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Mechanism for explosive synchronization of neural networks
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Here we investigate the mechanism for explosive synchronization (ES) of a complex neural network
composed of nonidentical neurons and coupled by Newman-Watts small-world matrices. We find a range of
nonlocal connection probabilities for which the network displays an abrupt transition to phase synchronization,
characterizing ES. The mechanism behind the ES is the following: As the coupling parameter is varied in a
network of distinct neurons, ES is likely to occur due to a bistable regime, namely a chaotic nonsynchronized
and a regular phase-synchronized state in the phase space. In this case, even small coupling changes make
possible a transition between them. The onset of ES occurs via a saddle-node bifurcation of a periodic orbit that
leads the network dynamics to display a locally stable phase-synchronized state. The presence of this regime is
accompanied by a hysteresis loop on the network dynamics as the coupling parameter is adiabatically increased
and decreased. The end of the hysteresis loop is marked by a frontier crisis of the chaotic attractor which also
determines the end of the coupling strength interval where ES is possible.
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I. INTRODUCTION

The possibility of synchronization of coupled oscillators,
including those displaying chaotic dynamics, has attracted
attention of researchers for many years, once the phenomenon
is observed in distinct areas of science, going from life sci-
ence [1–5] to physics and engineering [6–8]. A particularly
important synchronization scenario occurs in coupled neural
networks, where a transition from an incoherent state to a
phase-synchronized state occurs as the coupling parameter
increases. These transitions depict rich dynamics occurring
smoothly (a second-order-like phase transition) [9,10] or
abruptly (a first-order phase transition) [11–14], not excluding
the possibility of the presence of nonstationary intermittent
states [15,16].

The understanding of how synchronization regimes occur
in neural networks is of fundamental interest since neural
synchronization plays a key role in brain functioning and is
related to the brain activities such as motor behavior, thoughts,
perception, etc. [17–19]. In addition, anomalous synchroniza-
tion of neurons can generate brain disorders such as seizure
behavior creating by epilepsy, Parkinson’s disease, and autism
[20–26].

Despite the former and more established sense that net-
works should display a smooth-second-order phase transition
as a function of the coupling parameter [10], the observation
of abrupt phase transition, often called explosive synchro-
nization (ES), has challenged these conclusions [12,27,28].
In fact, ES has been recently found in many complex net-
works of chaotic oscillators such as networks under scale-
free topology [12–14,29,30]; networks where a microscopic
correlation between the frequency of the oscillator and its
connectivity degree exists [12]; indirect coupled networks
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[31]; networks suffering small topology changes since they
can induce shifting in the level of activity propagation of
the network, enabling a limited and local activity to turn
into a global one [32]; networks depicting a high degree of
heterogeneity [13,29,30]. However, other studies contradict
the hypothesis of heterogeneity, where neurons which spike
regularly with beta rhythms (15–30 Hz) exhibit ES in both
random and scale-free networks [33]. Finally, ES can also be
induced by the application of disorder terms in the individual
dynamics of the oscillators [14].

Here, we focus on the nonlinear mechanism responsible
for the presence of explosive phase synchronization of a
complex small-world network, where each site is described
by nonidentical neurons [34]. The scenario is composed of
the presence of mode locking occurring due to the regular
dynamics of uncoupled neurons which evolves as the coupling
is turned on to a local phase synchronized state. Finite levels
of coupling also make possible a second local stable chaotic
attractor allowing for a bistability regime and a hysteresis
loop.

In such case, complete phase synchronization is not pos-
sible but degrees of phase synchronization can be evaluated
by using the coherence of neurons initiating their processes of
depolarization and repolarization almost together.

Regarding the topology, we use the Newman-Watts route
[35] to create a complex network which consists in the
addition of nonlocal connections (shortcuts) in a regular
network following a given probability. We show that the
network exhibits three distinct behaviors for different ranges
of nonlocal connection probabilities: For small probabilities,
the network does not synchronize, as expected for almost-
local-connected networks; for intermediate probabilities, the
network depicts ES accompanied by a hysteresis loop as the
coupling parameter is varied (a first-order transition); and for
larger probabilities, the network synchronizes smoothly as
expected for a second-order phase-transition scenario.
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In special, for intermediate probabilities, namely the small-
world interval, ES occurs due to the presence of a bistable
dynamics responsible for the hysteresis of the network dy-
namics which is associated to the coexistence of a phase-
synchronized nonchaotic regime with a chaotic nonsynchro-
nized one. The dynamical mechanisms for the onset and end
of the region of ES are given in terms of a saddle-node bifur-
cation and a frontier crisis [36], respectively. We conclude that
this scenario is sufficient for the presence of ES.

The paper is organized as follows: In Sec. II we present
the equations which compose the model, as well the details of
the topology used for the network simulation; in Sec. III we
introduce the Kuramoto order parameter used as the synchro-
nization quantifier; in Sec. IV we discuss the results which
support our conclusions that are given in the last section.

II. LOCAL NEURAL DYNAMICS AND THE
CONNECTION ARCHITECTURE

We consider a neural network composed of N = 10 000
nodes where the local dynamics is given by the neural model
proposed by Chialvo [34]

xi,t+1 = x2
i,t exp(yi,t − xi,t ) + ki + ε

η

N∑
j=1

ei, jx j,t , (1)

yi,t+1 = ayi,t − bxi,t + c, (2)

where xi,t and yi,t are the activation and recovery variables.
ki acts as a constant bias or as a time-dependent additive
perturbation [34], which affects the amplitude and frequency
of the neurons. Here it is supposed to vary randomly between
[0.03, 0.03 + σ ] from one neuron to another, with σ as the
coefficient of neuron dissimilitude, and σ is limited to 0.02
because larger values of ki lead to a great decrease in the
amplitude and increase in the frequency of the neuron. In
some cases, it hinders the process of neuronal depolarization.
a, b, and c are parameters of the model; η is a normalization
factor given by the average number of connections in the
network; ε is the coupling strength parameter; and ei, j are
elements of the network connection matrix.

FIG. 1. Dynamical behavior for (a) xt and (b) yt of the neural
model, Eqs. (1) and (2) for a = 0.89, b = 0.6, c = 0.28, and ki =
0.03. The red dashed line in panel (a) defines a Poincaré surface
in x0 = 0.5 used to evaluate the beginning of each spike and the
associated phases of the neurons.

FIG. 2. Normalized values of the average path length (L) (cyan
bullet line) and clustering coefficient (C) (magenta square line) as a
function of the nonlocal connection probability (pnl) for a second-
neighborhood Newman-Watts network of N = 10 000 sites.

Figure 1(a) depicts an example of the evolution of the xt

characterizing the depolarization and repolarization dynamics
of an isolated neuron for a = 0.89, b = 0.6, c = 0.28 [34],
and ki = 0.03 while Fig. 1(b) shows the respective recovery
variable dynamics. For the entire coupling interval used, sim-
ilar dynamical features are observed for all coupled neurons.

The coupling architecture is characterized by the Newman-
Watts route [35]. In this way, we start building the small-
world-complex network using four local connected neurons
adding a number of randomly distributed nonlocal connec-
tions (shortcuts), such that the number of connections in the
network is a function of the nonlocal connection probability
(pnl) given by [35]

n = 4N︸︷︷︸
local

+ pnl4N.︸ ︷︷ ︸
nonlocal

(3)

For an intermediate range of pnl, the network has a small
average path length but a high clustering coefficient is still
preserved, configuring a small-world network regime [35,37].

Figure 2 shows the normalized clustering coefficient C(pnl )
and the normalized average path length L(pnl ) of the network
as a function of pnl. For 4 × 10−3 � pnl � 2 × 10−1 the net-
work is considered to be in the small-world regime.

III. SYNCHRONIZATION QUANTIFIER

In order to quantify the phase synchronization of the
network, the sequence of spikes of xi,t is used to define a
geometric phase of each neuron, θi(t ) [38,39]. We define a
Poincaré’s section at x0 = 0.5 to evaluate the time of the
beginning of the spikes. Figure 1(a) depicts a red dashed line
which corresponds to this Poincaré’s section. Each time xi,t

reaches x0 (upward sense), θi(t ) is increased by 2π , such that
an interpolation defines the continuous time-varying phase as
[38,39]

θi(t ) = 2π�i + 2π
t − t�,i

t�+1,i − t�,i
, t�,i � t < t�+1,i, (4)

where �i is the �th spike of the ith neuron, t is the current time,
and t�,i is the time for which the ith neuron starts the �th spike.
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FIG. 3. Mean value of Kuramoto order parameter (〈R〉) as a
function of the coupling between the neurons for different values
of σ [panel (a)] where it is considered pnl = 0.15 in the Eq. (3).
Vertical dashed lines denote threshold values for ε, ε∗(σ, pnl ) for the
starting and ε†(σ, pnl ) for the end of the hysteresis loop. In panel
(b) is depicted the hysteresis area described by Eq. (7) as a function
of σ .

The synchronization of the network is evaluated by using
the modulus of the Kuramoto’s order parameter [9,10],

R(t ) =
∣∣∣∣∣

1

N

N∑
i=1

eiθi (t )

∣∣∣∣∣, (5)

where θi is the phase of the ith neuron at the time t , defined by
Eq. (4). R(t ) quantifies in a single number the synchronization
behavior of the network, since R → 0 represents a complete
unsynchronized state and R → 1 represents a complete phase
synchronized state. The temporal mean value of the order
parameter is defined as

〈R〉 = 1

(t f − ti )

t f∑
t=ti

R(t ), (6)

with ti and t f as the initial and final times of the computation
of R(t ).

IV. RESULTS AND DISCUSSIONS

A. A scenario for explosive synchronization

Considering a small-world representative probability value
of pnl = 0.15 in Eq. (3), we evaluate the phase synchroniza-
tion of the network by using 〈R〉 given by Eq. (6) for ti =
150 000, t f = 200 000. The general synchronization behavior
of the network as a function of ε is depicted in Fig. 3(a), where
five representative values of the coefficient of dissimilitude
σ in the interval 0 � σ � 0.02 are exemplified. To generate
Fig. 3(a), a random initial condition is given to the uncoupled
network, evolving it until its asymptotic stable state is reached.
Then the coupling parameter is adiabatically increased by
δε = 0.001. For the new value of ε, the asymptotic values

obtained by the neuron dynamics (for all variables) for the
former value of ε are set as the initial conditions used to
evolve the network. Once the network reaches its asymptotic-
synchronized monostable state occurring for values of ε �
0.5, the same continuation process is carried out but now using
a negative step for the variation of ε (δε = −0.001). For all
simulations, ki is uniformly random distributed in the interval
[0.03, 0.03 + σ ] generating a nonidentical neural network for
σ > 0.

For the particular case of σ = 0, the identical and non-
chaotic nature of the neurons foments the onset of mode
locking for any value of ε > 0 [9] evolving to a phase-locking
synchronization as the coupling increases, as observed in
the black hexagon curve of the far-left side of Fig. 3(a)
and magnified in log-scale in the inset. For this case, the
forward and backward increment procedures of ε result in
two overlapping curves. For σ > 0, finite coupling values
allow a stable-unsynchronized chaotic state and also a second
stable-periodic and partially phase-synchronized state to exist.
Increasing ε adiabatically, the continuous process allows the
detection of a numerical approximation for the entire interval
of stability of the chaotic-unsynchronized state in the ε pa-
rameter space as threatened in the following sections.

Such detection is expected since the new initial condition
inside the attractor for one value of ε is likely to be in the
attraction basin for the next value ε + δε, even for small
volume attraction basins [36].

The stability interval of the chaotic-unsynchronized states
is observed in Fig. 3(a) as a set of red, green, blue, and
magenta curves showing values of 〈R〉 ≈ 0 and occurring for
all representative values of σ > 0. On the other hand, the
adiabatically decrease of the values of ε allows the detection
of a numerical approximation of the entire interval of stability
of a second stable attractor, namely a periodic and phase-
synchronized state. This fact configures the bistable region
that permits the network of nonidentical neurons to exhibit
ES. The ES existence region is demarcated in Fig. 3(a) by
dashed-color lines for each value of σ , configuring a hystere-
sis loop.

In this scenario, no intermediate values of 〈R〉 are observed
at the transition from nonsynchronized to synchronized states,
since ES is the result of the spontaneous change of attraction
basin of the network when a new value of the coupling
strength or even an uncertainty in the neurons’ variables are
assumed. This scenario starts with the stability gain of the
synchronized state extending until the loss of stability of the
chaotic attractor.

Figure 3(b) shows results for the numerical values of the
hysteresis area Sh(σ ) as a function of σ , where is performed
an integration over the interval 0 < ε < 0.5, computed by

Sh(σ ) =
∣∣∣∣
∫

forward
〈R〉(ε, σ ) dε

∫
backward

〈R〉(ε, σ ) dε

∣∣∣∣, (7)

where “forward” and “backward” refer to the direction as-
sumed for the continuous process of increase and decrease of
the coupling parameter, respectively.

For the considered interval of ε, the hysteresis area starts
suddenly for finite values of σ decaying linearly (fitted-solid-
magenta line) as the dissimilitude increases. Similar behavior
is obtained for other values of pnl in the integrated interval.
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FIG. 4. 〈R〉 as a function of the coupling strength ε for five dis-
tinct nonlocal connection probabilities pnl and a fixed value of σ =
0.001. The coupling strength is evolved adiabatically (δε = 0.001) in
two different directions: forward and backward. (a) For pnl = 0.10,
the network does not depict phase synchronization. (b) For a larger
value of pnl = 0.15, a large interval is observed where ES is likely to
occur, the vertical dotted (dashed) line represents the transition points
of ε∗ (ε†). [(c) and (d)] For pnl = 0.25 and pnl = 0.35, ES still may
exist but for a smaller interval of ε. (e) For larger values of pnl = 0.45
the transition from unsynchronized to phase-synchronized state is
smooth. Inner panel displays a magnification of the transition region.

The precise mechanism for the stability loss of the chaotic-
unsynchronized attractor and the periodic phase-synchronized
state is discussed further in the next sections.

Corroborating our initial findings, Fig. 4 shows the results
for the continuation algorithm of increase and decrease of the
coupling strength and the respective presence of hysteresis for
a fixed value of σ = 0.001 but assuming five values of pnl,
(a) 0.10, (b) 0.15, (c) 0.25, (d) 0.35, and (e) 0.45. For a
small value of pnl = 0.10 [Fig. 4(a)], the hysteresis loop is not
observed and only the chaotic-unsynchronized state is stable.
In the interval 0.11 � pnl � 0.35, Figs. 4(b)–4(d) depict large
hysteresis areas and, consequently, ES is likely to be observed
in the hysteresis intervals, in Fig. 4(b) we also delimit the
bistability region using a dotted line on ε = ε∗ and a dashed
line on ε = ε†. Finally, for large values of pnl � 0.35, again,
no hysteresis is observed and the synchronized state is reached
smoothly as expected for a second-order transition, as seen for
a representative value of pnl = 0.45 in Fig. 4(e).

In general, following our criterion for small-world net-
works [37,40], the hysteresis area is observed only for a
far-right end of the small-world interval of pnl or a little
beyond it. As suggested before, the phenomenon of ES as
a function of pnl is observed only when a bistable regime
for the asymptotic state of the network is present. Again, ES

FIG. 5. Numerical results for Sh(pnl ), which characterize three
different scenarios: (I) the network does not show synchronization
and only a chaotic-asymptotic states is observed; (II) the network
may depict ES as the result of attraction basin changes. At the
same time the network displays a hysteresis loop; (III) the networks
shows a smooth transition from the unsynchronized state to the
synchronized state.

occurs due to the change of attraction basins of both possible
locally stable states of the network. Such phenomenon allows
a first-order-like transition from an unsynchronized to a phase-
synchronized state of the network.

The quantification of the hysteretic behavior of the network
as a function of the probabilities pnl may be obtained using,
again, Eq. (7), which is rewritten as

Sh(pnl ) =
∣∣∣∣
∫

forward
〈R〉(ε, pnl ) dε

∫
backward

〈R〉(ε, pnl ) dε

∣∣∣∣. (8)

Numerical results for Sh(pnl ) are shown in Fig. 5, where
σ = 0.001, and the integration is done over the interval 0 <

ε < 0.5. 20 distinct connection matrices are used to compute
the mean value of Sh(pnl ) and error bars (for some values
of pnl, the error bars are smaller than the bullets and so
are invisible in Fig. 5). The two dashed lines delimit three
regions: (I) where Sh = 0 as in Fig. 4(a), for which the
network does not synchronize; (II) results for the hysteresis
region 0.11 � pnl � 0.4, where the occurrence of hysteresis
coinciding with the emergence of a bistable regime for the
network dynamics, where a chaotic-nonsynchronized state
lives together with a phase-synchronized-periodic state, as
seen in Figs. 4(b)–4(d). The hysteresis area is maximum at
pnl = 0.11 decaying as pnl increases. The decrease of the area
is due to a more premature loss of stability of the chaotic
attractor as pnl grows; (III), again, Sh = 0, but in this case,
like Fig. 4(e), the network depicts a smooth-phase transition
from the non-phase-synchronized to the phase-synchronized
state.

To summarize our results, we have investigate how the
hysteretic region varies in the plane (σ , pnl). Figure 6 depicts
in color code the critical couplings ε∗(σ, pnl ) in Fig. 6(a),
and ε†(σ, pnl ) in Fig. 6(b) which delimits the bistable region.
As we increase pnl, the ε† decreases; however ε∗ varies in an
irregular way. Increasing σ , ε† decreases and ε∗ increases. The
black regions reflect the space parameter areas where ES does
not occur.
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FIG. 6. Numerical results for ε∗ (a) and ε† (b) on the plane (σ, pnl ). For a constant σ , increases of pnl lead to decreases of ε†. However, ε∗

varies in a more irregular way. Increases of σ lead to small decreases of ε† while ε∗ increases. The black regions reflect the space parameter
areas where ES does not occur.

B. The dynamical mechanism behind the loss of stability of the
chaotic attractor

The physical mechanism responsible for the end of the
bistable interval is observed as a transition from an unsyn-
chronized network to a synchronized one, which is described
in terms of a route to chaos, namely a frontier crisis [36,41,42]
occurring at ε ≡ ε†(σ, pnl ).

Considering a representative value of pnl = 0.15 and σ =
0.001, at ε†(σ, pnl ) ≡ ε† = 0.390 ± 0.004, the chaotic attrac-
tor collides with its attraction basin boundary. For ε > ε† the
attractor no longer exists and is replaced by a chaotic saddle
that does not attract trajectories but allows a chaotic transient
τcrisis for initial conditions belonging to the former attractor.

FIG. 7. Evolution of the network mean field [Eq. (9)]. An initial
condition embedded in the unsynchronized-chaotic attractor is used
to generate all three time series. (a) For ε � ε†, the perennial chaotic
state is shown. (b) For ε � ε† a long transient chaotic trajectory is the
result of the initial dynamics inside the chaotic saddle. (c) For ε � ε†

the trajectory leads the chaotic saddle after just a few intervals of
time. The large oscillations indicate the synchronized behavior.

Figure 7 depicts the qualitative characteristics of the net-
work mean field,

X (t ) = 1

N

N∑
i=1

xi,t , (9)

for three values of ε, namely Fig. 7(a) ε � ε†, Fig. 7(b)
ε � ε†, and Fig. 7(c) ε > ε†. For ε � ε† [Fig. 7(a)] the mean
field displays the characteristic behavior of a nonsynchronized
network, fluctuating perennially around an erratic mean value.
For values of ε � ε† [Fig. 7(b)] the postcrisis behavior en-
ables long nonsynchronized transient time before the network
assumes its asymptotic-synchronized state, inferred here by
the large oscillations of the network mean field. For larger
values of ε, such that ε > ε† [Fig. 7(c)], the transient non-
synchronized dynamics is quickly lost and the asymptotic-
synchronized state is reached.

In order to study the postcrisis behavior, in Fig. 8 we
evaluate the average lifetime 〈τcrisis〉 for the chaotic transient
of the trajectories inside the chaotic saddle as a function of the
distance |ε − ε†|.

FIG. 8. Average time for the chaotic transient 〈τcrisis〉 due to
the presence of a chaotic saddle for (ε � ε†). For small values of
|ε − ε†|, 〈τcrisis〉 scales as |ε − ε†|−α , with α = 0.85 as expected for
a frontier crisis.
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It is expected that 〈τcrisis〉 scales as a power-law function of
ε with a characteristic exponent α larger than 1/2, 〈τcrisis〉 ∝
|ε − ε†|−α [36,41–43]. To test this scenario, we evolve 50
initial conditions of the system for ε � ε† and for a large
interval of time, such that a final suitable set of 50 final
conditions inside the chaotic attractor is obtained. Then, we
use this set of final conditions as an approximation for initial
conditions inside the saddle that replace the chaotic attractor
for ε � ε†. Evolving the set of conditions, we compute an
approximation for 〈τcrisis〉. Our results are displayed in Fig. 8
and a clear power-law scaling with slope α = 0.85 is observed
for values of |ε − ε†| < 2 × 10−2. For larger values of |ε −
ε†| the power law is still expected, but in our numerical
simulations it is replaced by an exponential law due to the
difficult to initialize the system inside the saddle for ε far
from ε†.

C. The dynamical mechanism behind the loss of stability of the
phase-synchronized attractor

Another important point to discuss is the gain of stability
of the synchronized attractor that occurs for a lower coupling
parameter ε ≡ ε∗(σ, pnl ) < ε†(σ, pnl ). Again, it is considered
a representative value of pnl = 0.15, and σ = 0.001. We sim-
plify the notation to ε∗(σ, pnl ) ≡ ε∗. Considering an increase
of ε, at ε = ε∗, a saddle-node bifurcation [36] generates a
regular, locally stable and phase-synchronized state for the
network. So the saddle-node bifurcation, responsible for the
birth of the phase-synchronized state, also leads to the onset
of the bistable regime and the hysteresis loop, occurring for
ε∗ < ε < ε†. Due to the presence of the unsynchronized-
chaotic attractor, before ε∗, the network dynamics converges
asymptotically to the unsynchronized-chaotic state. In such
a transition, intermittency in the individual dynamics of the
neurons is always observed due to the quasistable character
of the synchronized state before the saddle-node bifurcation
of the periodic-synchronized state [36].

To investigate the details of the saddle-node bifurcation-
induced desynchronization that occurs in the “backward”
adiabatic evolution of coupling parameter, we consider the
behavior of the recovery variable of the model y. Figure 9
depicts the standard deviation (μ) of the maximum values
that y assumes as a function of coupling parameter and the
neuron index i. In this case, a null value of μ occurring for
ε > ε∗ = 0.0087 ± 0.0001 indicates the periodic and phase-
synchronized behavior of neuron, since for each value of ε

just one value of ymax is observed. On the other hand, higher
values of μ indicate a chaotic behavior of the neurons since
ymax assumes a set of values for each coupling parameter.

For this case, where an adiabatic decrease of the coupling
parameter is considered, the regular and synchronized state
loses stability for ε lower than the critical value ε∗. In this
case, the network dynamics will depict intermittent synchro-
nization for values of ε � ε∗. Corroborating this scenario,
Fig. 10 shows the typical behavior of three randomly cho-
sen neurons (colored solid lines) for four different values
of ε < ε∗: (a) 0.0087500, (b) 0.008699, (c) 0.008600, and
(d) 0.003000, respectively. As observed, the intermittent-
synchronized behavior of a typical network neuron is clear,
depicting quiescent almost-periodic dynamics interrupted by

FIG. 9. Standard deviation of the ymax as a function of the neu-
rons index and the coupling parameter. Here an adiabatic decrease of
the coupling parameter is considered.

chaotic bursts. The further the value of ε is from the critical
value ε∗ the smaller the intermittent intervals of the almost-
synchronized network.

In order to quantify the intermittency, we have computed
the mean periodic (phase-synchronized) time τint as a function
of |ε − ε∗| [36]. The results are depicted in Fig. 11, which
also depicts as a solid line the theoretical fitting observed
for type-I intermittency generated by saddle-node bifurcations
[36]. As observed, the network behavior fits well the proposed
theoretical fitting, supporting our identification of the saddle-

FIG. 10. Temporal dynamics of ymax obtained by Eq. (2) for
three randomly chosen neurons (colored lines) of the network and
distinct values of coupling. (a) A periodic state occurring for ε =
0.008750 � ε∗; (b) intermittent-chaotic bursts occurring just after
the saddle-node bifurcation, ε = 0.008699 � ε∗; (c) the intermittent-
chaotic nature of the neuron for ε = 0.008600 < ε∗; (d) and the
completely chaotic dynamics observed for ε = 0.003000 
 ε∗.
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FIG. 11. Saddle-node bifurcation mean intermittent time 〈τint〉 as
a function of |ε − ε∗| for the type-I intermittency. The theoretical
value ∝ |ε − ε∗|−1/2 is plotted as a solid magenta line [36].

node bifurcation as responsible for the onset of the periodic
and phase-synchronized state for the network.

V. CONCLUSION

We have simulated a complex network composed of 10 000
distinct neurons modeled by a Chialvo map, Eqs. (1) and (2),
under a spike regime to study explosive synchronization phe-
nomena (ES) characterized by a first-order phase transition.
We have used the Newman-Watts route to generate a set of
small-world networks varying the nonlocal connection prob-

ability and the level of dissimilitude (σ ) of the neurons. We
have shown that for a range of nonlocal coupling probability
and dissimilitude parameter, the network depicts explosive
synchronization accompanied by the presence of hysteresis as
the coupling parameter is varied.

By using adiabatic increments of the coupling parameter,
we have shown that a saddle-node bifurcation rises into the
network dynamics as far as σ values are supposed to be
bigger than zero. σ > 0 foments a locally stable-periodic
and almost-phase-synchronized state that lives together to a
second locally stable-unsynchronized-chaotic attractor gener-
ating a bistable regime for the network.

Both attractors survive until the chaotic attractor be de-
stroyed by a frontier crisis. In this scenario, ES is likely to
occur in the coupling interval starting from the saddle-node
bifurcation and extending to the crisis, since it is the result of
a finite probability of the dynamics of the neuron to shift from
one attraction basin to another. Such attraction basin changes
can be the result of small variations in the coupling parameter,
connection probability, or even a finite level of noise in the
neuron dynamics.
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