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High-order couplings in geometric complex networks of neurons
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We explore the consequences of introducing higher-order interactions in a geometric complex network of
Morris-Lecar neurons. We focus on the regime where traveling synchronization waves are observed from a
first-neighbors-based coupling to evaluate the changes induced when higher-order dynamical interactions are
included. We observe that the traveling-wave phenomenon gets enhanced by these interactions, allowing the
activity to travel further in the system without generating pathological full synchronization states. This scheme
could be a step toward a simple phenomenological modelization of neuroglial networks.
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I. INTRODUCTION

The combination of complex networks and nonlinear dy-
namics has provided a solid framework for the study of a large
number of very different real systems that can be analyzed as
large ensembles of dynamical units with nontrivial connectiv-
ity patterns; these systems are as diverse as economics [1],
genetics [2], social dynamics [3], and neuroscience [4].

Among all the possible collective features that can emerge
in this context, synchronization is the most extensively stud-
ied, since it has been revealed as the fundamental mechanism
in the transmission of information in all kinds of dynamical
ensembles [5]. One of the fields where this perspective has
led to new research lines is in neuroscientific applications.
The neural system can be considered as a dynamical complex
network in all its relevant scales, ranging from the micro-
scopic, where the networked elements are single neurons
[6,7], through the cortical column mesoscale [8], to the entire
brain [4,9], with the brain areas acting as nodes of a functional
network defined in terms of correlation levels.

However, even if synchronization is a key mechanism
involved in the coordination of the neural ensemble, it is
well known that exceedingly high levels of synchronization
can destroy the overall complexity of the system, reducing
its ability to process information and, eventually, leading
to pathological states as epilepsy [10]. Therefore, a healthy
synchronous functioning in the brain needs the existence of
mechanisms of regulation, both structural and dynamical,
to ensure the proper equilibrium between coordination and
function segregation.

A plausible regulating mechanism is the astrocytes ensem-
ble [11], whose role in brain performance is a long-standing
problem in neuroscience. It is now known that astrocytes are
involved in early synapse formation [12]. At the microscale,
it is known that a single astrocyte can contact up to 105

synapses, meaning that these cells might be responsible for
the modulation [13,14] of the electrical response of neu-
rons sharing no anatomical connection at all [15–18] and,
therefore, they could be the source of high-order interactions

supporting coordination levels that overcome the outreach of
direct neural connectivity. Several attempts have been made
to model the neuroglial interaction [19,20], most of them
focusing on the neuron-astrocyte pair or, more commonly,
a triad of two neurons and an astrocyte [21,22]. Recent
studies have gone further to consider the networked context,
using detailed conductivity models [23–25]. They coincide in
showing how the interaction of the astrocites ensemble with
the neuron network can induce robust spatial synchronization
in the neuronal ensemble surrounding the astrocytes [24–26]
and in particular to enhance the propagation of activity waves
[23]. These models are, however, mathematically and com-
putationally costly [24], and therefore it will be useful to
introduce a phenomenological model which is able to re-
produce the observed effects of the glial ensemble over the
neural network such that, while retaining the more relevant
physiological aspects, it allows at the same time to move on
to larger networks.

In this work we model the neural-glial ensemble as a geo-
metrical network (similarly to those studied in Refs. [27–29])
with synaptic coupling, where the effect of the synaptic mod-
ulation of astrocytes is introduced using a high-order interac-
tion formalism developed by Estrada et al. in Refs. [30–33].
It provides a solid quantitative mean to simulate and analyze
the dynamics of a system in which these higher-order inter-
actions are present. These effects are susceptible of revealing
themselves particularly important in space embedded systems,
where the Euclidean distances shape not only the probability
of connection but also their weights. The high-order connec-
tivity operator allows us to extend the usual first-neighbor
interaction scheme that disregards higher-order interactions
under the implicit assumption that if two nodes are not topo-
logically connected they do not dynamically interact; such an
assumption is no longer valid in a network of neurons whose
communication is mediated by astrocytes.

The application of the high-order connectivity formalism
to a complex network of synaptically connected neurons can
provide insights about how introducing not only first but also
second-neighbors interactions might be useful to comprehend
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further details of the neuronal dynamics in a simple and math-
ematically well-defined way. We show how it enhances the ap-
pearance of synchronization waves, a mean for transmitting a
dynamical activation throughout the system in a coherent way,
but avoiding the neuronal hyper-synchronization disorder that
would result from increasing a direct neural connectivity.

II. MODEL

The network consists of an ensemble of N neurons that
are randomly seeded in a two-dimensional (2D) Euclidean
square area of size L × L. The nodes are connected following
a distance-dependent geometric rule (we refer the reader to
Refs. [34–36] for further discussion of the experimental rele-
vance of these topologies), such that neuron i has a probability
of establishing a link with neuron j [37–39]:

pi j = p0 e−(
ri j
lc

), (1)

where p0 is a normalization constant, ri j is the Euclidean
distance between i and j, and lc the correlation length pa-
rameter that controls the typical outreach of the connections
when constructing the network; low values of this parameter
yield highly clustered, short-ranged networks, while standard
Erdös-Rényi networks are obtained in the limit of large lc.
The neural connectivity is encoded in the correspondent ad-
jacency matrix A = {ai j} such that ai j = 1 means a physical
connection between neurons i and j and ai j = 0 otherwise. In
this case, we used a symmetrical adjacency matrix, ai j = a ji,
with ai j structurally supporting a chemical synapse. We chose
ai j to be symmetrical because, although experimentally it has
been evidenced that chemical interactions are unidirectional,
the fact that the number of synapses is so enormous implies
that the probability that the dendritic trees of two neurons can
contact each other is not negligible. In addition, as we intend
to model in a phenomenological way the effect of the glia-
neuron interaction, the symmetrical form of the adjacency
matrix will take into account that activity information flows
in both directions. Furthermore, as we will show later, the
synaptic conductance is modeled to be asymmetrical, so when
both structure and dynamics are considered, the interaction is
effectively directed.

Single-node dynamics is implemented as a Morris-Lecar
neuron [40]:

CV̇i = − gCaM∞(Vi − VCa ) − gKWi(Vi − VK )

− gl (Vi − Vl ) + Ii + Iext
i (2)

Ẇi = φ τW (W∞ − Wi ),

where Vi and Wi are, respectively, the membrane potential
(or active variable) and the fraction of open K+ channels of
the ith neuron, also known as the recovery variable; φ is a
reference frequency, namely the inverse of the timescale for
the recovery process. The parameters gX and VX account for
the electric conductance and equilibrium potentials of the X =
{K, Ca, leaky} channels. An external current Iext

i = I0 + Qξi

is added, with I0 = 50 mA chosen such that neurons are
subthreshold to their natural firing regime, which, in this case,
will be induced by the additive white Gaussian noise Qξi of
zero mean and intensity Q. The injected current Ii is the total
amount of current coming from network inputs that neuron

TABLE I. Parameters used for the Morris-Lecar simulations.

C 20.0 μF/cm2

gCa 4.0 μS/cm2

gK 8.0 μS/cm2

gl 2.0 μS/cm2

VCa 120.0 mV
VK −80.0 mV
Vl −60.0 mV
V1 −1.2 mV
V2 18.0 mV
V3 2.0 mV
V4 17.4 mV
φ 1/15
Q 0.5 mA
V0 −59.0 mV

i gets; mathematically, in the local coupling approximation,
first-order neighbors contribute to the synaptic coupling, and
therefore Ii = ∑

j∈Ni
Ii j , where Ni is the neighborhood of

node i, that is, nodes j such that ai j = 1.
The direct synaptic interaction between presynaptic j neu-

ron and excitatory postsynaptic i neuron is captured by the
injected current Ii j [41–43]:

Ii j = σ

K
[e−2(t−t j )(V0 − Vi )], (3)

with t j < t being the time of the last spike of node j. The
synaptic conductance σ , normalized by the largest node de-
gree K (number of connections that a given node has) present
in the network, plays the role of coupling strength. This
normalization is introduced in order to compare the dynamics
of Eq. (3) independently of the specific connectivity density
of the network. To have more details about this prescription,
we refer the reader to Ref. [44].

Additionally, the channel voltage-dependent saturation val-
ues M∞,W∞, τW respond to hyperbolic functions dependent
on Vi:

M∞(Vi ) = 1

2

[
1 + tanh

(
Vi − V1

V2

)]
, (4)

W∞(Vi) = 1

2

[
1 + tanh

(
Vi − V3

V4

)]
, (5)

τW (Vi) = cosh

(
Vi − V3

2V4

)
. (6)

The explicit value of every parameter can be found in Table I.
In spatial, highly clustered homogeneous networks with

reduced link range lc, the coupling configuration described in
Eq. (3) favors traveling-wave synchronization, as long as σ

is high enough [39], a well-established feature of the spatially
extended neural ensembles [20]. On the contrary, in the mean-
field approximation limit, lc → L, only globally incoherent
or coherent states are accessible [45]. In our model, as a
balance between these two extrema, we intend to explore the
potential enhancement effect of higher-order connectivity at
the local spatial scale in the wave regime, as for example
the glial ensemble has in the neural circuits that are not
directly connected among them [18]. Therefore, following the
same mathematical framework developed in Refs. [30–32],
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we allow that the injection current Ii accounts for the con-
tribution not only from neurons j ∈ Ni whose topological
distance (also referred to as network distance, that is, the
shortest-path length) is di j = 1, but also from neighbors at
higher topological distances di j > 1, that is,

Ii =
D∑

d=1

d−α

⎛
⎝ ∑

j|di j=d

Ii j

⎞
⎠, (7)

where D is the maximal topological distance considered. The
successively distant contributions to the injection synaptic
current Ii are modulated by a geometrically decaying term,
d−α , where the constant α is a suppression parameter for
the distance-dependent coupling strength. Notice that when
the summation is limited to the first order D = 1, the usual
first-neighbors interaction is recovered.

III. SYNCHRONIZATION MEASURES

In order to quantify the level of coordination among the
network firing events we count how many neurons fire within
the same time window. First, the total simulation time T
is divided in Nb bins of a convenient size τ , longer than
the time duration of each individual spike but much shorter
than the average interspike interval. Then the total simulation
time is discretized as T = Nbτ and the time series of the
dynamics of neuron ith is replaced by the binary series Bi,
where Bi(n) = 1 if the ith neuron spiked within the nth time
bin, and 0 otherwise, with n = 1, . . . , Nb. This simplification
of the dynamics ensures a fast an precise calculation of the
ensemble statistics. Finally, the coherence between the spiking
sequence of neurons i and j can be characterized with the
quantity si j ∈ [0, 1]

si j =
∑Nb

n=1 Bi(n)Bj (n)√∑Nb
n=1 Bi(n)

∑Nb
n=1 Bj (n)

, (8)

where the term in the denominator is a normalization factor,
such that si j = 1 implies full coincidence between the spike
trains of neurons i and j. The ensemble average of si j is the
global synchronization measure S, given by:

S = 〈si j〉 = 1

N (N − 1)

N∑
i �= j

si j . (9)

However, as we are interested not only in global but also
spatial local effects in the ensemble coherence from the high-
order couplings, we use the coherence matrix si j to compute
also the Euclidean local synchronization Sρ , where only the
correlation values si j of those neurons pairs which are closer
to each other than a given distance ρ are taken into account,
that is [39]:

Sρ = 〈si j〉, ∀{i, j} | ri j < ρ. (10)

In our computations, all measures are averaged over five
different realizations of networks.

It is expected that in the limit ρ → L, Sρ ∼ S. High values
of Sρ would indicate that there are areas of size ρ firing
synchronously. In the following, we use the difference Sρ − S
as an indicator of the existence of either a traveling wave

FIG. 1. Successive snapshots of the neurons’ spiking activity
in the traveling-wave synchronization mode. Filled dots represent
spiking neurons while empty dots represent silent neurons. In the
example the wave is propagating from the left to the right in a
network of N = 150 Morris-Lecar neurons. Other parameters: p0 =
1.0, L = 50, lc = 0.15, σ = 150, D = 1.

front (when Sρ − S is large) or global or null synchronization
(Sρ ∼ S) otherwise. It should be noted that, in general, the
difference Sρ − S is not designed as to solely detect wavelike
activity. There can be cases (such as in strongly modular
networks) in which a high discrepancy between Sρ and S are
due to a clustered but globally incoherent neuronal firing (that
is, each module fires in a coherent fashion but the modular
activity does not propagate to the rest of the network). In our
particular case, neurons are in spatially embedded networks
with homogeneous connectivity which is distance regulated
and thus strong modularity can be discarded.

IV. RESULTS

When just first-order interactions are present, this geo-
metrical arrangement of neurons favors the propagation of
traveling waves of neurons’ spiking activity, supported by a
highly clustered structure with a typically low link outreach
[39]. To illustrate such propagation, in Fig. 1 we show two
successive snapshots of an example where lc = 0.15 and
σ = 150. Here black dots represent spiking neurons while
void dots portray those which are silent. The links between
nodes are not included for clarity. This feature is quantified
in Fig. 2, showing that this wavelike phenomenon is char-
acterized by a local synchronization Sρ (circles) larger than
the global synchronization S (crosses), as it can be observed.
The low value of the link outreach lc prevents the system to
reach full synchronization even when the coupling strength σ

increases, whereas the local synchronization Sρ grows much
faster, indicating a reinforcement of the wave activity.

We now evaluate the effect of introducing higher-order
contributions in the synaptic coupling in Eq. (7) received from
neighbors at topological distance up to D = 2.

Results are collected in Fig. 3, where Sρ − S is plotted
as a function of the conductance σ for different values of
the suppression constant α, ranging between 0 and 3. For
the sake of comparison, the curve for D = 1 is included (red
circles). When D > 1, the higher the value of the suppression
α, the weaker the influence from D = 2 neighbors. Therefore,
we observe that for the higher suppression α = 3 (purple
squares), the behavior approaches the D = 1, and both curves
overlap in almost the whole range of explored couplings up to
σ ∼ 200.
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FIG. 2. Synchronization route as a function of the coupling
strength σ for lc = 0.15 and D = 1. Local synchronization Sρ (black
circles) computed with ρ = 10 and global synchronization (red
crosses). Both series of data are averages over five N = 150 network
realizations, with the connectivity scheme outlined in Sec. II.

However, as high-order effects become stronger for smaller
values of α in Fig. 3, the Sρ-S curves exhibit a maximum,
located at lower values of the conductance σ . For instance,
the curve for D = 2, α = 0 (black triangles) peaks at σ ∼
50, while for the case D = 1 the Sρ − S difference is very
small. The conclusion is that the introduction of another layer
of interacting neighbors allows the propagation of traveling
waves for coupling strengths where first-order interactions
only supports incoherent activity. It can be deduced that
this critical value of σ is related to the best communication
efficiency of the spiking activity, given the constraints of a

0 100 200 300 400
-0.05

0

0.05

0.1

0.15

0.2
D = 1
D = 2,  = 3.0
D = 2,  = 2.0
D = 2,  = 1.0
D = 2,  = 0

FIG. 3. Difference between local Sρ and global S synchroniza-
tion as a function of the coupling strength σ for different values of
the suppression constant α and maximal topological distances D = 1
and D = 2. The gray circle highlights the intersection between the
curves D = 1 and (D = 2, α = 0). Each point is an average over five
network realizations. Same parameters as in Fig. 2.

FIG. 4. Normalized local synchronization (S̃ρ) values as a func-
tion of ρ/L for the two sets of parameter conditions defined by the
gray circle in Fig. 3. Horizontal dashed lines mark the normalized
values of the corresponding global synchronization. Vertical dashed
lines mark the point defining the width of the traveling front. Each
point is averaged over 10 network realizations.

fixed topology and dynamical parameters. Notice that the
traveling-wave feature implies a temporal ordering of the
network’s activity, as opposed to global synchronization (no
temporal order) or incoherent activity (random spikes) and,
therefore, this dynamical regime ensures a robust encoding of
activity.

To further explore the network activity and traveling-wave
features, we focused on the coupling strength at which the two
previously mentioned curves intersect (gray circle in Fig. 3,
σ ∼ 100), corresponding in both cases to wave propagation.
However, we can observe that the wave-front features are
also modified by the high-order effects. We analyzed these
differences by varying the scale ρ at which the local synchro-
nization Sρ is measured for both cases at the crossing point.
Figure 4 compares Sρ for D = 1 (red circles) and D = 2,
α = 0 (blue triangles), normalized to their respective maxima,
S̃ρ = Sρ/ max(Sρ ), as a function of ρ/L, such that when ρ

is of the same size L as the surface in which the network
is seeded, the local synchronization statistically converges to
the normalized global synchronization level [S̃ = S/max(S)]
observed for each case (horizontal dashed lines). As expected,
there is an optimal length scale ρ at which the local synchro-
nization measure is maximum: Smaller scales undervalue the
cluster of neurons spiking synchronously, while larger scales
average neurons which are in different dynamical states.
Therefore, the value of ρ at which S̃ρ peaks is an estimation
of the wave-front width. Thus, as Fig. 4 indicates, higher-
order interactions, for the same conductance value, allow the
propagation of wider spiking waves, almost doubling the size
with respect to D = 1. This could lead us to conclude that
taking into account the direct influence of neighbors at larger
topological distance allows the activity to be transmitted faster
throughout the network, as more neurons are active in each
wave front (while preserving the locality feature) and thus the
wave front needs less time to cross the entire network.
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V. CONCLUSIONS

In this work we have evidenced that the introduction of
higher-order dynamical interactions in a ensemble of neurons
with geometrical connectivity patterns leads to a faster and
much more robust propagation of the activity through this
spatially embedded system. This is so, due to the fact that, if
at a given wave front there are more active neurons involved
in the firing transmission, then it is more probable that the
wave front will traverse the whole network, even if some of
the neurons fail to transmit the signal. Thus, the transmission
is more resistant to failures and, therefore, more robust. The
propagation occurs as a traveling wave, whose wave front gets
enhanced thanks to recruiting more neurons in the transmis-
sion. In addition, we have shown that higher-order dynamical
interactions allow this kind of time-ordered synchronization
for much lower coupling values than the case where only
first-order neighbors are involved.

We hypothesize that this could be an innovative way of
modeling the effects of neuroglial interaction, among other
physical systems in which higher-order interactions need to be
taken into account. Specifically, we argue that this mechanism
of higher-order interactions could be a potent and computa-
tionally cheaper phenomenological approach to the detailed
physiological models that can be found nowadays in the lit-

erature [23,25]. The central foundation for having chosen this
particular mathematical formalism comes from a biological
insight: Astrocytes have been evidenced to modulate up to
≈105 synapses [46], while the majority of the neurons they
interact with do not share an anatomical connection. This
would imply that, while there is a given number of topological
links in the network, some indirect ones would be present in
the form of dynamical modulation, this role being played by
astrocytes. As this is only a first step toward modeling the
interplay between astrocytes and neurons in a network, we
focused on establishing a solid base on which we will continue
the research.
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