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Giant component in a configuration-model power-law graph with a variable number of links
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We generalize an algorithm used widely in the configuration model such that power-law degree sequences
with the degree exponent λ and the number of links per node K controllable independently may be generated. It
yields the degree distribution in a different form from that of the static model or under random removal of links
while sharing the same λ and K . With this generalized power-law degree distribution, the critical point Kc for
the appearance of the giant component remains zero not only for λ � 3 but also for 3 < λ < λl � 3.81. This is
contrasted with Kc = 0 only for λ � 3 in the static model and under random link removal. The critical exponents
and the cluster-size distribution for λ < λl are also different from known results. By analyzing the moments and
the generating function of the degree distribution and comparison with those of other models, we show that the
asymptotic behavior and the degree exponent may not be the only properties of the degree distribution relevant to
the critical phenomena but that its whole functional form can be relevant. These results can be useful in designing
and assessing the structure and robustness of networked systems.
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I. INTRODUCTION

An important discovery made recently for the structure of
complex systems is the universal broad distribution of degree,
the number of the nearest neighbors [1–4]. A number of com-
putational models and algorithms [5–8] have been proposed
for implementing the power-law (PL) graphs which have the
degree distribution decaying as a power law, D(k) ∼ k−λ for
large k, and have been instrumental in the study of the impact
of this new class of disorder in percolation [9,10], the Ising
model [11], epidemic spreading [12], synchronization [13],
boolean dynamics [14], and many other areas [15,16].

Among the remarkable results is the zero critical point
appearing when the degree exponent λ is equal to or smaller
than λl = 3 [15,16]. λl can be called the lower-critical degree
exponent in the sense that no phase transition occurs for
λ � λl , similarly to the lower-critical dimension [17]. The di-
vergence of the second moment of the degree distribution for
λ � 3 leads to such a zero critical point in various dynamical
processes, while there are exceptions such as the susceptible-
infected-susceptible model for which the zero critical point
is observed for all finite λ [18]. Due to the diverging second
or higher moments of the PL degree distributions, the critical
exponents vary continuously with λ when λ is smaller than
the upper-critical degree exponent λu, which is known to be
4 in percolation [19] and 5 in the Ising model [11] or the
Kuramoto model for synchronization [20]. For λ > λu, the
critical exponents take the mean-field values.

Given such a crucial role of the degree exponent in the
critical phenomena on PL graphs, a natural question arises:
Is the large-k behavior the only property of the degree
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distribution D(k) relevant to critical phenomena? There are
various relevant factors beyond the degree distribution, such
as degree-degree correlation [21] or the spectral dimensions
[22–24], but we are here focused on whether different degree
distributions sharing the same degree exponent could lead to
different critical phenomena from described above and how
much different if they do. The answers are not immediately
clear, comparing critical phenomena on the PL graphs with
degree distributions in different form but sharing the same
degree exponent.

In this paper, we consider the formation and growth of
the giant connected component in random PL graphs of N
nodes and degree exponent λ as the number of links per
node K = L/N increases, called the percolation problem, and
investigate how the functional form of the degree distribution
affects the critical phenomena. To this end, model PL graphs
of different values of K for given λ should be constructed,
which have been so far done by (1) removing links randomly
in a graph of sufficiently many links [9,25] or (2) adding
links one by one to connect node pairs stochastically under
prescribed inhomogeneous connection probabilities [7]. The
latter, called the static model, generalizes the Erdős-Rényi
graphs constructed with a uniform connection probability
[26]. In both cases, the analytic expressions for the size of
the giant component and the size distribution of finite clusters
are available [6,10,19], and reveal the critical point and the
critical exponents as sketched above.

Here we consider the configuration-model PL graphs
[5,6,27–29] for arbitrary K and λ with the degree distribution
in a different form from (1) or (2) above. The degree distribu-
tion that we propose is not an arbitrary one but followed by the
PL degree sequences generated by a modified version of the
algorithm easy to implement and thus adopted in a popular
computation library [30] used widely in network research.
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The modification allows the PL degree sequences to have an
arbitrary value of K for given λ, which is not possible with the
original algorithm but crucial for the study of the percolation
problem.

The lower-critical degree exponent λl is shown to be
3.8106 . . . with this generalized degree distribution. It is larger
than 3. Moreover, for 2 < λ < λl , the giant component grows
linearly with K for small K and the cluster-size distribution
decays exponentially, which are contrasted with the superlin-
ear growth of the giant component and the PL decay of the
cluster-size distribution in the static model. The moments and
the generating function of the degree distribution are analyzed
to understand the origin of these phenomena, which leads us
to see that not only the large-k behavior but also the whole
functional form of the degree distribution D(k) is relevant
to the critical phenomena. The density of low-degree nodes,
which have received relatively little attention, is shown to be
crucial in the approximate expression for the giant component
size in the supercritical regime.

This paper is organized as follows. In Sec. II the algorithm
of generating the PL degree sequence with tunable number
of links per node and its degree distribution is introduced,
and the basic properties are analyzed. The generating function
method is applied with the proposed degree distribution to
derive the critical behaviors of the giant component’s size
and the cluster-size distribution, which are compared with
other models in Sec. III. We investigate the giant component
size in the supercritical regime and show the important roles
of low-degree nodes in model and real-world networks in
Sec. IV. Our findings are summarized and discussed in Sec. V.

II. GENERATING POWER-LAW DEGREE SEQUENCES
WITH TUNABLE NUMBER OF LINKS PER NODE:

A GENERALIZED DEGREE DISTRIBUTION

A. Brief introduction of the static model

In the static model [7], links are added one by one to
node pairs selected under a prescribed probability. In the con-
figuration model [5,6,27–29], on the other hand, the degree
of each node is first determined from a prescribed degree
distribution and then the link stubs are randomly paired.
Before presenting our degree distribution for the configuration
model and investigating its properties, we briefly introduce the
static model first as its properties are compared with those of
our configuration model throughout this paper.

In the static model for constructing a PL graph with N
nodes, L = NK links, and degree exponent λ, each node i
is assigned the selection probability wi = i−α∑N

�=1 �−α
with α =

1
λ−1 . Two nodes i and j are selected with probability wiw j

and are connected if they are disconnected. This procedure
is repeated until L distinct pairs of nodes are connected.
As distinct node pairs are connected independently, various
properties are accessible analytically. For instance, the degree
distribution is obtained as [10]

Dstatic(k) = 1

k!

dk

dzk
�̃[2K (1 − z)], (1)

where �̃(y) = (λ − 1)( λ−2
λ−1 y)

λ−1
�(1 − λ, λ−2

λ−1 y) with �(s, x)
the incomplete Gamma function �(s, x) ≡ ∫ ∞

x dt t s−1e−t . It
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FIG. 1. The degree distribution and its moments for the PL
degree sequence from the proposed algorithm. (a) The number of
links per node K = L/N as a function of the parameter xo as given in
Eq. (8) for different degree exponents λ. (b) The degree distribution
D(k) in Eq. (6) of the configuration-model graphs ([C]) based on our
PL degree sequence for different λ and K (points). For comparison,
the degree distribution of the static model ([S]) from Eq. (1) is shown
(lines). (c) The second factorial moments 〈(k)2〉 = 〈k(k − 1)〉 as a
function of K = L/N in our configuration-model graphs ([C]) and
the static-model graphs ([S]) for λ = 3.5. (d) Plots of the second and
third factorial moments 〈(k)2〉 and 〈(k)3〉 = 〈k(k − 1)(k − 2)〉 versus
K for λ = 4.5.

takes a PL form Dstatic(k) ∼ k−λ for large k, and some exam-
ples are shown in Fig. 1. The size of the giant component can
be obtained analytically as a function of the number of links
per node K [10], which is summarized in Appendix A.
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B. Configuration model with a generalized degree distribution

For constructing PL graphs in the configuration model
[5,6,27–29], a degree sequence {k1, k2, . . . , kN } is first gen-
erated and assigned to nodes such that each node i has
ki link stubs. Then randomly selected pairs of stubs from
distinct nodes are connected, avoiding multiple links, which
is repeated until no isolated stub is left. The degree sequence
is generated by drawing a random number k from a desired
degree distribution D(k). Therefore one can construct a PL
graph by generating a degree sequence from

D(k) = k−λ

ζ (λ)
(k � 1), (2)

where ζ (λ) is the Riemann zeta function.
Random integers {ki|i = 1, 2, . . . , N} following D(k) in

Eq. (2) can be generated in various ways including the
rejection method [6], the Walker algorithm [10], and the
transformation method, e.g., rounding real random numbers
X following a Pareto distribution

F (x) = Prob.(X � x) =
{

1 (x < 1)

x1−λ (x � 1)
. (3)

The transformation method is easy to implement, as a random
number r uniformly distributed between 0 and 1 can give X
via the relation X = (1 − r)−

1
λ−1 , and is therefore adopted in

the widely used python libraries random and NetworkX [30].
Given the ubiquity of PL degree distributions in complex

systems, it is an advantage of the configuration model that
graphs with such a perfect power law as in Eq. (2) can be gen-
erated. Indeed, the model has been widely used in the study
of the structure and dynamics of complex networks. Yet there
is a flaw in Eq. (2). The number of links per node K = L/N
cannot be varied freely but fixed for given degree exponent
λ: K = 〈k〉/2 = ∑

k k D(k) = ζ (λ−1)
2ζ (λ) . The expected size of the

giant component is also fixed for given λ, which prevents
us from studying the evolution of the giant component with
increasing K for given λ. Instead, the percolation problem
has been studied as λ varies, yielding λc � 3.47875 [5]. One
may assume that Eq. (2) applies for k � kmin with kmin an
integer, but even then K cannot take arbitrary values but
takes just selected discrete values: K = ζ (λ−1,kmin )

2ζ (λ,kmin ) for different
kmin with ζ (s, a) the Hurwitz zeta function. To overcome
this limitation, we generate a PL degree sequence using the
following algorithm.

(1) For a node i, draw a random variable r between 0
and 1 from the uniform distribution and obtain X = xo (1 −
r)−

1
λ−1 with xo a positive real constant. X is a real-valued

random number in the range X > xo and follows the Pareto
distribution

Fxo (x) = Prob.(X � x) =
{

1 (x < xo)(
x
xo

)1−λ
(x � xo)

. (4)

(2) Take the integer part of X to get the degree of node i as

ki = �X	 (5)

with �x	 the largest integer not larger than x.
(3) Repeat (1) and (2) for every node i = 1, 2, . . . , N to

obtain a PL degree sequence {k1, k2, . . . , kN }.

Here xo is a parameter allowing us to control the number of
links per node K , and the lowest degree is given by ko = �xo	.
In simulations, we further restrict the maximum degree, but
we do not discuss this restriction in the following, as its effects
[29] are not relevant to the results presented in this paper (see
Appendix B).

The degree distribution Dxo,λ(k) is then equal to the proba-
bility that X is between k and k + 1, evaluated as

Dxo (k) = Fxo (k) − Fxo (k + 1)

=
{

1 − xo
λ−1(ko + 1)1−λ for k = ko

xo
λ−1[k1−λ − (k + 1)1−λ] for k > ko

. (6)

Notice that the degree distribution behaves as a power law

Dxo (k) � (λ − 1)xo
λ−1k−λ for k 
 1. (7)

The number of links per node K can be changed by varying
the parameter xo as

2K = 〈k〉 =
∑

k

k Dxo (k) = ko + xo
λ−1ζ∞(λ − 1, ko + 1), (8)

where ζ∞(λ, a) ≡ ∑∞
k=a k−λ is identical to the Hurwitz zeta

function ζ (λ, a) for λ � 1; note that ζ∞(s, a) diverges for s <

1 but ζ (s, a) is finite for s < 1 by analytic continuation. We
will restrict ourselves to the range λ > 2 to avoid the case of
diverging K . Also we denote ζ∞(s, 1) by ζ (s) if s � 1.

As shown in Fig. 1(a), K increases monotonically from 0
to infinity with xo, which ensures the unique value of xo(K )
for given K . Therefore, for arbitrary K and λ > 2, one can
construct the configuration-model PL graphs. Introducing the
parameter xo as in Eq. (4), the conventional algorithm given
in Eqs. (2) and (3) has been changed to enable us to tune
K as in Eq. (8). Moreover, as in Fig. 1(b), the generalized
degree distribution Dxo (k) has different functional form from
the static model for the same values of K and λ. The difference
is more significant for smaller K .

In the static model and in the graphs obtained by remov-
ing links randomly, the factorial moments 〈(k)r〉 ≡ 〈k(k −
1)(k − 2) · · · (k − r + 1)〉 of the degree distribution scale with
respect to K as 〈(k)r〉 ∼ Kr as shown in Appendix C. The
factorial moments of the degree distribution in Eq. (6) behave
differently for small K as shown in Figs. 1(c) and 1(d). The
decrease of K in our configuration model is realized when
links are removed in such a nonrandom way that preserves
the form of the degree distribution in Eq. (6) and therefore
reproduces the specific scaling of the factorial moments,
which is presented in Appendix D. Such different behaviors of
the moments between the static model and our configuration
model result in different lower-critical degree exponents for
the percolation transition, which is addressed in the next
section.

III. CRITICAL PHENOMENA ASSOCIATED WITH THE
FORMATION OF THE GIANT COMPONENT

When the largest connected component (LCC) of size S is
so large that the relative size

m = lim
N→∞

S

N
(9)
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FIG. 2. The relative size of the LCC m = S/N as a function of
the number of links per node K = L/N in the configuration-model
PL graphs with the degree distribution in Eq. (6) for N = 106 and
selected values of the degree exponent λ. The lines are from the exact
solution to Eq. (12), which agree very well with simulation results
(points).

is nonzero, it is called the giant component. We investigate the
behavior of m as a function of the number of links per node K
for a given number of nodes N and degree exponent λ in the
configuration-model graphs introduced in Sec. II. This study
was not possible in previous works on the configuration model
which used the degree distribution in Eq. (2) as the number of
links per node is then fixed by λ.

A. Simulation results for the giant component’s size

The relative size of the giant component in our
configuration-model graphs is given for various degree expo-
nents in Fig. 2. The most remarkable feature is that up to λ as
large as 3.5, the critical point Kc at which the giant component
begins to form is zero—that is, the giant component is formed
for any nonzero value of K . By contrast, the static model
displays a vanishing threshold only for λ � 3 [see Eq. (A1)
in Appendix A]. Furthermore, when λ � 3.5, the giant com-
ponent grows linearly with K for small K and then abruptly
changes to a concave increasing function at a certain value of
K . In contrast, for λ = 4.5 or 6, m shows a transition behavior
at a threshold Kc, as in the static model. Yet the critical point
Kc is between ∼0.6 and 1 in our configuration-model graphs,
while it is between 0 and 1/2 in the static model.

These simulation results cast many questions regarding the
behavior of m as a function of K and λ in the configuration-
model PL graphs. What is the origin of the linear growth of the
giant component’s size with K and in what range of λ is that
behavior observed? What is the critical point Kc for large λ?
How does m behave near the critical point? Most of all, one
may wonder whether these critical behaviors are different
from the known results for the static-model PL graphs or the
random-link-removed PL graphs. It does not seem that these
questions can be answered merely by examining simulation
results.

With the degree distribution in Eq. (6), the size of the giant
component and the cluster-size distribution can be analytically

obtained, which can answer these questions. We will show
that the anomalous behaviors of the giant component in our
configuration model originate in specific properties of the de-
gree distribution in Eq. (6), the functional form and moments
of which deviate from those of the static model (Fig. 1).
The size of the giant component for small K or K near the
critical point Kc can be obtained by assuming that the giant
component is of tree structure, which allows a mapping to
branching processes [10,25]. The obtained analytic solution
will allow us to understand better the behavior of the giant
component in our configuration-model graphs.

B. Mapping to branching processes

While the branching process approach [31] for the study
of cluster formation in graphs is well known and has been
widely used [10,19,25], we review the method here to provide
a self-contained analysis.

It can be assumed and self-consistently verified that finite
clusters have a low density of loops and are almost treelike in
structure [10]. For given K and λ, the ensemble of connected
components in realizations of these graphs can therefore
be approximated by the ensemble of trees generated by a
branching process, whose branching probability is given by
the degree distribution D(k) of the graphs. The probability that
a root node generates k daughters is set to be equal to D(k)
and the probability that a node other than the root generates
k daughters is given by (k + 1)D(k + 1)/〈k〉. This mapping
holds when finite connected components have a tree structure
and the degrees of neighboring nodes are not correlated. Then
the cluster-size distribution P(s), the probability that a node
belongs to a size-s cluster, corresponds to the probability of
a node to be the root of a size-s tree. P(s) depends on the
probability R(s) that a link leads to a size-s tree.

Let us define the generating functions P (z) ≡∑
s<∞ P(s)zs and R(z) ≡ ∑

s<∞ R(s)zs, where the
summation runs only over finite size s. The two generating
functions satisfy the following relations:

P (z) = z g[R(z)], (10)

R(z) = zh[R(z)], (11)

where g(z) ≡ ∑∞
k=0 D(k)zk and h(z) ≡ ∑∞

k=0(k + 1)D(k +
1)zk/〈k〉 = g′(z)

〈k〉 are defined in terms of the degree distribution
[10]. Considering Eqs. (10) and (11) at z → 1− and denoting
R(1) by u, we find that the giant component size is evaluated
as

m = 1 − g(u),

u = h(u). (12)

The variable u ≡ R(1) = ∑
s<∞ R(s) represents the probabil-

ity that a link leads to a finite cluster. u is obtained by solving
the second line in Eq. (12). The function h(u) increases
monotonically with u from h(0) = D(1)/〈k〉 to h(1) = 1.
Therefore there is always a trivial solution u = 1. There exists
a nontrivial solution u < 1 if

h′(1) = 〈k2〉 − 〈k〉
〈k〉 > 1, (13)
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in which case the nontrivial solution u is the true value of
R(1), and gives a nonzero value of m by Eq. (12). Therefore
the critical point Kc is determined by Eq. (13), yielding the
condition that the moment ratio 〈k2〉/〈k〉 must be larger than
2 for the emergence of the giant component. Note that h′(1)
is equal to the ratio of the second to the first factorial moment
〈(k)2〉/〈k〉.

C. Critical point

Let us first use Eq. (13) to determine the critical point
for the giant component formation in configuration-model PL
graphs with the degree distribution Dxo (k) in Eq. (6). For given

xo and λ, the generating function g(z) is given by

g(z) = zko[1 − xo
λ−1(1 − z)�(z, λ − 1, ko + 1)], (14)

and h(z) is given by

h(z) = zko−1 ko + xo
λ−1�(z, λ − 1, ko + 1)

ko + xo
λ−1ζ∞(λ − 1, ko + 1)

,

�(z, s, a) ≡ �(z, s, a) − (1 − z)�(z, s − 1, a), (15)

where we used Eq. (8) for 〈k〉, ko = �xo	, and the Lerch
transcendent �(z, s, a) = ∑∞

�=0(� + a)−sz�. Note that
�(1, s, a) = ζ∞(s, a) and �(z, s, 1) = z−1Lis(z) with
Lis(z) = ∑∞

�=1 �−sz� the polylogarithm function.
Using Eq. (15), we obtain

h′(1) = k2
o − ko + 2xo

λ−1{ζ∞(λ − 2, ko + 1) − ζ∞(λ − 1, ko + 1)}
ko + xo

λ−1ζ∞(λ − 1, ko + 1)
, (16)

where the relation (∂/∂z)�(z, s, a) = z−1{�(z, s − 1, a) −
a�(z, s, a)} is used. From Eqs. (8) and (16), one can obtain
h′(1) as a function of K = L/N , which is shown in Fig. 3. A
remarkable feature is the plateau in a small-K region for
each λ. More importantly, h′(1) remains larger than 1 for
all nonzero K as long as λ � 3.8, suggesting that the giant
component forms for any nonzero K .

To derive analytically the condition for h′(1) > 1, we in-
troduce Q(λ, xo) and B(λ, n) for integer n defined as

Q(λ, xo) ≡ ko
2 − 2ko + xo

λ−1B(λ, ko),

B(λ, n) ≡ 2ζ∞(λ − 2, n + 1) − 3ζ∞(λ − 1, n + 1), (17)

which help us see better how h′(1) in Eq. (16) depends
on λ and xo. As Q = 〈k〉{h′(1) − 1} = 〈k2〉 − 2〈k〉, the giant
component appears if Q > 0, and the critical point is xoc such
that Q > 0 for xo > xoc. We now analyze the conditions of
giant component formation in the plane of λ and xo, eventually
leading to the phase diagram in Fig. 4.

For 2 < λ � 3, the function B(λ, n) diverges, and Q
is positive for any xo > 0, giving the vanishing critical
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FIG. 3. Plot of h′(1) in Eq. (16) as a function of the number of
links per node K for different λ.

point xoc = 0. In the region λ > 3, B(λ, n) decreases with
increasing λ, asymptotically approaching −1 for n = 0 and
0 for n � 1 (see Appendix E). Therefore Q can be negative
only when xo < 2, and the critical point xoc for λ > 3 should
be between 0 and 2, if it exists.

To further understand the behavior of Q in the case of
λ > 3, let us first look into the region 0 < xo < 1(ko = 0).
In this region, Q = xo

λ−1B(λ, 0) is positive if B(λ, 0) > 0,
which holds for λ < λl where λl is the value of λ satisfying
the relation

B(λl , 0) = 2ζ (λl − 2) − 3ζ (λl − 1) = 0 (18)

and is found to be

λl = 3.810639333567 . . . . (19)

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8
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Configuration
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FIG. 4. Phase boundary between the percolating and nonperco-
lating phase in the configuration model and the static model. The
critical number of links per node Kc is given as a function of the
degree exponent λ such that the giant component exists for K > Kc.
Note that Kc = 0 for λ < 3 in the static model and for λ < λl � 3.81
in the configuration model.
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This means that if 0 < xo < 1, Q is positive (〈k2〉/〈k〉 > 2) in
the region 3 < λ < λl and negative where λ > λl . λl will be
shown to be the lower-critical degree exponent below.

Next we examine the region 1 � xo < 2 and λ > 3. One
can see that Q = −1 + xo

λ−1B(λ, 1) is positive as long as xo >

xoc(λ) with

xoc(λ) = B(λ, 1)−
1

λ−1

= {2ζ (λ − 2) − 3ζ (λ − 1) + 1}− 1
λ−1 (20)

for λ � λl . Notice that xoc = 1 at λ = λl and approaches 2 as
λ goes to infinity (Fig. 9).

Using xoc = 0 for 2 < λ < λl and Eq. (20) for λ � λl and
the relation between xo and K in Eq. (8), we find that the giant
component emerges for K > Kc(λ) with

Kc =

⎧⎪⎨
⎪⎩

0 for 2 < λ < λl
1
2

[
1 + xo

λ−1
c ζ (λ − 1, 2)

]
= ζ (λ−2)−ζ (λ−1)

2ζ (λ−2)−3ζ (λ−1)+1 for λ � λl

, (21)

where λl and xoc are given in Eqs. (19) and (20), respectively.
As there is no phase transition for finite K when λ is smaller
than λl , we call λl in Eq. (19) the lower-critical degree expo-
nent. The critical point is Kc(λl ) = (1/2)[1 + ζ (λl − 1, 2)] �
0.62217 at λ = λl and approaches 1 for λ → ∞, which is
shown along with the critical point Eq. (A1) of the static
model in Fig. 4. The critical points for selected values of λ

in the simulation results in Fig. 2 are consistent with Eq. (21).
The most remarkable difference from the known results

[9,10] is that there is a range of λ larger than 3 for which
no phase transition occurs, although the second moment of
the degree distribution does not diverge. Its origin lies in
the different scaling behaviors of the moments of the degree
distribution, especially the behavior of 〈(k)2〉 with respect to
〈k〉 between our model and the static model [Figs. 1(c) and
1(d)]. In the latter, 〈(k)2〉 is proportional to 〈k〉2 as shown
in Eq. (C5), leading h′(1) = 〈(k)2〉/〈k〉 to grow from zero
linearly with K = 〈k〉/2, and consequently, h′(1) exceeds 1
at a nonzero value of K as long as 〈(k)2〉 is finite. The same is
true for graphs with links removed randomly [see Eq. (C9)].
On the contrary, in our configuration-model PL graphs, 〈(k)2〉
is proportional to 〈k〉, and thus h′(1) becomes a constant
independent of K for small K as shown in Figs. 1(c) and 1(d)
and Fig. 3.

D. Critical exponent β

The relative size m of the giant component near the critical
point can be obtained analytically by solving Eq. (12). Let
us consider the giant component size for K near Kc = 0 and
2 < λ < λl . When 0 < xo < 1 or ko = 0, corresponding to the
number of links per node being in the range 0 < K < K1(λ)
with

K1(λ) ≡ 1
2ζ (λ − 1), (22)

the function h(z) is given by

h(z) = z−2[Liλ−1(z) − (1 − z)Liλ−2(z)]

ζ (λ − 1)
, (23)

independent of xo or of K , which gives rise to the plateaus in
Fig. 3 and turns out to be responsible for the linear growth of m
for small K and 2 < λ < λl as shown below. Let u1(λ) denote
the solution to u = h(u) with Eq. (23) used. The solution u
to Eq. (12) remains fixed at u1(λ) as K increases up to K1.
Then the relative size m of the giant component is found to be
proportional to K as

m = 1 − g(u1) = 2a(I)K (24)

with the coefficient a(I) = (1 − u1) Liλ−1(u1 )
u1ζ (λ−1) . Therefore the size

of the giant component grows linearly with K as long as K <

K1(λ) in Eq. (22) followed by a concave function m(K ) for
K > K1 (Fig. 2). If we define the critical exponent β in the
relation m ∼ Kβ for small K in case of Kc = 0, we find β =
1 for 2 < λ < λl . This linear growth is contrasted with the
superlinear growth of the giant component characterized by
the exponent β = 1/(3 − λ) in Eq. (A4) of the static model
for 2 < λ < 3.

The critical point Kc increases from Kc(λl ) � 0.62217
towards 1 as λ increases from λl to ∞, corresponding to
1 < xoc < 2. Let us assume that K is larger than Kc(λ) but
staying around it such that Kc(λ) < K < 1. The generating
function h(z) with ko = 1 depends on xo or on K , in contrast
to the case of 2 < λ < λl , and is given by

h(z) = 1 + xo
λ−1{z−2Liλ−1(z) + z−1(1 − z−1)Liλ−2(z) − 1}

1 + xo
λ−1ζ (λ − 1, 2)

.

(25)

Recall that its derivative at z = 1 is larger than 1 only for xo >

xoc(λ) in Eq. (20) or equivalently K > Kc in Eq. (21). Let us
expand Eq. (25) in terms of α = − ln z, small around z = 1,
as

h(z = e−α ) = 1 + c1α + c2
α2

2

+ · · · + cλ−2
αλ−2

(λ − 2)!
[1 + O(α)], (26)

where the coefficients are

c1 = −1 − K − Kc

Kc(2Kc − 1)
,

c2 = 1 + 3

2

ζ (λ − 3) − 3ζ (λ − 2) + 2ζ (λ − 1)

ζ (λ − 2) − ζ (λ − 1)
,

cλ−2 = �(λ)�(2 − λ)

2{ζ (λ − 2) − ζ (λ − 1)} ,

with �(s) the gamma function. Using Eq. (26) in Eq. (12), we
obtain the solution u = e−α with α given by

α �
⎧⎨
⎩

{− c1+1
cλ−2

(λ − 2)!
} 1

λ−3 = a(II)�
1

λ−3 for λl � λ < 4

−2 c1+1
c2−1 = a(III)� for λ > 4

,

(27)

with � ≡ (K/Kc − 1), and the coefficients

a(II) = [ 2{ζ (λ−2)−ζ (λ−1)}
(2Kc−1)(λ−1)�(2−λ) ]

1
λ−3 and a(III) =

4
3

ζ (λ−2)−ζ (λ−1)
(2Kc−1){ζ (λ−3)−3ζ (λ−2)+2ζ (λ−1)} . Inserting Eq. (27) into

m = 1 − g(u = e−α ) � 2Kcα with ko = 1, we obtain the
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FIG. 5. Plots of the inverse of R(z), z(R) = R/h(R) with
ko = 0 for selected values of the degree exponent λ. The dots
are at (R0, z0), where the derivative dz/dR is zero. For example,
(R0, z0) = (0.749, 1.70) and (0.857,1.13) for λ = 2.5 and 3.0, re-
spectively. It converges to (1,1) as λ approaches λl . Note that only
the branch in the region R < R0 and 0 � z < z0 corresponds to the
generating function R(z).

relative size m of the giant component around the critical
point Kc for λ � λl . Using these results and Eq. (24), we find
that m near the critical point Kc follows

m �

⎧⎪⎨
⎪⎩

2 a(I) K for 2 < λ < λl

2 Kc a(II) �
1

λ−3 for λl � λ < 4

2 Kc a(III) � forλ > 4

. (28)

Hence, the critical exponent β is

β =

⎧⎪⎨
⎪⎩

1 for 2 < λ < λl
1

λ−3 for λl � λ < 4

1 for λ > 4

. (29)

This is different from the result obtained for the static-model
PL graphs, Eqs. (A3) and (A4). The most striking deviation is
the linear growth of m with K even for λ larger than 3, up to
λl , whereas in the static model, the giant component appears
only for K > Kc > 0 in this range of degree exponents.

E. Cluster-size distribution at or near the critical point

While the solution to Eq. (10) in the closed form may be
hard to obtain, the leading singularity of the generating func-
tion P (z) can be often identified, revealing the tail behavior of
the cluster-size distribution P(s) [10]. According to Eq. (11),
the inverse of the generating function R(z) is represented as

z(R) = R
h(R)

, (30)

and some examples are shown in Fig. 5. Once the singularity
of R(z) is identified, one can obtain that of P (z) by using
Eq. (10).

We are interested in the asymptotic behavior of the cluster-
size distribution near and at the critical point for λ < λl

and λ > λl , respectively. Let us first consider the cluster-size

distribution for small K and λ < λl , for which the critical
point is zero, i.e., Kc = 0. When K is smaller than K1(λ) in
Eq. (22), h(z) is given by Eq. (23). As shown in Fig. 5, there
is a point (R0, z0 = R0/h(R0)) where the inverse function
z(R) has zero derivative. Around the point, it is expanded as

z = z0 − 1

2

R0h′′(R0)

h(R0)2
(R − R0)2 + · · · , (31)

where h(x) is given in Eq. (23) and h′′(x) = (d2/dx2)h(x).
Therefore R(z) possesses a square-root singularity around z0

as

R(z) � R0 −
√

2h(R0)2

R0h′′(R0)

√
z0 − z + · · · . (32)

Expanding P (z) = zg[R(z)], as in Eq. (10), around z0, we find
that

P (z) � z0g(R0) − 2K

√
2R0h(R0)2

h′′(R0)

√
z0 − z + · · · . (33)

Recalling that P (z) = ∑
s P(s)zs and using the relation

(1 − x)θ =
∞∑

s=0

(−x)s

s!

�(θ + 1)

�(θ − s + 1)

= −
∞∑

s=0

xs

s!

θ !(s − θ − 1)! sin πθ

π
, (34)

which allows us to use the Stirling’s formula s! � sse−s
√

2πs
for large s, we obtain the tail behavior of P(s) as

P(s) � 2K p(I)s
− 3

2 e− s
s0 , (35)

where p(I) =
√

z0R0h(R0 )2

2πh′′(R0 ) and s0 = 1
ln z0

= 1
ln ( R0

h(R0 ) )
are con-

stants depending on λ.
Note that the cutoff constant s0 is finite for λ < λl and

diverges at λ = λl . The exponential decay of P(s) for any
nonzero K and λ < λl implies that our configuration-model
graph is in the supercritical (percolating) phase. Moreover,
P(s) is independent of K as long as 0 < K < K1(λ) for given
λ. This is highly contrasted to P(s) in the static model, which
decays as a power law for a wide range of s depending on K , as
in Eq. (A7), if K is small and 2 < λ < 3 [10]. The invariance
of P(s)/(2K ) in Eq. (35) against the variation of K in the
range 0 < K < K1(λ), as confirmed numerically in Fig. 6(a),
originates in the specific form of the degree distribution for
0 < xo < 1:

Dxo (k) =
{

1 − 〈k〉
ζ (λ−1) for k = 0

〈k〉 k1−λ−(k+1)1−λ

ζ (λ−1) for k � 1
, (36)

which leads (k + 1)Dxo (k + 1)/〈k〉 for k � 0 and its generat-
ing function h(z) to be independent of K or xo underlying the
plateaus of h′(1) in Fig. 3.

At the critical point Kc for λ � λl , the inverse function
z(R) in Eq. (30) should be computed with h(x) given in
Eq. (25) since ko = 1 at the critical point. Then one finds
z(R) has zero derivative at R0 = 1. Using Eq. (26) at K =
Kc, where c1 = −1, we find that z(R) is expanded around
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FIG. 6. Cluster-size distribution P(s) near or at the critical point
in the configuration-model PL graphs of N = 107 nodes and several
degree exponents. (a) Plots of P(s)/(2K ) versus s for λ = 2.5 and
K = 0.0001, 0.01, 0.1, 0.2, and 0.4. The theoretical prediction from
Eq. (35) is also shown (line). (b) Plots of P(s) versus s at the
critical point Kc = 0.628 and Kc = 0.709 for λ = 3.85 and λ = 4.5,
respectively. The lines are the theoretical predictions from Eq. (39).

(R0, z0) = (1, 1) as

z = 1 − c2 − 1

2
(1 − R)2 − cλ−2

(λ − 2)!
(1 − R)λ−2 + · · · .

(37)

In the right-hand side of Eq. (37), the (1 − R)2 term is
dominant over (1 − R)λ−2 for λ > 4 and the latter is dominant
for λl � λ < 4. By the relation between P (z) and R(z) in
Eq. (10) and the expansion g(z) = 1 − 2K (1 − z) + O((1 −
z)2, (1 − z)λ−1), we find that P (z) behaves around z = 1 as

P (z) �

⎧⎪⎨
⎪⎩

1 − 2K
(

(λ−2)!
cλ − 2

) 1
λ−2

(1 − z)
1

λ−2 for λl � λ < 4

1 − 2K
√

2
c2−1

√
1 − z + · · · for λ > 4

.

(38)

Finally we obtain the tail behavior of the cluster-size distri-
bution using Eq. (34), which is characterized by the exponent
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FIG. 7. Plots of the relative size of the giant component m versus
the number of links per node K in the static model ([S]) and the
configuration model ([C]) with N = 106 and λ = 3.3. Points are from
the exact solution to Eq. (12), and lines are from the approximation
in Eq. (41).

λ−1
λ−2 and 3/2 for λl � λ < 4 and λ > 4, respectively, as

P(s) �
{

2Kc p(II)s− λ−1
λ−2 for λl � λ < 4

2Kc p(III)s− 3
2 for λ > 4

, (39)

with the coefficients given by p(II) = ((λ−2)!
cλ−2 )

1
λ−2 sin ( π

λ−2 )
π

( 1
λ−2 )!

and p(III) =
√

1
2π (c2−1) . While the exponent depends on λ for

3 < λ < 4 in the static model, it does only for λl � λ < 4 in
the configuration model.

In Fig. 6, we present the theoretical results in Eqs. (35)
and (39), including the coefficients p(I), p(II), and p(III), along
with the simulation results for the cluster-size distributions
for selected values of the degree exponent, which are in good
agreement regarding their tail behaviors.

IV. GIANT COMPONENT IN THE SUPERCRITICAL
REGIME: IMPORTANCE OF LOW-DEGREE NODES

The difference of the giant component size m as a function
of the number of links per node K between our configuration
model and the static model is the most dramatic when the
degree exponent λ is between 3 and λl � 3.81. The critical
point Kc is nonzero for the static model, while it is zero for
the configuration model. Actually m is widely different in the
whole range of K between the two models. In Fig. 7 it is
shown that m is larger in the configuration-model graph if K is
either very small or large, while it is larger in the static model
in the intermediate range of K .

The excellent agreement between simulations and analytic
results, derived based on the degree distribution only, means
that such different behaviors of the percolation transition and
the giant component size in the whole range of k between
the two models stem from different forms of their degree
distributions. Examining the functional forms of Dstatic(k) and
Dxo (k) given in Eqs. (1) and (6) and examples in Fig. 1,
one finds that they share the same asymptotic behaviors for
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large k characterized by the same degree exponent but behave
differently in the small-k region. This suggests the relevance
of the low-degree behavior of the degree distribution to the
size of the giant component in graphs.

The importance of low-degree nodes is understood also in
computing the giant component size for large K . It has been
shown [32] that the bounds of the giant component size in
the supercritical regime are essentially determined by the low-
degree behavior of the degree distribution. Here we present an
approximate expression for the size of the giant component
when K is very large, which helps us better understand the
different giant component sizes between the two models in
the supercritical regime. Assuming that K is large, we find u
from Eq. (12) expanded for the degree distribution D(k) as

u = D(1)

2K
+ D(1)D(2)

2K2
+ O(K−3), (40)

and the giant component has relative size m given by

mapprox � 1 − D(0) − D(1)u − D(2)u2

� 1 − D(0) − D(1)2

2K
− 3D(1)2D(2)

4K2
. (41)

While obtained for K large, this approximation works very
well for K � 1, and reasonably well even for K small, in both
the static and the configuration model (Fig. 7). Moreover, as
noted above, the static model will form a larger giant com-
ponent than the configuration model for intermediate values
of K , for example, 0.4 � K � 1 for λ = 3.3 in Fig. 7, and
we observe the same phenomenon for mapprox in the range
0.3 � K � 0.9. This suggests that the difference of D(k) for
small k such as k = 0, 1, or 2 between the two models is partly
responsible for their difference in m. As shown in Appendix F,
the approximation in Eq. (41) is also useful in estimating the
giant component size of real-world networks while they lose
links. Therefore our results demonstrate that both the large-
and small-k behavior of the degree distribution is important
for understanding and controlling the global connectivity of
complex networks.

V. DISCUSSION

We have shown that the full functional form of the degree
distribution can control the percolation transition and critical
phenomena on PL graphs. The exponent characterizing the
PL decay of the degree distribution, which has received most
attention in theoretical and empirical settings, may not be
sufficient to predict such behaviors. We have demonstrated
this point on PL networks generated with the configuration
model equipped with a generalized PL degree distribution
where the number of links and the degree exponent can be
tuned separately. By studying the percolation transition in
these networks numerically and analytically, and comparing
its outcomes to known results illustrated by the static model
[10], we have shown in detail how far different functional
forms of the degree distributions sharing the same degree
exponent may alter the critical phenomena.

In previous studies, the role of diverging moments was
shown to be important across models and dynamics, from
percolation to other phenomena on PL networks such as
disease spreading and synchronization. Likewise, we propose

that nodes with low degree may also wield a general influence
on critical behaviors, which should be explored. A better
understanding of whether and when the lower range of the
degree distribution controls critical and general dynamical
properties would prove beneficial for a wide range of studies
and applications.

Our proposed degree distribution exhibits, for parameter
values 0 < xo < 1 in Eq. (36), a PL shape across the largest
range of degrees k. It possesses a special property of invari-
ance: the probability of being connected to a node with k
links (computed as kD(k)/〈k〉) does not depend on the average
degree 〈k〉. Therefore, critical behaviors become independent
of the number of links in the network, and we expect this
property to translate to similarly robust phenomena in other
dynamical processes.
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APPENDIX A: PERCOLATION TRANSITION IN THE
STATIC MODEL

The static model is a generalization of the Erdös-Rényi
graph [26] to an asymptotic PL degree distribution. Different
pairs of nodes are connected with different probabilities but
independently. Therefore the graphs obtained by removing
links randomly and independently in a PL graph are similar
to the static-model graphs, which is further discussed in
Appendix C. This similarity holds notably for the degree
distribution and the critical phenomena associated with the
percolation transition. Moreover, due to the independence of
connecting different pairs of nodes, one can obtain analyt-
ically the giant component and the size distribution of the
finite clusters with the help of the Potts model formulation
[10]. Here we summarize the important properties of the
static-model graphs, as their comparison with the results for
our configuration model is of main concern in this paper.

The relative size m of the LCC in the static model exhibits
a transition from zero to a nonzero value as a function
of K at a threshold Kc if the degree exponent λ is larger
than the lower-critical degree exponent λl = 3 [9,10]. When
2 < λ < λl = 3, Kc = 0 and thus no transition occurs, and
m grows superlinearly with K in the small-K regime. Such
different critical behaviors for λ below and above λl = 3 have
been recognized as the most remarkable feature of critical
phenomena on PL graphs, originating in the diverging second
moment of the PL degree distribution for λ � 3.

The percolation threshold Kc in the static model is given by
[10]

Kc =
{

0 for 2 < λ � 3
(λ−1)(λ−3)

2(λ−2)2 for λ > 3
. (A1)

The relative size m of the LCC is zero for K < Kc and

m ∼
(

K

Kc
− 1

)β

(A2)
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for K � Kc if the degree exponent is as large as λ > 3. Here
the critical exponent β is given by

β =
{ 1

λ−3 for 3 < λ < 4

1 for λ > 4
. (A3)

For 2 < λ < 3, the LCC size behaves as

m ∼ K
1

3−λ for K � 1. (A4)

At K = Kc for λ > 3, the cluster-size distribution P(s)
takes a PL form as

P(s) ∼ s1−τ (A5)

with the critical exponent

τ =
{

2λ−3
λ−2 for 3 < λ < 4

5
2 for λ > 4

. (A6)

For 2 < λ < 3, P(s) for small K (near the zero critical point)
behaves as

P(s) ∼
( s

K

)1−λ

. (A7)

In the removal of randomly selected links reducing K in
a PL graph, the degree distribution maintains its asymptotic
PL behavior, and thus the shrinkage and extinction of the
giant component is expected to be characterized by the above
results, as different pairs of nodes are treated independently in
the static model. The degree distribution of the static-model
PL graphs with f fraction of links removed randomly is equal
to that of the static model with K ′ = K (1 − f ), as shown in
Appendix C.

The absence of a critical threshold for 2 < λ < 3 and the
critical exponents continuously varying with the degree expo-
nent λ are observed in a wide range of dynamical processes
including epidemic spreading [12], Ising model [11], syn-
chronization [13,20], order-disorder transition in the boolean
dynamics [33,34], etc. For instance, the critical exponent β

for the Ising model and the synchronization order parameter
in the Kuramoto model on PL graphs is also given by β = 1/2
for γ > 5 and 1/(λ − 3) for 3 < λ < 5.

APPENDIX B: THE LARGEST DEGREE IN THE
CONFIGURATION-MODEL PL NETWORKS

In the configuration-model PL networks, the density of self
or multiple connections is negligible if λ > 3 or the maximum
degree cutoff kmax ∼ √

N is introduced for 2 < λ < 3 [29].
In simulations, we restrict the range of x to x ∈ [xo, xmax]
in Eq. (4) so as to realize the upper cutoff kmax ∼ √

N for
2 < λ < 3. However, the introduction of kmax does not signif-
icantly change any of the presented theoretical results in the
limit N → ∞, and so we will use Eq. (4) for simplicity in the
theoretical analysis.

APPENDIX C: SCALING OF THE FACTORIAL MOMENTS
IN THE STATIC MODEL AND UNDER RANDOM

REMOVAL OF LINKS

The rth factorial moment of a degree distribution D(k) is
defined as

〈(k)r〉 ≡ 〈k(k − 1)(k − 2) · · · (k − r + 1)〉 (C1)

and can be evaluated by differentiating the generating function
g(z) = ∑∞

k=0 D(k)zk r times at z = 1 as

〈(k)r〉 = dr

dzr
g(z)

∣∣∣∣
z=1

. (C2)

Here we show that when links are added randomly (the static
model) or removed randomly, the factorial moments 〈(k)r〉
scale with the mean degree 〈k〉 = ∑

k kD(k) as 〈(k)r〉 ∼ 〈k〉r .
In the static model [7], the generating function of the de-

gree distribution g(z) ≡ ∑
k D(k)zk of the static model graphs

of N nodes, L links, and degree exponent λ is given by [10]

g(z) = 1

N

N∑
i=1

∏
j �=i

[e−2Lwiw j + z(1 − e−2Lwiw j )]

= �̃[2K (1 − z)], (C3)

where wi = i−
1

λ−1∑N
�=1 �

− 1
λ−1

is the probability of node i to be

selected to gain a link and the function �̃(y) is given by

�̃(y) = (λ − 1)

(
λ − 2

λ − 1
y

)λ−1

�

(
1 − λ,

λ − 2

λ − 1
y

)
(C4)

with �(s, x) the incomplete Gamma function �(s, x) ≡∫ ∞
x dt t s−1e−t . As g(z) is a function of 2K (1 − z), the rth

derivative of g(z) is proportional to Kr , and we have

〈(k)r〉 = (2K )r�̃(r)(0) (C5)

for r < λ − 1. Here �̃(r)(0) = dr

dyr �̃(y)|
y=0

. When r > λ − 1,

�̃(r)(0) diverges. In Figs. 1(c) and 1(d), it is shown for the
static model that 〈(k)2〉 is proportional to K2 and 〈(k)3〉
is to K3.

A similar scaling relation to Eq. (C5) holds also for graphs
with links removed randomly. Consider a graph of K0 links
per node, a degree distribution D0(k). When a fraction f of
links are removed randomly, the number of links per node is
given by

K = K0(1 − f ), (C6)

and the degree distribution is changed to

D f (k) =
∞∑

k′=k

D(k′)
(

k′

k

)
f k′−k (1 − f )k . (C7)

The generating function is then given by

g f (z) = g[ f + (1 − f )z] = g̃[2K (1 − z)] (C8)

with g̃(x) = g(1 − x
2K0

). Therefore the factorial moments
scales with respect to K in the same way as in Eq. (C5):

〈(k)r〉 = (2K )r g̃(r)(0) (C9)

with g̃(r)(0) = dr

dyr g̃(y)|
y=0

.
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APPENDIX D: NONRANDOM LINK-REMOVAL PROCESS
PRESERVING THE FORM OF THE GENERALIZED

DEGREE DISTRIBUTION

The decrease of K in our configuration-model graphs can
be realized by a nonrandom link-removal process. Let us
construct a configuration-model PL graph of N nodes, L(0)
links, and degree exponent λ as in Sec. II B at time t = 0. As
time t increases, it loses links, resulting in the decrease of L(t ),
K (t ), and xo(t ) related by Eq. (8), while the degree distribution
D(k, t ) is equal to Dxo(t )(k) in Eq. (6). To be specific, the
following steps are taken:

(i) At time t , a link, say, ei j connecting nodes i and j, is
selected randomly.

(ii) The selected link is removed with probability depen-
dent on the degrees of the end nodes

�i j = q(ki ) q(k j ) (D1)

or remains with probability 1 − �i j .
(iii) Time is increased by dt = L(t )−1.
(iv) (i)–(iii) are repeated.
Here q(k) is given by

q(k) =

⎧⎪⎪⎨
⎪⎪⎩

0 (k < ko)

qo
1−η

1− n−1
2K

k−λ

k1−λ−(k+1)1−λ (k = ko)

qo
{

η

1− ko
2K

+ 1−η

1− ko−1
2K

}
k−λ

k1−λ−(k+1)1−λ (k > ko)

, (D2)

where ko = �xo(t )	 is the minimum degree at time t , qo is a
constant controlling the rate of link removal, and η is

η = min{1, L(t ) − NKn} (D3)

with Kn

Kn = 1

2
{n + nλ−1ζ (λ − 1, n + 1)}. (D4)

corresponding to xo = n for integer n by Eq. (8), and gener-
alizing Eq. (22). It should be noted that η is 1 and q(ko) = 0
unless L(t ) − 1 < NKn < L(t ) for some integer n.

The link-removal probability �i j is not uniform but depends
on the degree of the end nodes via the function q(k) in
Eq. (D2), the behaviors of which are shown in Fig. 8(a). In
the most period of time, η = 1 and q(ko) = 0, implying that
the links incident on the nodes of the minimum degree cannot
be removed. They can be removed only when the minimum
degree ko(t ) = �xo	 will be changed by the removal of a single
link, for which there exists an integer n such that L(t ) − 1 <

NKn < L(t ) and thus η < 1. As shown in Fig. 8(b), the graphs
obtained by this link-removal process have the same degree
distribution, in the form of Eq. (6), and the same moments as
our configuration-model graphs for given K .

Below we explain how to derive q(k) in Eq. (D2). By the
link-removal process presented above, the number of links per
node decreases with time as

dK

dt
= − 1

N

∑
i< j

Ai j�i j = −K〈q〉2 (D5)

with

〈q〉 =
∑

k

kD(k, t )

〈k〉 q(k), (D6)
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FIG. 8. Properties of the graphs obtained by the nonrandom
link-removal process. (a) Plots of q(k) versus k for λ = 3.5, qo =
0.01, and different K . (b) The degree distributions of the link-
removed graphs ([R]) with K = 0.6. Links are removed in the initial
configuration-model graphs of K (0) = 1. The degree distributions of
the configuration-model graphs ([C]) for the same value of K (= 0.6)
are also shown. Inset: The second factorial moments 〈(k)2〉 of the
link-removed graphs (points) and our configuration-model graphs
(lines). For λ = 4.5, the link-removed graphs from the configuration-
model graphs with K (0) = 1 and K (0) = 0.6 are used to cover the
whole considered range of K . (c) The relative size of the LCC versus
K for the link-removed graphs and the configuration-model graphs.

where the approximation
∑

i, j Ai j f (k j )g(k j )∑
i j Ai j

=∑
k,k′

kD(k,t )k′D(k′,t )
〈k〉2 f (k)g(k′) is used, assuming that there

is no degree-degree correlation between adjacent nodes. 〈q〉
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will be shown later to be equal to the constant qo. The degree
distribution D(k, t ) evolves with time t as

∂

∂t
D(k, t ) = v(k + 1)D(k + 1, t ) − v(k)D(k, t ), (D7)

where v(k) is the fraction of the nodes losing one link among
the nodes of degree k, evaluated by

v(k) = kq(k)〈q〉, (D8)

and we assume that no node loses more than one link in the
time interval dt , holding if maxi j ki�i jdt � 1.

Suppose that D(k, t ) is equal to Dxo(t )(k) in Eq. (6). Then,
from Eq. (D7), one finds that v(k) is related to the cumulative
degree distribution Fxo(t )(k) in Eq. (4) as

v(k)Dxo(t )(k) =
k−1∑

k′=ko−1

∂

∂t
Dxo(t )(k) = − ∂

∂t
Fxo(t )(k), (D9)

where we used Fxo (k) = ∑∞
k′=k Dxo (k) = 1 − ∑k−1

k′=ko
Dxo (k′),

and v(ko − 1) = 0. In implementing numerically the link-
removal process, we deal with finite systems, for which the
decrease of K cannot be smaller than 1/N and thus a small
but finite time interval �t should be considered. When the
minimum degree will not be changed but fixed at ko = n by
the removal of a single link, or equivalently η = 1 in Eq. (D3),
the time dependence of Fxo(t )(k) in Eq. (4) arises solely from
xo(t ),

∂

∂t
Fxo(t )(k)

∣∣∣∣
ko=n

= d
(
xo

λ−1
)

dt

∂

∂
(
xo

λ−1
)Fxo (k)

∣∣∣∣
ko=n

=
{

0 (k � n)
2 dK

dt
ζ (λ−1,ko+1) k

1−λ (k > n)
, (D10)

where we used Fxo (ko) = 1 for xo > ko, and Eq. (8). Using
Eq. (D5), one obtains Eq. (D2) with η = 1 and qo = 〈q〉.

Suppose that the removal of a single link at time t will
result in changing ko from n to n − 1. Such a decrease of ko

causes Dxo (k) to have newly a nonzero value at k = n − 1,
which should be taken care of in the numerical implemen-
tation of the derivative of Fxo (k) in Eq. (D9). Assuming that
L(t ) decreases linearly with time in the time interval between
t and t + �t , we find that ko = n first for η�t and then
ko = n − 1 for (1 − η)�t with η in Eq. (D3). Therefore v(k)
in this time interval should be evaluated as v(k) = ηvn(k) +
(1 − η)vn−1(k), where

vn(k) = − ∂
∂t Fxo(t )(k)|ko=n

Dxo(t )(k)|ko=n
,

vn−1(k) = − ∂
∂t Fxo(t )(k)|ko=n−1

Dxo(t )(k)|ko=n−1
, (D11)

with ∂
∂t Fxo(t )(k) given in Eq. (D9). This leads to Eq. (D2) for

0 < η < 1 with qo = 〈q〉 = η〈q〉ko=n + (1 − η)〈q〉ko=n−1.
In Fig. 8(c) we present the relative sizes of the LCC of

the link-removed graphs and compare them with those from
the configuration-model graphs. Their behaviors as functions
of K are in good agreement for λ = 2.5 and 4.5. Qualitative
agreement is also observed for λ = 3.5, but m remains smaller
in the link-removed graphs than in the configuration model.
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FIG. 9. Conditions for Q > 0. (a) The behavior of B(λ, n) as a
function of λ for different n. (b) Q(λ, xo) versus λ for different xo.
(c) The boundary between Q > 0 and Q < 0 in the (λ, xo) plane
drawn by Eq. (20).

The origin of this deviation is not clear to us. It is perhaps
related to the degree-degree correlation that we neglected in
the branching process approach but is generated during the
link-removal process. Also the portion of removable links is
found to be smaller than expected, which results in leaving
no removable links at K � 0.59 for λ = 4.5 when started
from K (0) = 1. It can be understood in terms of the degree-
degree correlation as follows. Starting from K (0) = 1 for

052309-12



GIANT COMPONENT IN A CONFIGURATION-MODEL … PHYSICAL REVIEW E 100, 052309 (2019)

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

10−2

10−1

100

0 0.5 1 1.5 2

m
,m

a
p
p
ro

x

K

m
mapprox

|m
a
p
p
r
o
x

m
−

1|

K

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

10−4
10−3
10−2
10−1
100

0 1 2 3 4 5

m
,m

a
p
p
ro

x

K

m
mapprox

|m
a
p
p
r
o
x

m
−

1|

K

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

10−4
10−3
10−2
10−1
100

0 1 2 3 4 5 6

m
,m

a
p
p
ro

x

K

m
mapprox

|m
a
p
p
r
o
x

m
−

1|

K

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

10−5
10−4
10−3
10−2
10−1
100

0 1 2 3 4 5 6

m
,m

a
p
p
ro

x

K

m
mapprox

|m
a
p
p
r
o
x

m
−

1|
K

(d)

(a)

(b)

(c)

FIG. 10. The relative size of the giant component m and the
approximation mapprox from Eq. (41) versus the number of links
per node K in damaged networks, which are obtained by removing
q = 0.3, 0.4, 0.5, 0.7, 0.8, and 0.9 fraction of links randomly in each
of (a) 125 biological networks, (b) 40 technological, informational,
and transportation networks, (c) 124 social networks, and (d) 112
economic networks. For given q and each real-world network, 20
such damaged networks are generated and m and mapprox are averaged
over them. In the insets, the relative difference of the two | mapprox

m − 1|
is plotted versus K .
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FIG. 11. The relative size of the giant component m̃ and the
approximation m̃approx from Eq. (F1) versus the rescaled number of
links per node K̃ in the subgraph of nonisolated nodes. The same
damaged networks as considered in Fig. 10 are used. In the insets,
the relative difference of the two | m̃approx

m̃ − 1| is plotted versus K̃ .

052309-13



HEUNG KYUNG KIM et al. PHYSICAL REVIEW E 100, 052309 (2019)

λ = 4.5, a link having an end node of degree one cannot
be removed as long as K (t ) > K1 = 0.563367 . . . and thus
q(1) = 0. Then the portion of removable links is evaluated
by 1 − ND(1)

L + D(1, 1), where D(1, 1) is the portion of the
links connecting two degree-one nodes. While the portion
of degree-one nodes is identical between the link-removed
graphs and the configuration-model graphs, D(1, 1) is smaller
in the former than in the latter and the number of removable
links is found to decrease rapidly with time and becomes
zero at K � 0.59 for λ = 4.5 [35]. It is why we use another
initial configuration-model graph of K (0) = 0.6 to remove
links in and thereby cover the whole considered range of K
for λ = 4.5 in Figs. 8(b) and 8(c).

APPENDIX E: BEHAVIORS OF Q(λ, ko) AND B(λ, n)

Here we investigate the functional behaviors of B(λ, n)
and Q(λ, xo) defined in Eq. (17), which are used to obtain
the phase diagram. For very large λ, the function B(λ, n)
in Eq. (17) can be approximated as B(λ, n) � 2(n + 1)2−λ −
3(n + 1)1−λ = (2n − 1)(n + 1)1−λ, which converges to

lim
λ→∞

B(λ, n) =
{−1 for n = 0

0 for n � 1
. (E1)

For given n, B(λ, n) decreases monotonically with λ, as its
derivative is negative for all λ and n � 0:

∂B(λ, n)

∂λ
= −

∞∑
k=n+1

2k − 3

kλ−1
ln k < 0. (E2)

Note that B(λ, n) diverges for λ � 3. For λ > 3, we can refer
to Eqs. (E1) and (E2) to find that B(λ, n) is positive if n
is positive. For n = 0, B(λ, n) becomes negative for λ > λl

with λl in Eq. (19). These behaviors of B(λ, n) are shown in
Fig. 9(a), which leads Q(λ, xo) to behave as in Fig. 9(b) by
Eq. (17). One finds that the value of λ at which Q(λ, xo) = 0
is fixed at λl if 0 < xo � 1 and increases from λl to infinity as
xo increases from 1 to 2. This boundary between Q > 0 and
Q < 0 can be best represented by the critical line xoc(λ) as a
function of λ for λ � λl given in Eq. (20) and another line
0 < xo � 1 at λ = λl , which are shown in Fig. 9(c) and give
the phase diagram in the plane (λ, K) in Fig. 4.

APPENDIX F: APPLICATION OF EQ. (41) FOR THE GIANT
COMPONENT OF REAL-WORLD NETWORKS UNDER

RANDOM LINK REMOVAL

The approximation in Eq. (41) allows us to estimate the
size of the giant component in terms of the density of low-

degree nodes, which can be of practical use. Suppose that a
real network is being attacked, losing a significant fraction
of links. In such an emergency, it is important to know the
size of the giant component. But the full adjacency matrix,
necessary to identify the giant component and its size may
be unavailable due to insufficient time or resources. Rather
than struggling to collect information of the full adjacency
matrix, one can instead count just the number of significantly
damaged nodes such as those having zero, one, or just two
connected neighbors and use them in Eq. (41) to approximate
the size of the giant component.

To test this idea, we generate the damaged networks by
removing randomly various fractions of links in real-world
networks available in Ref. [36] and compute the relative sizes
of the giant components as well as the densities of low-
degree nodes. In Fig. 10 the approximation mapprox obtained
by Eq. (41) shows a good agreement with m for large K
in most of the real networks except for economic networks
having relatively small K . The relative difference between
m and mapprox decreases with increasing K as shown in the
insets of Fig. 10. This suggests the usefulness of Eq. (41) in
practical applications. Given the assumption of tree structure
and negligible degree-degree correlation in the branching
process approach leading to Eqs. (12) and (41), the agreement
or deviation between m and m̃ may be attributed to the validity
or violation of the assumptions.

Isolated nodes cannot belong to the giant component, and
one might suspect that the agreement between m and mapprox

in Fig. 10 be driven by the first term in the right-hand-side
of Eq. (41), 1 − D(0), representing the portion of nonisolated
nodes. If so, the relative size of the giant component in the
subgraph of nonisolated nodes might be significantly different
from the corresponding approximation from Eq. (41). To
check this possibility, we consider the relative size of the giant
component in the subgraph of nonisolated nodes m̃ = S

Ñ
as a

function of its number of links per node K̃ = L
Ñ

, where Ñ is
the number of nonisolated nodes. As Ñ = N (1 − D(0)), one
sees that m̃ = m

1−D(0) and K̃ = K
1−D(0) . Similarly, the degree

distribution of the subgraph is also given by D̃(k) = D(k)
1−D(0) for

k � 1. The approximation for m̃ based on Eq. (41) is therefore
given by

m̃approx = mapprox

1 − D(0)
= 1 − D̃(1)2

2K̃
− 3D̃(1)2D̃(2)

4K̃2
. (F1)

In Fig. 11 we compare m̃ and m̃approx as functions of K̃ , which
show as good agreement as between m and mapprox in Fig. 10.
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