
PHYSICAL REVIEW E 100, 052306 (2019)

Asymmetry in interdependence makes a multilayer system more robust against cascading failures

Run-Ran Liu ,1,* Chun-Xiao Jia,1 and Ying-Cheng Lai2,3

1Alibaba Research Center for Complexity Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
2School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA

3Department of Physics, Arizona State University, Tempe, Arizona 85287, USA

(Received 6 April 2019; revised manuscript received 15 October 2019; published 18 November 2019)

Multilayer networked systems are ubiquitous in nature and engineering, and the robustness of these systems
against failures is of great interest. A main line of theoretical pursuit has been percolation-induced cascading
failures, where interdependence between network layers is conveniently and tacitly assumed to be symmetric.
In the real world, interdependent interactions are generally asymmetric. To uncover and quantify the impact
of asymmetry in interdependence on network robustness, we focus on percolation dynamics in double-layer
systems and implement the following failure mechanism: Once a node in a network layer fails, the damage it
can cause depends not only on its position in the layer but also on the position of its counterpart neighbor in
the other layer. We find that the characteristics of the percolation transition depend on the degree of asymmetry,
where the striking phenomenon of a switch in the nature of the phase transition from first to second order arises.
We derive a theory to calculate the percolation transition points in both network layers, as well as the transition
switching point, with strong numerical support from synthetic and empirical networks. Not only does our work
shed light on the factors that determine the robustness of multilayer networks against cascading failures, but
it also provides a scenario by which the system can be designed or controlled to reach a desirable level of
resilience.
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I. INTRODUCTION

It has been increasingly recognized that, because of the
ubiquitous presence of interdependence among different types
of systems, a reasonable understanding of a variety of com-
plex phenomena in the real world requires a description based
on multilayer [1] or interdependent [2,3] networks. Indeed,
the functioning of a complex dynamical system, whether it be
physical, biological, or engineered, depends not only on its
own components but also on other systems that are coupled
or interact with it [4–7]. Examples of this sort abound in
the real world, e.g., in social [8], technological [9,10], and
biological systems [11]. In most existing models of multilayer
networks, the mutual interactions between a pair of network
layers are treated as symmetric. This assumption is ideal as
the interactions between different types of systems often are
asymmetric. There then exists a gap between current theo-
retical modeling or understanding and real-world situations
where asymmetric interdependence is common. The purpose
of this paper is to narrow this gap by articulating a prototypical
model of dynamics in asymmetrically interacting multilayer
networks and investigating its robustness with the finding
that interaction asymmetry can surprisingly make the whole
system significantly more robust.

To be concrete, we focus on a generic type of dynamical
processes on multilayer networked systems: cascading fail-
ures that attest most relevantly to the robustness and resilience
of the system. There is a large body of literature on cascading
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failures in single-layer complex networks [12–29], and there
have also been efforts in cascading dynamics in multilayer
networks [4,30–34]. The unique feature that distinguishes
cascading dynamics in multilayer from those in single-layer
systems is that, in multilayer systems, failures can propagate
from one network layer to another and trigger large-scale
failures in an avalanche manner by the intricate strong node-
to-node interaction pattern across the network layers. Because
of this, multilayer networks can be vulnerable and collapse
in an abrupt manner. While protecting the hub nodes can
be an effective strategy to mitigate cascading failures in
single-layer networks, in interdependent systems this strat-
egy is less effective [2,3]. Nonetheless, there are alternative
methods to generate robust interdependent networks even
in the strong dependence regime [31–35], where robustness
can be enhanced with second-order phase transitions through
mechanisms such as intersimilarity [36], geometric correla-
tions [37,38], correlated community structures [39], and link
overlaps [40,41]. In addition, it was found that the vulnera-
bility of interdependent networked systems can be reduced
through weakening the interlayer interaction [30]. It was also
found that the topological properties of the network layers
composing a multilayer system, such as degree correlations
[42–45], clustering [46,47], degree distribution [48,49], inner
dependency [50,51], and spatial embedding [52,53], can affect
the robustness of the whole multilayer system. Another issue
of great concern is how to destroy the largest mutually con-
nected component of a given multilayer network deliberately
[54,55]. It was found that an effective way to destroy the giant
component of a single network, i.e., destruction of the 2-core,
does not carry over to multilayer networks. The methods of
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effective multiplex degree [56] and optimal percolation [57]
were articulated for multilayer networks to find the mini-
mal damage set that destroys the largest mutually connected
component.

A tacit assumption employed in most previous models of
cascading failures in multilayer networks [4,30–34] is that the
layer interdependence will cause a node to fail completely
should any of its neighboring nodes in the other layers become
nonfunctional. For convenience, we regard such interdepen-
dence as “strong.” As a result of the strong dependence,
every pair of interdependent nodes must be connected to
the giant component in their respective layer at the same
time, motivating the introduction of the notion of mutually
connected components to characterizing the robustness of
the whole multilayer system [4,29,58]. Analyses based on
the percolation theory [59–62] revealed that the mutually
connected component generically undergoes a discontinuous
phase transition as a function of the initial random damage
[3,4]. This result was somewhat surprising because it is
characteristically different from the continuous percolation
transition typically observed in single-layer networks [63–66].
Moreover, the percolation theory provides a reasonable un-
derstanding of the catastrophic cascading dynamics occurred
in real interdependent infrastructure systems, such as the
interdependent system of power grids and telecommunication
networks [67].

A deficiency of the assumption of “strong” interdepen-
dence is that nodes across different layers in real-world sys-
tems typically exhibit weaker types of interdependence. For
example, in a transportation system, passengers can travel
from city to city through a number of interdependent trans-
portation modes such as coaches, trains, airplanes, and ferries.
When one mode becomes unavailable, e.g., when the local
airport is shut down, passenger flow into the city may be
decreased: Some passengers destined for this city may cancel
their travel and the transferring passengers would switch to
other cities to reach their final destinations. Thus, although the
disabling of the air transportation route can have impacts on
the function of the whole interdependent networked system,
transportation via other modes is still available, i.e., total de-
struction will not occur and the system can still maintain a cer-
tain level of functioning. For this particular example, the inter-
actions between the air travel network and other transportation
network layers are apparently asymmetric. Generally, many
real-world infrastructure systems such as electric power, wa-
ter, or communication networks use backup infrastructures
and often have emergency management plans to survive losses
of interdependent services. In such a case, the failure of a node
in one layer can disable a number of links in other coupled
layers, but not necessarily cause the loss of all neighboring
nodes and links. These considerations motivated recent works
on the consequences of “weak” interdependence in multilayer
networked systems [7,68]. Another factor of consideration is
that the impacts of a failed node on its interdependent partners
may depend not only on its position, but also on the positions
of the partners. That is, the strength of interdependence of
two nodes in different network layers is asymmetric, as in real
infrastructure systems. Intuitively, the origin of asymmetry in
interdependence can be argued, as follows. In a multilayer
networked system, the “important” nodes tend to be highly

connected while the “unimportant” ones are less connected.
Probabilistically, the failure of an “unimportant” node thus
would not have a great impact on the “important” nodes, but
the failure of an “important” node is more likely to have sig-
nificant effects on the “unimportant” nodes. To investigate the
consequence of asymmetrically interdependent interactions
may thus lead to a better understanding of robustness and
resilience of multilayer networks in the real world.

In this paper, we articulate a class of percolation dynamical
models for multilayer networks incorporating asymmetric in-
terdependence and investigate the effects of the asymmetry on
the robustness of the whole system. In our model, the strength
of the interdependence of nodes with different degrees on its
partners in different layers is not identical to the strength in
the opposite direction. We introduce a generic parameter θ to
characterize the degree or extent of asymmetry of two inter-
dependent network layers. Intuitively, it may occur that asym-
metry can make the system more vulnerable to catastrophic
failures. For example, disabling some nodes that exert more
influence on its partner nodes than the other way around is
more likely to lead to failures of these nodes, making cascad-
ing failures more probable. However, counterintuitively, we
find that increasing the degree of asymmetry can dramatically
improve the robustness of the whole multilayer system. In par-
ticular, when the highly connected nodes in one layer depend
less on the nodes of lower degrees in the other layer than the
dependence in the opposite direction, the robustness of the
system can be improved significantly as compared with the
counterpart system with perfectly symmetric interdependence
[4]. Quantitatively, as the degree of asymmetry is systemat-
ically increased, the system undergoes a remarkable switch
from a first-order percolation transition to a second-order one.
We develop an analytic theory to predict the characteristic
changes in the nature of the phase transition as induced by
asymmetry and the transition points, with strong numerical
support based on percolation dynamics in both synthetic and
empirical networks. Our results suggest that, in order to
enhance network robustness and resilience (as in designing a
multilayer infrastructure system), introducing an appropriate
level asymmetric interaction among the interdependent layers
can be advantageous.

II. MODEL

We consider a percolation process on an interdependent
system with two network layers, denoted as A and B, each
having the same number N of nodes. The functioning of node
ai (i = 1, . . . , N ) in network A depends on the functioning of
the counterpart node bi in network B and vice versa. When ai

fails, each link of its dependent partner bi will be maintained
or disabled with probability αb

i or 1 − αb
i , respectively. Sim-

ilarly, if bi in B fails, then the links of its dependent partner
ai in network A will be intact or disabled with probability
αa

i or 1 − αa
i , respectively. The probabilities αa

i and αb
i thus

characterize the interdependence strength of node ai on bi and
vice versa, respectively. When the values of αa

i or αb
i approach

1, the interdependence between the two nodes is the weakest,
where failures are unable to spread from one network layer
to another. The opposite limit where the values of αa

i and/or
αb

i approach zero corresponds to the case of the strongest
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possible interdependence. In general, the values of αa
i and αb

i
are different and degree dependent. One way to define these
parameters is

αa
i =

(
ka

i

)θ

(
ka

i

)θ + (
kb

i

)θ
and αb

i =
(
kb

i

)θ

(
ka

i

)θ + (
kb

i

)θ
, (1)

where ka
i and kb

i are the degrees of nodes ai and bi, re-
spectively, and θ is a parameter that controls the asymmetry
of the interdependent interactions. In particular, for θ = 0,
the interdependence between nodes ai and bi is symmetric:
αa

i = αb
i , regardless of the nodal degrees. For θ > 0, the

interdependence is weak of a high degree node in one network
layer on a low degree node in the other network layer and the
interdependence of a low degree node in one layer on a high
degree node in the other layer is strong. The opposite situation
occurs for θ < 0, where the interdependence of a high (low)
degree node in one layer on a low (high) degree node in the
counterlayer is strong (weak). As described in Introduction, in
real multilayer networks, the failure of a less connected node
would not have a great impact on the well connected nodes,
but the failure of a well connected node is more likely to have
significant effects on the less connected nodes. This means the
case of negative θ values may seldom appear and positive θ

values are more general in realistic scenarios. Tuning the value
of θ enables a systematic analysis of the effects of asymmetry
in interdependence on the robustness of the whole multilayer
system.

We start the percolation process by randomly removing
a fraction (1 − p) of the nodes of networks A and B in-
dependently. In each network layer, the links connected to
the removed nodes are simultaneously removed. This is the
case where an initial attack occurs in the two network layers
simultaneously. The removal of nodes in one network will
cause some nodes to be isolated from the giant component
and to fail, and the failure can spread across the whole system
through an iterative process. In each iteration, disconnecting
certain nodes from the giant component of, e.g., network A,
will cause some nodes to be isolated from the giant component
of network B through the destruction of some of their links,
which in turn will induce more link destruction and nodal
failures in A. When the process of failure stops, the whole
system reaches a stable steady state. The sizes SA and SB of
the giant components in the final state of the network layers
A or B can be used to measure the robustness of the whole
system [4,7].

III. THEORY

We develop a theory to understand the asymmetry-induced
switch between first- and second-order phase transitions and
to predict the transition points. Let pA

k and pB
k be the degree

distributions of network layers A and B, respectively, where
the average degrees are given by 〈k〉A = ∑

k pA
k k and 〈k〉B =∑

k pB
k k. The final sizes SA and SB of the respective giant

components in layers A and B in the steady state can be solved
by using a self-consistent probabilistic approach. In particular,
define RA (RB) to be the probability that a randomly chosen
link in network A (B) belongs to its giant component. Suppose
we randomly choose a node ai of degree ka

i in network A. The

probability of functioning of this node depends the state of its
interdependent neighbor bi in network B. If bi is disabled, then
each of its links can be maintained with the probability αa

i , so
the probability that this link leads to the giant component in A
is αa

i RA. The viable probability of node ai in A is thus given
by p[1 − (1 − αa

i RA)ka
i ] if its interdependent neighbor bi is not

viable. If bi is functional, then the viable probability of node
ai is p[1 − (1 − RA)ka

i ]. With the quantity RB, we can get the
viable probability of node bi as p[1 − (1 − RB)kb

i ]. Taking into
account the probability distributions of ka

i and kb
i , the viable

probability of a random node in A is

SA = p2

⎡
⎣1 −

∑
ka

i

pA
ka

i
(1 − RA)ka

i

⎤
⎦

⎡
⎣1 −

∑
kb

i

pB
kb

i
(1 − RB)kb

i

⎤
⎦

+ p
∑

ka
i

∑
kb

i

pA
ka

i
pB

kb
i

[
1 − (

1 − αa
i RA

)ka
i
]

× {
1 − p

[
1 − (1 − RB)kb

i
]}

, (2)

where the first and second terms denote the cases where bi

is viable and not viable, respectively. Similarly, the viable
probability of a node bi in network B is

SB = p2

⎡
⎣1 −

∑
kb

i

pB
kb

i
(1 − RB)kb

i

⎤
⎦

⎡
⎣1 −

∑
ka

i

pA
ka

i
(1 − RA)ka

i

⎤
⎦

+ p
∑

ka
i

∑
kb

i

pA
ka

i
pB

kb
i

[
1 − (

1 − αb
i RB

)kb
i
]

× {
1 − p

[
1 − (1 − RA)ka

i
]}

. (3)

Following a randomly chosen link in network A, we can arrive
at a node a j with degree ka

j . If its interdependent neighbor
b j of degree kb

j in network B is viable, then the random link
can lead to the giant component with the probability p[1 −
(1 − RA)ka

j −1]. If b j is not viable, then each link of node a j

is reserved with the probability αa
j , and the random link can

lead to the giant component with the probability pαa
j [1 − (1 −

αa
j R

A)ka
j −1]. These considerations lead to the following self-

consistent equation for RA:

RA = p2

⎡
⎣1 −

∑
ka

j

pA
ka

j
ka

j

〈k〉A
(1 − RA)ka

j −1

⎤
⎦

×
⎡
⎣1 −

∑
kb

j

pB
kb

j
(1 − RB)kb

j

⎤
⎦

+ p
∑

ka
j

∑
kb

j

pA
ka

j
ka

j

〈k〉A
pB

kb
j
αa

j

[
1 − (

1 − αa
j R

A
)ka

j −1]

× {
1 − p

[
1 − (1 − RB)kb

j
]}

. (4)
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(a) (b) (c)

(d) (e) (f)

FIG. 1. Solutions of the self-consistent equations for the probabilities that a random node belongs to the giant component in a double-layer
system. Shown are the graphical solutions of Eqs. (4) and (5) for different values of θ and p, as marked by the black dots. [(a)–(c)] Results for
p = 0.6, p = 0.7194, and p = 0.8, respectively, for θ = −2, and [(d)–(f)] the solutions for p = 0.4, p = 0.45, and p = 0.5, respectively, for
θ = 4. The average degree is 〈k〉 = 4.

A self-consistent equation for RB can be obtained in a similar
way. We get

RB = p2

⎡
⎣1 −

∑
kb

j

pB
kb

j
kb

j

〈k〉B
(1 − RB)kb

j −1

⎤
⎦

×
⎡
⎣1 −

∑
ka

j

pA
ka

j
(1 − RA)ka

j

⎤
⎦

+ p
∑

ka
j

∑
kb

j

pA
ka

j

pB
kb

j
kb

j

〈k〉B
αb

j

[
1 − (1 − αb

j R
B)kb

j −1]

× {
1 − p

[
1 − (1 − RA)ka

j
]}

. (5)

Figure 1 shows, for random networks A and B with a
Poisson degree distribution [69,70] pk = e−〈k〉〈k〉k/k!, graph-
ical solutions of RA and RB for different values of θ and p.
For simplicity, we consider the case where A and B have
the identical degree distribution: pA

k = pB
k ≡ pk . For θ = −2,

there is a trivial solution at the point (RA = 0, RB = 0) for
p = 0.6, indicating that both networks A and B are completely
fragmented. For p = 0.7194, the solutions are given by the
tangent point (0.2187,0.2187), giving rise to a discontinuous
change in both RA and RB that is characteristic of a first-order
percolation transition. For θ = 4, the crossing point for RA and
RB changes continuously from (0,0) to some nontrivial values,
indicating a continuous (second order) percolation transition.

The critical point for both first- and second-order types of
percolation transition can be obtained, as follows. For pA

k =
pB

k ≡ pk , we have 〈k〉A = 〈k〉B ≡ 〈k〉, RA = RB ≡ R. Equation

(4) or (5) can then be reduced to

R = p2

⎡
⎣1 −

∑
ka

j

pka
j
ka

j

〈k〉 (1 − R)ka
j −1

⎤
⎦

⎡
⎣1 −

∑
kb

j

pkb
j
(1 − R)kb

j

⎤
⎦

+p
∑

ka
j

∑
kb

j

pka
j
ka

j

〈k〉 pkb
j
αa

j

[
1 − (

1 − αa
j R

)ka
j −1]

× {
1 − p

[
1 − (1 − R)kb

j
]} ≡ h(R). (6)

For the first-order transition, the straight line y = x and the
curve R = h(R) from Eq. (6) become tangent to each other at
the point (Rc, Rc), at which the derivatives of both sides of
Eq. (6) with respect to R are equal:

dh(R)

dR
|R=Rc,p=pI

c
= 1. (7)

Equations (6) and (7) can be solved numerically to yield the
first-order percolation transition point pI

c.
In the regime of second-order percolation transition, the

probability R tends to zero as p approaches the percolation
point pII

c . We can use the Taylor expansion of Eq. (6) for R ≡
ε � 1:

h(ε) = h′(0)ε + 1
2 h′′(0)ε2 + O(ε3) = ε. (8)

Since ε ∈ (0, 1), we obtain h′(0) + 1
2 h′′(0)ε + O(ε2) = 1 by

dividing both sides of Eq. (8) by ε. Neglecting high-order
terms of ε, we have that the second-order percolation point
pII

c is determined by the solutions of

h′(0) = pII
c

∑
ka

j

∑
kb

j

pka
j
ka

j

〈k〉 pkb
j

(
αa

j

)2(
ka

j − 1
) = 1. (9)
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If, for any node, we have αa
j → 1, then there will be

no interdependence across the network and Eq. (9) can be
reduced to the case of a single-layer network. In this case,
the percolation transition point becomes pII

c = 〈k〉/〈k(k − 1)〉,
which is the same result for single-layer generalized random
networks and can be validated to be consistent with the
previous ones [64,65]. Since the interdependence strength of
a pair of nodes across two network layers is determined by
their degrees, the situation αa

j → 0.5 arises if all pairs of
interdependent nodes have exactly the same degree, which
provides a special symmetrical case for any given value
of θ .

When the conditions for the first- and second-order tran-
sitions are satisfied simultaneously, i.e., pI

c = pII
c , the perco-

lation transition switches from first to second order (or vice
versa). Substituting pII

c from Eq. (9) into Eq. (8), we have

1
2 h′′(0)ε2 + O(ε3) = 0. (10)

For the first-order percolation transition, εc is always nontriv-
ial and Eq. (10) is not applicable any more. Apparently, if
the system undergoes a second-order percolation transition,
then the value of ε is at the transition point εc = 0 and
Eq. (10) is naturally satisfied. On the boundary between the
first- and second-order percolation transitions, the value of εc

is negligibly small. We have

h′′(0) = pII
c

⎡
⎣2pII

c

∑
ka

j

pka
j
ka

j

(
ka

j − 1
)

+pII
c

∑
ka

j

∑
kb

j

pka
j
ka

j

〈k〉 pkb
j

(
αa

j

)2

−
∑

ka
j

∑
kb

j

pka
j
ka

j

〈k〉 pkb
j

(
ka

j − 1
)(

ka
j − 2

)(
αa

j

)3

−pII
c

∑
ka

j

∑
kb

j

pka
j
ka

j

〈k〉 pkb
j

(
ka

j − 1
)(

αa
j

)2

⎤
⎦ = 0. (11)

For a given degree distribution pk , we can obtain the crossover
point θc of the first- and second-order transition points by
solving Eq. (11) numerically.

IV. RESULTS

Figures 2(a) and 2(b) show the sizes of the giant compo-
nents in network layers A and B, denoted by SA and SB, versus
the fraction p of initially preserved nodes for interdependent
random and scale-free networks, respectively. For a negative
value of the asymmetry parameter θ (e.g., θ = −2), SA and
SB percolate discontinuously at a threshold pI

c. For a positive
value of θ (e.g., θ = 4), the networks A and B percolate
continuously with a reduced value of the transition point pII

c ,
leading to a crossover in the percolation transition and a higher
degree of system robustness. Further increase in the value of θ

leads to little change in the transition point pII
c , indicating that

the ability to enhance the system robustness by increasing the
value of θ is saturated, for both interdependent random and

(a) (b)

FIG. 2. Simulation results for first- and second-order percolation
transitions on interdependent random (a) and scale-free (b) networks.
Shown are the fractions SA and SB of nodes in the respective giant
component at the end of a cascading process as a function of p for
θ = −2, 0, 4, 6. The results are obtained by averaging over 40 inde-
pendent realizations, where the network size is N = 5 × 105 with the
average degree 〈k〉 = 5 for both random and scale-free networks. For
scale-free interdependent networks, the minimum degree is 2 and the
power-law exponent of degree distribution is −2.3. The dotted curves
underlying the symbols represent the theoretical predictions obtained
from Eq. (6), all agreeing well with the numerical results.

scale-free networks. Theoretical predictions are also included
in Fig. 2, which agree with the numerical results quite well.

Figures 3(a) and 3(b) show the percolation transition points
pI

c (pII
c ) versus θ for a random and a scale-free interdependent

networked system, respectively. In Fig. 3(a), for each average-
degree value tested, the phase diagram is divided into two
distinct regions by a critical point: For θ < θc, the transition
is discontinuous (first order) while it is continuous (second
order) for θ > θc with relatively smaller values of the per-
colation threshold pII

c . Similar behaviors occur for scale-free
interdependent networks, as shown in Fig. 3(b). For both types
of interdependent networks, as θ is increased, the percolation
transition point pI

c(pII
c ) moves toward lower values, indicating

that more nodes can be removed before a phase transition
occurs and, consequently, the whole system becomes more
robust. Nonetheless, as θ is further increased, the transition
point pI

c (pII
c ) becomes saturated. A distinct feature in the

changes of pI
c and pII

c versus θ is that, near the crossover
point θc, the transition point for the scale-free networked
system is more sensitive to asymmetry in the interdependent
interactions than the random networked system. This result
suggests that, near θc, the robustness of the scale-free inter-
dependent network can be compromised by the asymmetry.
Figures 3(c) and 3(d) show the the critical size SA(B)

c of giant
component at the percolation transition point as functions of
the asymmetrical parameter θ . Above the switch point θc,
SA(B)

c is finite characterizing a discontinuous phase transition,
whereas below the switch point θc, SA(B)

c is zero and the system
percolates as a continuous phase transition.

For lower values of the asymmetrical parameter θ , large-
degree nodes in one network depend on the small-degree
nodes in the other network with a large coupling strength. In
this case, the failure of a low-degree node in one network can
destroy a high-degree node in the other network. The small-
degree nodes are sensitive to nodal or link removal and have
a high risk to fail in a cascading process. Although the large-
degree nodes are “stubborn,” they are more destructive than
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(a) (b)

(c) (d)

FIG. 3. Dependence of the percolation transition point and the
critical size of giant component at the percolation transition point
on the asymmetry parameter θ . [(a) and (b)] The transition point
pc versus θ for a system of interdependent random and scale-free
networks, respectively. [(c) and (d)] The critical size SA(B)

c of the giant
component at the percolation transition point versus θ for a system
of interdependent random and scale-free networks, respectively. For
both random and scale-free networks, the average degree 〈k〉 is 4, 5,
and 6 from high to low (For scale-free networks, the minimum degree
is 2 and the corresponding power-law exponent of degree distribution
is −2.6, −2.3, or −2.1.) For each 〈k〉 value, there exists a critical
point θc, marked by the large solid dots, that divides the θ interval
into two subregions with distinct types of phase transitions: first-
order (solid curves) and second-order (dotted curves), respectively.
At first-order phase transition points, the critical size SA(B)

c of the
giant component is nonzero and the transition is abrupt. At the
second-order phase transition points, the critical size SA(B)

c of the
giant component is zero and the transition is continuous. Increasing
the value of the asymmetry parameter θ from a negative to some
positive value has two advantages: (i) a decreased value of the critical
transition point pc regardless of the nature of the transition (i.e., first
or second order), indicating that more nodes can be removed before
the occurrence of a phase transition, and (ii) a switch in the transition
from first to second order, where the former is often catastrophic
while the latter can be benign.

the low-degree nodes in case of failures. That is, a low value
of θ can reinforce the dependence of the destructive nodes
on high-risk nodes, amplifying the systematic risk for the
whole interdependent system. As the value of θ is increased to
become positive, the dependence strength of the high-degree
nodes on the low-degree nodes is reduced, making the system
relatively more robust.

Since the interdependence of a pair of nodes is controlled
by the degree difference of them in terms of the asymmetrical
parameter θ , we introduce a parameter ω to control the
fraction of overlapping links and the degree difference of
interdependent nodes in a double-layer network. An overlap-
ping link is defined in terms of a pair of links that connect
two pairs of interdependent nodes in different network layers,
respectively. In particular, say there exist a link that connects
two nodes ai and a j in layer A. The link connecting nodes bi

and b j in layer B is an overlapping link. For ω → 0, there

is no overlapping link and the system reduces to the one
studied above. For ω → 1, all the links are overlapping links
and the degrees of nodes in network A are the same as the
degrees of their respective interdependent nodes. In this case,
the interdependence is symmetric and α = 0.5 for any given
value of θ .

Figure 4 shows the simulation results for percolation transi-
tions in random networks with overlapping links. We find that,
for a fixed value of ω, the value of the percolation transition
point pc decreases with the increase in the asymmetrical
parameter θ . This means that the system is robust when
large-degree nodes in one network layer depend strongly on
large-degree nodes in the other layer, but the system becomes
vulnerable when there is strong interdependence between
large-degree nodes in one layer and small-degree nodes in
the other layer. We also find that the curves of the percolation
transition point pc versus θ for different values of ω intersect
at the point θc ≈ 2, as shown in Fig. 4(d). For θ < θc, the
percolation point pc decreases with the increase in the value
of ω, indicating that an increase in the fraction of overlapping
links makes the system more robust. However, for θ > θc, the
percolation point pc increases and the system becomes less
robust as the value of ω is increased. As the networks become
fully overlapped (ω → 1), the differences in the degrees of
the interdependent nodes across the network layers decrease
and the value of the interdependence strength approaches 0.5
irrespective of the value of θ . In this case, increasing θ will
not lead to any appreciable change in the asymmetry of the
interdependence strength among the network layers. This is
the reason why the overlap does not contribute to enhancing
the system robustness in the region of large θ values, as
exemplified in Fig. 4. These results suggest that the role of
overlapping links in the robustness of a system depends on
the value of the asymmetrical parameter θ .

What about percolation transitions in multilayer systems
with more than two layers? To address this question, we
study three-layer systems with asymmetrical interdependen-
cies. To be concrete, we consider the following configuration
of interdependence among the three layers (A, B, and C):
layer A depends on layer B, layer B depends on layer C,
but layers A and C have no direct dependence on each other.
Depending on the extent of asymmetrical interdependencies,
multiple percolation transitions can occur. Figure 5 shows
that the transition point pc decreases and the system becomes
more robust as the value of the asymmetrical parameter θ is
increased. We also find that multiple percolation transitions
occur for relatively large values of θ , and layers A and C
percolate first, followed by layer B, after which another phase
transition occurs in layers A and C. However, for small values
of θ , the phenomenon of multiple percolation transitions
disappears because the three layers tend to percolate at the
same point. These results are consistent with those in Ref. [7],
demonstrating that both asymmetry in the interdependence
and layer position can be important for the functioning of the
multilayer interdependent systems.

A practical implication is that the asymmetrical parameter
can be exploited for modulating or controlling the charac-
teristics of the percolation transition [7]. In particular, for
relatively low degree of asymmetry (e.g., θ = −2), the per-
colation transitions are abrupt and discontinuous. In this case,
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(a) (b)

(c) (d)

FIG. 4. Simulation results of percolation transitions in random networks with overlapping links. [(a)–(c)] The fractions SA and SB of nodes
in the respective giant component at the end of a cascading process as a function of p for different fractions of overlapping links for θ = 0,
θ = 2, and θ = 4, respectively. (d) The percolation transition point pc as a function of θ for different values of ω. The results are obtained by
averaging over 40 statistical realizations. The network size is N = 5 × 105 and the average degree is 〈k〉 = 4.

FIG. 5. Percolation transitions in three-layer random networks.
The fractions SA(C) (a) and SB (b) of nodes, respectively, in the
corresponding giant component at the end of a cascading process as
a function of p for different values of the asymmetrical parameter θ .
The straight vertical dotted lines denote the positions of percolation
transition of B. The results are obtained by averaging over 40
statistical realizations. The network size is N = 5 × 105 and the
average degree is 〈k〉 = 4.

the interdependent system is not resilient and is likely to
collapse suddenly as random nodal failures or intentional
attacks intensify. To improve the resilience of the system, a
larger value of θ can be chosen (e.g., θ = 4) to make the
system collapse, if at all inevitable, to occur in a continuous
fashion. While the whole system still collapses eventually,
the manner by which the collapse occurs is benign and the
value of the critical point pII

c is smaller as compared with that
associated with first-order phase transitions.

We demonstrate the role of asymmetric interdependence
in enhancing the robustness of multilayer networked systems
in a controllable manner by studying a real-world networked
system with asymmetrical interdependence: an autonomous
systems of the Internet and the power grid of the western states
of the U.S. [71]. The autonomous systems of the Internet
consist of 6474 nodes [72] and the power grid has 4941
nodes [73] with each being a generator, a transformer, or
a substation. We randomly choose a number of nodes from
the power grid as the dependent partners of the nodes in
the autonomous level Internet, and define an interdependence
link between a power grid node and an Internet node until
all the selected power grid nodes and the Internet nodes are
connected. The dependency strengths of the power grid and
the Internet nodes are assigned according to Eq. (1). That
is, if a node in the power grid fails, then the Internet node
that depends on it will suffer a loss of some links because
of the interdependence and reserve some links because of the
existing buffering effect and vice versa. Figure 6 shows the
sizes of the giant components of the Internet and the power
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(a)

(b)

(c)

FIG. 6. Role of asymmetric interdependence in enhancing the
robustness of an Internet-power system in a controllable manner.
[(a) and (b)] The sizes of the giant components of the autonomous
system of the Internet and the power grid versus p for different
values of θ , respectively. (c) The number of iterations (NOI) as a
functions of p for different values of θ for the Internet and power
grid networks. The data points are the result of averaging over 1000
statistical realizations.

grid versus p for different values of θ . For negative values
of θ (e.g., θ = −2), the sizes of the giant components reduce
drastically as p is decreased from 1, as indicated by a relative
large number of iterations in the cascading process. While for
a relatively large positive value of θ , the changes in the sizes of
the giant components versus p are smooth, signified by fewer
iterations in the cascading process.

Another example is the rail and coach transportation sys-
tem in Great Britain [74], which includes rail, coach, ferry,

and air transportation layers. Here we use the data in October
2011 to set up the multilayer network and conduct our numeri-
cal experiments. An analysis of the data shows that the rail and
coach occupy 98.1% of all the interurban connections, and
ferry and air transportation account for the remaining 1.9%.
We thus focus on the former to construct a two-layer network.
Due to the interdependence of passenger flows between differ-
ent traffic layers, the dependence strengths of the coach station
and the rail station are assigned according to Eq. (1). Figure 7
shows the sizes of the giant components of the rail and coach
layers versus p for different values of θ . For negative values of
θ (e.g., θ = −2), the sizes of the giant components are always
lower than that of the case when θ is positive (e.g., θ = 0 or
θ = 2).

These results demonstrate that the proposed principle of
asymmetrical interdependence can be effective for enhanc-
ing the robustness of the functioning of the interdependent
system. Especially, an appropriate amount of asymmetry in
the interdependence can be quite beneficial to preventing a
first-order transition from happening which leads to sudden,
system wide failures.

V. DISCUSSION

Interdependent multilayer networked systems in the real
world are generally asymmetric in layer-to-layer interactions,
and the asymmetry will inevitably have an impact on the
robustness of the whole system. In most existing works
on dynamical processes in multilayer networks, the mutual
interactions between a pair of network layers are treated as
symmetric, giving rise to a knowledge gap in our general
understanding of the dynamics on multilayer networked
systems and their robustness against failures and/or attacks.
The present work aims to narrow the gap by investigating a

FIG. 7. Role of asymmetric interdependence in enhancing the robustness of a transportation system in a controllable manner in rail and
coach transportation system in Great Britain. Shown are the sizes of the giant components of the rail layer (a) and the coach layer (b) versus p
for different values of θ , respectively. The data points are the result of averaging over 1000 statistical realizations. In each panel, the upper left
inset shows the actual route map for the corresponding layer.
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generic type of dynamics on multilayer networks: cascading
failures.

For simplicity and to facilitate analysis but without sac-
rificing generality, we have studied double-layer networked
systems and focus on the percolation dynamics, where a
cascading process can be triggered by random removal of
nodes and links, which can cause a dramatic reduction in
the sizes of the giant components in both network layers and
possibly lead to total fragmentation of the system. There are
two characteristically distinct failure scenarios: as the fraction
of removed nodes is increased, the sizes of the giant compo-
nents will inevitably reduce to near zero values, either in a
discontinuous or in a continuous manner, corresponding to a
first- or a second-order phase transition, respectively. From the
standpoint of network robustness and resilience, a first-order
transition is undesired as the system can become fragmented
abruptly. Even if a total system breakdown is inevitable, it is
desired that the process occurs gradually and continuously,
which is characteristic of second-order phase transitions.

Our main finding is that asymmetric interdependence can
shift the critical point of the percolation-induced phase transi-
tion in a desirable way and, strikingly, can affect the nature
of the transition. In particular, as the degree of asymmetry
is systematically tuned, the system can undergo a switch
from a first-order percolation transition to a second-order one.
Qualitatively, this can be understood, as follows. When the
nodes with large degrees in one network layer depend highly
on the nodes of small degrees in the other network, the failure
of a low-degree node in the latter can destroy a high degree
node in the former. In this case, the whole system can be

quite fragile due to the relative abundance of the small degree
nodes, where a first-order phase transition is expected. Quite
the contrary, when nodes of large degrees in one network layer
depend on the large degree nodes in the other layer, a second-
order percolation transition arises and the system is robust. We
have developed a theory to predict the phase transition points
and provide strong numerical support with synthetic network
models. To demonstrate the relevance of our work and finding
to the real world, we have also studied the double-layer system
of Internet and power grid with randomly assigned one-to-one
interdependence and the rail-coach transportation system.

From the point of view of design and control, our finding
implies that the degree of asymmetry (or symmetry) of in-
terdependence can be exploited to enhance the robustness of
multilayer networks against cascading failures. This can be es-
pecially meaningful in engineering design of complex infras-
tructure systems that are intrinsically multilayer structured,
or in biological systems where the interdependent interaction
strength may be tuned biochemically.
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