1 utilizes the S1 model at the cold regime
where the temperature is T < 1 (Sec. II). The S1 can be also
defined at the hot regime, T > 1 [33].

Like traditional complex networks [33], proximity net-
works appear to belong to the cold regime. Indeed, as seen
in Table II, all counterparts have T < 1. Further, Fig. 16
shows that the number of recurrent components quickly de-
creases with T ∈ (0, 1), becoming small at T → 1, while real
networks have large numbers of recurrent components (cf.
Figs. 5(h) and 6(h) and Ref. [30]).

Analyzing the dynamic-S1 at the hot regime is beyond the
scope of this paper. However, we consider here a limiting
case at this regime, where the S1 model degenerates to the
configuration model, i.e., to the ensemble of graphs with given
expected degrees [42,43]. This case corresponds to letting
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T → ∞, while completely ignoring the angular distances
among the nodes, see Ref. [33] for details. The connection
probability between two nodes i, j becomes

pcm(κi, κ j ) = 1

1 + N κ̄2/(k̄κiκ j )
. (A1)

For sparse networks (k̄ � N) and distributions of κi that are
not too broad (conditions that hold in the considered networks,
Fig. 3), we can write pcm(κi, κ j ) ≈ k̄κiκ j/(N κ̄2). Using this
approximation, it is easy to see that the expected degree of a
node with latent variable κ is given by (4), while the average
degree in the resulting network is k̄.

We now build synthetic counterparts for the real networks
of Sec. IV A using the dynamic-S1 as described in Secs. III
and IV B, except that we connect the nodes in each snapshot
with the connection probability in (A1) [instead of (1)]. Since
there is no temperature T in (A1), we can no longer control
the average time-aggregated degree, which is significantly
larger in the counterparts, k̄aggr = 58, 214, 242, 76, 125, for
the hospital, primary school, high school, conference and
Friends & Family, respectively (vs. the ones in Table I). As
expected, we see in Fig. 17 that the configuration model
cannot reproduce the abundance of recurrent components
observed in the real networks. Further, it cannot capture their
broad contact, intercontact, and weight distributions (Fig. 17).
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