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Exploring the solution landscape enables more reliable network community detection
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To understand how a complex system is organized and functions, researchers often identify communities in the
system’s network of interactions. Because it is practically impossible to explore all solutions to guarantee the best
one, many community-detection algorithms rely on multiple stochastic searches. But for a given combination
of network and stochastic algorithms, how many searches are sufficient to find a solution that is good enough?
The standard approach is to pick a reasonably large number of searches and select the network partition with the
highest quality or derive a consensus solution based on all network partitions. However, if different partitions
have similar qualities such that the solution landscape is degenerate, the single best partition may miss relevant
information, and a consensus solution may blur complementary communities. Here we address this degeneracy
problem with coarse-grained descriptions of the solution landscape. We cluster network partitions based on
their similarity and suggest an approach to determine the minimum number of searches required to describe the
solution landscape adequately. To make good use of all partitions, we also propose different ways to explore the
solution landscape, including a significance clustering procedure. We test these approaches on synthetic networks
and a real-world network using two contrasting community-detection algorithms: The algorithm that can identify
more general structures requires more searches, and networks with clearer community structures require fewer
searches. We also find that exploring the coarse-grained solution landscape can reveal complementary solutions
and enable more reliable community detection.

DOI: 10.1103/PhysRevE.100.052308

I. INTRODUCTION

Researchers in many disciplines across science use tools
from network science to understand the structure, dynamics,
and function of complex systems. For example, identifying
possibly nested groups of densely connected nodes, known as
communities, with community-detection algorithms can high-
light important network structures [1–4]. Most community-
detection algorithms seek to find the set of communities,
the network partition, that optimizes a quality score based
on a specific definition of what constitutes a community.
Because finding the best network partition is an NP-hard
problem, many algorithms rely on stochastic search strategies
and require multiple runs to avoid local minima with bad
solutions [5–7]. However, while they likely build communities
from consistent small building blocks [8], all algorithms are
more or less sensitive to degenerate solutions with similar
quality scores for dissimilar partitions [9]. Moreover, small
changes in an algorithm parameter [10] or a network due to
noise [11] can drastically change the best solution, and a weak
community structure can worsen this degeneracy problem.
Therefore, reliable community detection must successfully
deal with degenerate solutions.

To handle the degeneracy problem, consensus clustering
seeks to combine information from multiple network parti-
tions [12–14]. The aim is to summarize the partitions in a
single and possibly new partition with graph-based, combi-
natorial, or statistical techniques. Various approaches include
finding the median partition or the one that shares the most in-
formation with other partitions [12,15], consolidating groups

of partitions with hypergraph methods [12], and reclustering
a co-occurrence network with the same community-detection
algorithm [13,14]. Although consensus clustering can allevi-
ate some degeneracy problems and give higher-quality solu-
tions, using a single consensus partition can also waste im-
portant information or lead to misleading solutions if the par-
titions are incompatible. Moreover, disregarding the partition
qualities can aggravate these problems when the number of
low-quality partitions outweighs the number of high-quality
partitions (Fig. 1).

Studying the full solution landscape with all network parti-
tions and corresponding quality measures results in no wasted
information. However, such approaches are in practice limited
to approximate visual explorations and the qualitative assess-
ment of degenerate solutions [9,16]. Moreover, for a given
network and community-detection algorithm, it is unclear how
many solutions are enough to describe the solution landscape
adequately. As a result, we lack quantitative approaches that
both highlight essential structures in the solution landscape
and determine when it is safe to stop searching for better solu-
tions. These challenges call for novel methods to comprehend
and make use of the solution landscape to better understand
the structure and dynamics of complex systems.

Here we present a partition clustering approach that ex-
plores the solution landscape of standard and hierarchical
community-detection algorithms. To assess the completeness
of the coarse-grained solution landscape, we cluster similar
partitions together with a fast stream-clustering algorithm and
estimate the probability that new partitions will fall within al-
ready defined partition clusters. For a coarse-grained solution
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FIG. 1. A schematic solution landscape projected into a two-
dimensional space with isolines for quality score. White squares and
black circles represent two network partition clusters, with parti-
tions distributed based on their partition distances. Large symbols
represent cluster centers. A consensus solution biased toward the
numerous partitions marked with a black circle may have a lower
quality score than any of the detected partitions.

landscape that meets a user-specified resolution, we propose
different ways to explore the space of partitions, including
visual explorations to reveal complementary solutions and a
statistical test to identify significant communities. We validate
our approach on synthetic networks as well as a real-world
network of worldwide mammal occurrences.

II. DESCRIBING THE SOLUTION LANDSCAPE

A. Network partition distance

To describe the solution landscape, we first compute dis-
tances between partitions. While any of the many partition
distance measures developed for different networks and re-
search questions would work, most of them apply only to
hard partitions that cannot capture hierarchical or overlap-
ping community structures [17–19]. Because many real-world
networks form these types of community structures [20–23],
some distance measures have been generalized to capture
either overlapping or hierarchical communities [20,22,24], but
rarely both [25]. To capture different types of community
structures and make it easy to interpret the results, we want
a flexible and simple distance measure.

Because a community of nodes is the building block of all
types of community structures, we base the partition distance
measure on pairwise community comparisons, regardless of
whether they are in different hierarchical levels or whether
nodes belong to more than one community. Specifically, we
measure the weighted average of the minimum Jaccard dis-
tance over all communities in partition P to a community in
partition P′, with the weight given by the fraction of node
assignments. That is, for each community i in partition P
with a set of nodes CP

i , we measure the minimum Jaccard
distance to any community j in partition P′ with a set of
nodes CP′

j , and we calculate the weighted average based on the

number of nodes in CP
i , |CP

i |, and the number of community
assignments in partition P,

∑
k |CP

k |, such that the distance
dPP′ from partition P to partition P′ is

dPP′ =
∑

i

min
j

(
1 −

∣∣CP
i ∩ CP′

j

∣∣∣∣CP
i ∪ CP′

j

∣∣
) ∣∣CP

i

∣∣∑
k

∣∣CP
k

∣∣ . (1)

Because dPP′ need not be equal to dP′P, for a symmetric
partition distance measure, we calculate the average [26],

d̄PP′ = 1
2 dPP′ + 1

2 dP′P. (2)

This partition distance works with hard, overlapping, and hi-
erarchical communities. It is zero for identical partitions, and
approaches 1 as they become completely dissimilar. Between
these extremes, the partition distance gives the weighted aver-
age fraction of nodes that best-matching communities do not
have in common.

B. Network partition clustering algorithm

Using the proposed network partition distance, we describe
the solution landscape with clusters of similar network parti-
tions. While many clustering algorithms can output such clus-
ters, those algorithms generally involve NP-hard optimization
problems in themselves. However, to identify dissimilar par-
titions with high quality, we do not need a solution landscape
that optimizes some quality function. Instead, a fast and
transparent deterministic approach that decides the number of
clusters provides multiple advantages: First, a fast algorithm
can run together with a stochastic community-detection algo-
rithm and decide when it is safe to stop to achieve a good
result. Second, a deterministic algorithm that does not require
a prespecified number of clusters evades the ambiguities that
come with multiple solutions. Third, a transparent algorithm
that produces interpretable clusters and a comprehensible so-
lution landscape simplifies further analysis. Therefore, instead
of relying on established clustering algorithms developed for
other purposes, given a partition distance threshold dmax, we
cluster the partitions in three steps:

(i) Order all p network partitions from highest to lowest
quality.

(ii) Let the highest quality network partition form cluster
center 1.

(iii) Repeat until all network partitions have been clustered.
Among the not-yet-clustered partitions, pick the one with the
highest quality and assign it to the first of the k cluster centers
that it is closer to than dmax. If no such cluster center exists,
let it form cluster center k + 1.

For example, in the schematic solution landscape in Fig. 1,
the network partition clustering algorithm first lets the parti-
tion marked with a big square form the center of cluster 1. For
an intermediate partition distance threshold, it then assigns the
other partitions marked with squares to the same cluster before
it lets the partition marked with a big circle form the center of
cluster 2 and assigns the other partitions marked with circles
to that cluster.

The partition distance threshold specifies the resolution of
the coarse-grained solution landscape. Lowering the threshold
gives more clusters with more similar network partitions, and
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increasing the threshold gives fewer clusters with less similar
network partitions.

We have implemented the partition clustering code in
C++, which has worst-case time-complexity O(pk), and we
made it available for anyone to use [27].

C. Solution landscape completeness

We say that a solution landscape is complete when new
network partitions at most marginally affect its coarse-grained
description. Accordingly, when a solution landscape is com-
plete, it is safe to stop searching for better network partitions.
Intuitively, we need fewer partitions to describe the solution
landscape of a network with a clear community structure than
that of a network with a diffuse community structure because
the former will have more similar partitions. Moreover, the
required number of partitions will also depend on the variabil-
ity of the search algorithm. In any case, using more partitions
to describe the solution landscape with clusters increases the
probability that a new partition will fit into existing clusters.
We use this probability as a validation score σ to assess the
solution landscape completeness and to determine when to
stop searching,

σ = pc

pv

, (3)

where pc is the number of validation partitions that fits within
a cluster, and pv is the total number of validation partitions.
For example, we can stop the search algorithm when σ is
higher than, say, 0.9. To estimate σ , we use repeated random
subsampling validation and hold out pv = 100 partitions for
validation, or pv = p/2 when the number of partitions is fewer
than 200. In this way, we avoid random effects caused by the
search order of the stochastic community-detection algorithm.

D. Solution landscape exploration

A complete coarse-grained solution landscape with clus-
ters centered around locally high-quality partitions simplifies
further analysis and makes the results more reliable. First, it
indicates when it is safe to stop searching for a better solution
because the validation score and partition distance threshold
put a limit on the value of continuing. For example, when a
solution landscape is complete at a high validation score for
a small partition distance threshold, summary statistics based
on all partitions will be reproducible and reliable. Second, it
directly gives an idea about the spread of network partitions
through the number of clusters for a given partition distance
threshold. For more detailed analysis, alluvial diagrams can
highlight qualitative pairwise differences between partitions
[28], and various embedding techniques can depict the overall
solution landscape [29]. Third, it can speed up further analysis
with controlled information loss as comparing all pairs of
cluster centers rather than all pairs of partitions reduces the
computational complexity from O(p2) to O(k2).

Useful further analysis include finding communities or
node assignments that are stable across many partitions.
For example, in networks with partially clear community
structure, distinguishing stable from unstable communities
enables more reliable analysis. While approaches exist for
assessing the significance of communities given a set of

partitions [28,30], these approaches only work for hard non-
hierarchical partitions. Therefore, we propose an approach
that also assesses the significance for hierarchical or overlap-
ping communities. A straightforward approach to assessing
the significance of a community would be to calculate the
fraction of partitions in which the community appears. How-
ever, this significance test is overly demanding as communi-
ties with only slight variations in node composition would
be considered nonsignificant. Consequently, we relax the
demand for exact matching and reuse the minimum Jaccard
distance of the network partition distance in Eq. (1) with a
threshold. We measure the significance αR

i of community i
in the highest-quality or other reference partition R as the
fraction of partitions that have a community with a smaller
distance to i than a threshold τ ,

αR
i = 1

p − 1

∑
P �=R

�

[
τ − min

j

(
1 −

∣∣CR
i ∩ CP

j

∣∣∣∣CR
i ∪ CP

j

∣∣
)]

, (4)

where the sum runs over all p − 1 partitions P that are not the
reference partition R, and � is the Heaviside step function.

Stable communities can contain both stable and unsta-
ble node assignments, and we need a means to distin-
guish between them. Therefore, to measure the community-
assignment significance ηR

v of node v in reference partition R,
we calculate the fraction of partitions in which v appears in
the community that is most similar to v’s community in the
reference partition. Using the Kronecker delta function δ, the
community-assignment significance can be written

ηR
v = 1

p − 1

∑
P �=R

δ
(
cP
v , cRP

v

)
, (5)

where cP
v is the community index of node v in partition P,

and cRP
v = arg max j |CR

cR
v
∩ CP

j |/|CR
cR
v
∪ CP

j | is the community
index of the community in partition P that is most similar to
the community of v in partition R. In practice, we calculate ηR

v

in four steps:
(i) Identify the index cR

v of v’s community in the reference
partition.

(ii) Identify the index cRP
v of the community in partition P

that is most similar to community cR
v in the reference partition.

(iii) Increment ηR
v by 1/(p − 1) if the index cP

v of v’s
community in partition P is the same as the most similar
partition cRP

v .
(iv) Repeat (ii) and (iii) for all p − 1 partitions P that are

not the reference partition.

III. RESULTS AND DISCUSSION

A. Solution landscape of synthetic networks

We tested our approach on Lancichinetti-Fortunato-
Radicchi (LFR) benchmark networks with different intercom-
munity link probabilities μ [31]. We generated networks with
500 nodes, average degree 10, maximum degree 20, commu-
nity sizes distributed between 20 and 100 nodes, and four
different intercommunity link probabilities μ = 0.1, 0.15,
0.2, and 0.25, for less and less pronounced communities. To
account for the internal variability of the LFR benchmark
networks, we generated 25 synthetic networks for each μ.
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FIG. 2. Distance from Infomap and BSBM partitions to planted
partitions obtained with the LFR benchmark. Dark colors are medi-
ans and light bars are between the 25th and 75th percentiles over 500
partitions for each intercommunity link probability μ.

We analyzed these networks with two popular and con-
trasting stochastic algorithms for community detection: In-
fomap [5,32] and Bayesian inference of the degree-corrected
stochastic blockmodel (BSBM) [33] as implemented in
the graph-tool library [7,34]. While both algorithms op-
timize information-theoretic objective functions, Infomap
seeks to compress dynamics on a network with assortative
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for 50–500 partitions with partition distance thresholds (a,b) dmax =
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FIG. 4. (a,c) Infomap and (b,d) BSBM solution landscape com-
pleteness for synthetic networks generated with four intercommunity
link probabilities μ. The validation scores σ are represented with
solid medians, and shaded regions are between the 25th and 75th
percentiles for different numbers of partitions with partition distance
thresholds (a,b) dmax = 0.025 and (c,d) dmax = 0.05. Infomap re-
quires fewer partitions than the BSBM for complete solution land-
scapes. Both methods require more partitions for less pronounced
communities.

communities of densely connected nodes whereas the BSBM
seeks to compress the network itself with blocks of any mixing
pattern. Moreover, the BSBM can handle partition uncertainty
based on sampling from the posterior distribution [16]. To test
the solution landscape completeness, we ran each algorithm
50, 100, 200, 300, 400, and 500 times on a given network.
After each step, we ran the partition clustering algorithm and
validated 100 times on 100 subsampled hold-out partitions
when p � 200 and on p/2 partitions otherwise.

With the more general model not limited to assortative
communities and the Bayesian framework, the BSBM has a
flatter solution landscape than Infomap. As a result, the BSBM
generated more variable partitions that differed more from the
planted partitions (Fig. 2) and required more clusters for any
tested intercommunity link probability and distance threshold
(Fig. 3). While both methods required more partitions for net-
works with higher intercommunity link probabilities μ—such
that a less pronounced community structure required a larger
number of searches to obtain a complete solution landscape—
Infomap generated partitions with validation scores close to 1
for μ � 0.2 already at 50 partitions (Fig. 4).

The required number of searches also depends on the
choice of partition distance threshold dmax. To exemplify this,
we used two threshold values for validation, dmax = 0.025 and
0.05. With the higher threshold, more hold-out partitions fit
in clusters such that the validation score increases (Fig. 4).
Therefore, the choice of partition distance threshold should
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FIG. 5. Validation score σ for landscape completeness of the
terrestrial mammal occurrence network under four partition distance
threshold values dmax (0.2, 0.1, 0.05, 0.025) using Infomap. 1000
partitions are enough for a median validation score above 0.9.

reflect a compromise between accuracy and efficiency and
depend on the particular problem at hand, which we exemplify
in the next section.

B. Solution landscape of a mammal occurrence network

We further explored the solution landscape in a real-
world case using a terrestrial mammal occurrence network.
This bipartite network consists of 4999 mammal species and
10 775 equal-area grid cells with 110.5 km sides that cover
the surface of the Earth [35]. A link connects a species and a
grid cell if the species occurs in the grid cell. The resulting

communities form global-scale areas that share similar
species called bioregions.

We analyzed the community structure with the hierarchical
versions of Infomap [21] and the BSBM [36] by generating
1500 partitions with each algorithm. We chose dmax = 0.2,
which roughly corresponds to partition differences that cover
up to 20% of the Earth’s surface. Higher partition distances in-
dicate major changes in the bioregional configuration, which
require separate examination. Nevertheless, to illustrate the
effect of different thresholds, we used three smaller values,
dmax = 0.025, 0.05, and 0.1. To validate the solution landscape
under different numbers of runs, we used 200–1500 partitions
with 100 hold-out partitions subsampled 100 times.

The results on the real networks resemble those on the
synthetic networks. Compared with Infomap, the BSBM again
generated more variable partitions and a more complex solu-
tion landscape. Because the distance was higher than dmax =
0.2 between each pair of the BSBM partitions, each partition
formed its own cluster such that the validation score σ was 0.
For distance threshold dmax = 0.2, we would need vastly more
than 1500 partitions to achieve σ = 0.9. While we obtained
σ � 0.9 with 1500 partitions by increasing dmax to 0.55, this
distance threshold allows overly dissimilar partitions: two
partitions in the same cluster can have best-matching com-
munities that on average share less than half of their nodes.
Accordingly, many different block structures can generate
this network with similar probabilities. Focusing on assorta-
tive communities simplifies the problem: With Infomap we
achieved complete solution landscapes with σ > 0.9 for all
tested threshold values dmax (Fig. 5). For example, for the
lowest tested dmax = 0.025, σ was higher than 0.9 when we
used more than 900 partitions, which formed 188 clusters
(Fig. 5). In contrast, for the highest tested dmax = 0.2, σ was
higher than 0.9 already at 200 partitions (and likely before),
and the 1500 partitions formed two clusters with 970 and
530 partitions, respectively. The cluster centers have similar
qualities, 10.689 and 10.695, which Infomap measures as
code lengths in bits. Indeed, the clusters have partitions with

(a) (b)

Le
ve

l 1
Le

ve
l 2

Le
ve

l 3

FIG. 6. World bioregions from communities in the two best partition cluster centers. (a) Alluvial diagram showing the differences between
the two partitions at the highest hierarchical level. (b) Geographic projection of nodes representing grid cells. In all cases, we obtained three
hierarchical levels. The differences show the rich information contained in separate partitions, even when they have similar quality.
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FIG. 7. (a) The fraction of partitions having a community no more distant than τ = 0.2 to the reference community. (b) The fraction of
partitions where a node belongs to the most similar community. We see, for example, that the weakly supported African Euro-Asiatic region
in the first level appears to hold a significant core of nodes coinciding with the north of Eurasia, while less significant nodes tend to be placed
along bioregional borders. The striped areas correspond to regions that were not further subdivided in the third hierarchical level.

overlapping code lengths (from 10.695 and 10.697 at the 25th
percentile to 10.700 for both clusters at the 75th percentile),
which call for further analysis of the degenerate solution
landscape.

To explore the qualitative differences between the clusters,
alluvial diagrams can give a visual overview of major changes
between the cluster centers [Fig. 6(a)]. In our particular case,
however, we can visualize the geographic projection of the
spatially explicit grid cells [Fig. 6(b)]. At the highest hier-
archical level [level 1 in Fig. 6(b)], the major difference is
that the second cluster center splits Africa and a southeastern
portion of Asia from a large region that encompasses Eurasia
and Africa in the first cluster center. At lower hierarchical
levels, the first cluster center further subdivides the North
American region, whereas the second cluster center further
subdivides regions in Africa and central Asia. These results
show the rich information contained in different partitions,
which can reveal meaningful patterns. For instance, the sub-
division of Sub-Saharan Africa closely coincides with the
Köppen climate classification [37].

Finally, we applied the significance clustering procedure
both at the community and node level with the overall highest
quality partition as a reference. We used community distance
threshold τ = 0.2 to calculate the community significance αR

i .
The community significance is largely in agreement with the
previous qualitative visual assessment. The region including
Africa and Eurasia is weakly supported, which is also true
for the North American and Central Asian regions (Fig. 7).
Also, the node significance ηA

i agrees with these results, but
provides further information. For instance, the weakly sup-
ported African Euro-Asiatic region in the first level appears
to hold a significant core of nodes coinciding with northern
Eurasia. Moreover, nodes with low significance tend to be
placed along regional borders such as the Sahel border and
the border separating southern and northern South America.

Beyond methodological stochasticity, this result shows that
some nodes are inherently more difficult to assign to particular
communities.

IV. CONCLUSIONS

We have introduced a fast network partition clustering al-
gorithm to describe the often degenerate solution landscape of
stochastic community-detection algorithms in coarse-grained
form. Our approach establishes a criterion for when it is safe
to stop searching for better solutions and start exploring the
solution landscape. We also present statistical tests of com-
munities and node assignments, which uncover underlying
causes of the solution landscape degeneracy. The validation
on synthetic networks and a real-world network highlights
how focusing on a single network partition can waste useful
information. In contrast, using the entire solution landscape
enables more reliable community detection and a better un-
derstanding of the organization of complex systems. Beyond
community detection, our approach works with any stochastic
search with outputs that have measurable distances.
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