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Pattern formation in reaction-diffusion systems in the presence of non-Markovian diffusion
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We study reaction-diffusion systems beyond the Markovian approximation to take into account the effect
of memory on the formation of spatiotemporal patterns. Using a non-Markovian Brusselator model as a
paradigmatic example, we show how to use reductive perturbation to investigate the formation and stability
of patterns. Focusing in detail on the Hopf instability and short-term memory, we derive the corresponding
complex Ginzburg-Landau equation that governs the amplitude of the critical mode and we establish the explicit
dependence of its parameters on the memory properties. Numerical solution of this memory-dependent complex
Ginzburg-Landau equation as well as direct numerical simulation of the non-Markovian Brusselator model
illustrates that memory changes the properties of the spatiotemporal patterns. Our results indicate that going
beyond the Markovian approximation might be necessary to study the formation of spatiotemporal patterns even
in systems with short-term memory. At the same time, our work opens up a new window into the control of these
patterns using memory.
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I. INTRODUCTION

The term “non-Markovian process” covers all stochastic
processes with the exception of the small minority that hap-
pens to have the Markov property [1]. Despite the fact that
stochastic processes in nature are generally non-Markovian,
they are usually treated in the context of a Markov approxima-
tion. In this approximation, it is assumed that the correlation
time between the system and the environment is infinitely
short so that memory effects can be neglected. Actually,
treating non-Markovian processes with a Markov approxima-
tion can be as poor as, for instance, approximating highly
nonlinear dynamical systems by a harmonic oscillator [1].
Since realistic systems typically possess a finite correlation
or scattering time, they are non-Markovian by nature and
considering memory effects is often inevitable.

Specifically, non-Markovian processes appear in many
different fields including quantum optics [2–4], solid state
physics [5], quantum chemistry [6,7], quantum information
processing [8,9], and even the description of biological sys-
tems [10]. Strongly coupled systems are also non-Markovian
where the collisions cannot be considered instantaneous [11].
Recently, attention has been paid to memory effects in non-
Markovian systems in different areas [12–17]. For instance,
taking into account long-range memory in extreme events
by using fractional Lévy processes [18,19] allows one to
make a time-dependent hazard assessment of future events
based on events observed in the past [12]. The effect of
memory-dependent transport on the survivability of a popu-
lation is investigated in [13]. The extension of conventional
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diffusive transport, within the framework of evolution equa-
tions, is considered in [14] to take into account memory.
Memory effects in correlated anisotropic diffusion are studied
in nanoporous crystalline solids in [15]. In this paper we take
into account non-Markovian diffusion in reaction-diffusion
systems to investigate its effect on the formation of patterns
out of equilibrium.

Reaction-diffusion systems are extensively used in the
study of self-organized phenomena that occur in open
systems out of equilibrium [20–26]. They are useful in
many fields such as biology [27–37], chemistry [38–49],
medicine [50–53], neuroscience [54–58], physics [59–62],
and ecology [63–66]. Reaction-diffusion systems were first
proposed by Alan Turing in the study of morphogenesis [67].
Actually, Turing noticed that adding a diffusion term to a
reaction system can drive the system to instability and plays
an important role in the formation of patterns out of equi-
librium. The characteristic feature of most of the studied
reaction-diffusion systems is that the diffusion is considered
to be a normal one. From the microscopic point of view,
the normal diffusion is derived from the (Markovian) master
equation [68,69].

The master equation is one of the most important equations
in statistical physics that governs the dynamics of stochastic
processes. As a system of stochastic variables evolves in
time, transitions occur between various states of the sys-
tem. To formulate the master equation, it is assumed that
the probability of each transition depends only on the pre-
ceding time step and not on any history, which is exactly
the Markov approximation. Since “normal” transport theory
employs the master equation as its point of departure, normal
diffusion does not take into account memory effects. The
significance of the diffusion term in the formation of patterns
and the importance of understanding and controlling pattern
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formation in far-from-equilibrium systems—an area of signif-
icant importance [70–74,74–77]—motivate us to study pattern
formation in reaction-diffusion systems in the presence of
non-Markovian diffusion. In particular, we provide a system-
atic approach on how to include and study non-Markovian
diffusion in the context of reaction-diffusion systems. Using
analytical and numerical analysis, we show that memory
arising from non-Markovian diffusion can change the prop-
erties of spatiotemporal patterns. This includes the stability of
spiral waves, which occur in many chemical and biological
systems such as the heart [26,51,78–80]. This opens up a
new mechanism to control pattern formation using memory
instead of external perturbations such as applying periodic
forcing [72,73] or time-delayed feedback [74–76].

The paper is organized as follows. In Sec. II we construct
non-Markovian reaction-diffusion systems by starting from
the generalized master equation to take into account mem-
ory effects. Linear stability analysis is used in Sec. III to
investigate the effect of memory arising from non-Markovian
diffusion on the instability in a non-Markovian Brusselator
model as a paradigmatic example of non-Markovian reaction-
diffusion systems. In Sec. IV, reductive perturbation method
is exploited to study the behavior of the system near a
Hopf instability and investigate the effect of memory on
spatiotemporal patterns. The results indicate that a complex
Ginzburg-Landau equation that depends on the memory gov-
erns the amplitude equation of the critical mode for short-term
memories. Section VI contains the numerical solution of the
obtained complex Ginzburg-Landau equation as well as di-
rect numerical simulations of the non-Markovian Brusselator
model to illustrate the effect of memory on the formation of
spatiotemporal patterns. Finally, a summary and discussion
are presented in Sec. VI.

II. NON-MARKOVIAN REACTION-DIFFUSION SYSTEMS

The normal diffusion equation, ∂n(x, t )/∂t = D∇2n(x, t ),
is a macroscopic equation where n(x, t ) is the density of
the substrate at point x and time t . This equation can be
obtained starting from the master equation [68]. In this section
we establish a general equation governing non-Markovian
reaction-diffusion systems. For this purpose, we first review
how to introduce a non-Markovian diffusion equation by
starting from the generalized master equation.

Various methods have been used to obtain the generalized
master equation, however, the procedure of Zwanzig [81,82]
distinguishes itself by its elegance and economy of ef-
fort. His procedure was based on projection operator tech-
niques [81–84], which are widely used in open systems
and nonequilibrium statistical mechanics [85–88]. Zwanzig
started from the Liouville–von Neumann equation for the
density operator and obtained the generalized master equa-
tion [69,81,82,89]

∂Pξ (t )

∂t
=

∫ t

0
dt ′ ∑

μ

[Wξμ(t − t ′)Pμ(t ′) − Wμξ (t − t ′)Pξ (t ′)],

(1)

wherePξ are the diagonal elements of density matrix and
denote the probability of finding the system in state ξ . Wξμ

are the transition rates from state μ to state ξ that generally are
time dependent. Integration over all previous times indicates
the non-Markovian nature of the processes. Since this equa-
tion is hard to solve, physicists use Markov approximation
to simplify this equation. By this approximation, they ignore
the dependence of transition rates to previous times [89] and
consider

Wμξ (t ′) = Fμξ δ(t ′), (2)

where Fμξ are the transition rates in the Markovian case
which are time independent. By neglecting the dependence
on previous times they assume that there is no memory in the
system. As a result, Eq. (1) reduces to the well-known master
equation,

∂Pξ (t )

∂t
=

∑
μ

[FξμPμ(t ) − Fμξ Pξ (t )]. (3)

Applying the nearest-neighbor approximation to the transition
rates and taking the continuum limit [68,69,89], one can
derive

∂P(x, t )

∂t
= D

∂2P(x, t )

∂x2
, (4)

where P(x, t ) is the probability of finding a particle in x at time
t and D is the diffusion coefficient. Generalizing this equation
to three dimensions and noting that the density of the substrate
is proportional to this probability, one can obtain the normal
diffusion equation.

Now, if we want to be more precise and consider realistic
phenomena beyond the Markovian assumption, we should
start from the generalized master equation, (1). However, it
is hard to work with this equation. A simplification may often
be possible whereby the time dependence of Wξμ is assumed
to be independent of states ξ and μ [89]:

Wμξ (t ) = FμξK(t ). (5)

Using this assumption, (1) can be rewritten in a simpler form:

∂Pξ (t )

∂t
=

∫ t

0
dt ′K(t − t ′)

∑
μ

[FξμPμ(t ′) − Fμξ Pξ (t ′)]. (6)

The nature of transport is thus decided by the memory K as
well as by the rates Fξμ. By applying the nearest-neighbor
approximation to the transition rates Fμξ and taking the con-
tinuum limit, one obtains the non-Markovian Fokker-Planck
equation [89],

∂P(x, t )

∂t
=

∫ t

0
dt ′K(t − t ′)D

∂2P(x, t ′)
∂x2

, (7)

where K(t ′) is the memory kernel. This equation expresses
the fact that an interaction process is in general a nonin-
stantaneous event and thus nonlocal in time. The memory
kernel describes the finiteness of the correlation or scattering
time [90,91]. Obviously, for the Markovian case, the memory
kernel is K(t ′) = δ(t ′) and (7) converts to (4). In the study
of realistic systems one encounters different forms of the
memory kernel. For instance, the excitation energy transfer
between molecules indicates the presence of an exponential
memory kernel [89]. However, the description of reactions in
polymer systems needs more complicated kernels [92,93].
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Using (7), we can write a general two-component non-
Markovian reaction-diffusion system as

∂U (r, t )

∂t
= f1(U,V ; μ) +

∫ t

0
dt ′KU (t − t ′)DU ∇2U (r, t ′),

∂V (r, t )

∂t
= f2(U,V ; μ) +

∫ t

0
dt ′KV (t − t ′)DV ∇2V (r, t ′),

(8)

which is a non-Markovian activator-inhibitor system. Here,
f1 and f2 are reaction terms. U and V are the densities of
the activator and inhibitor, respectively. DU and DV are their
corresponding diffusion coefficients, and KU and KV are the
memory kernels associated with them. μ is the bifurcation
parameter, and as μ varies, the system might move from a
steady state to an oscillating or a patterned state via a Hopf or
Turing instability, respectively [94].

III. LINEAR STABILITY ANALYSIS

In the previous section we constructed a general two-
component non-Markovian reaction-diffusion system and ex-
plained how and why memory effects can arise if the un-
derlying diffusion is non-Markovian. In this section we use
linear stability analysis to see how the memory affects the
critical behavior of the system. In order to study the problem
analytically in more detail, we consider the Brusselator model
with memory in the diffusion of the inhibitor. The Brusselator
model is a two-component activator-inhibitor system and it
is one of the paradigmatic models for nonlinear chemical
systems [68]. This system in the presence of memory, in the
diffusion of the inhibitor, takes the form

∂U (r, t )

∂t
= A − (B + 1)U + U 2V + DU ∇2U (r, t ),

∂V (r, t )

∂t
= BU − U 2V +

∫ t

0
dt ′KV (t − t ′)DV ∇2V (r, t ′).

(9)

Here, U and V are chemical concentrations that can vary in
space and time. A and B are constants and B is considered
the control parameter of the system to generate patterns.
The steady-state solution of the non-Markovian Brusselator
model, (9), is (U0,V0) = (A, B/A). As system (9) is difficult
to treat analytically in the presence of general memory and
also many systems exhibit short-term memory, we focus on
the latter case in order to present an analytical study of non-
Markovian reaction-diffusion systems. To this end, we use a
change of variable z = t − t ′ to rewrite the integral in (9) as

∫ t

0
dzKV (z)DV ∇2V (r, t − z).

In the presence of short-term memory only small z’s are
important because the memory kernel, KV (z) is almost 0 for
large z’s. So, we can expand V (r, t − z) up to first order in z,

V (r, t − z) = V (r, t ) − z ∂V (r,t )
∂t , and rewrite (9) as

∂U (r, t )

∂t
= A − (B + 1)U + U 2V + DU ∇2U (r, t ),

∂V (r, t )

∂t
= BU − U 2V + DV ∇2

( ∫ t

0
KV (z)V (r, t )dz

−
∫ t

0
zKV (z)

∂V (r, t )

∂t
dz

)
. (10)

To proceed further, we need to consider a specific form for the
memory kernel. A widely used form for the memory kernel
function is an exponential one [69,89],

K(t ′) = γ e−γ t ′
, (11)

where γ measures the reciprocal of the characteristic scatter-
ing time or, in other words, the memory kernel decay time
(τ = 1/γ ). Note that the kernel becomes the delta function in
the limit γ → ∞ (the Markovian case). By considering this
memory kernel, (10) takes the form

∂U (r, t )

∂t
= A − (B + 1)U + U 2V + DU ∇2U (r, t ),

∂V (r, t )

∂t
= BU − U 2V + D′

V (t )∇2V (r, t )

− D′′
V (t )∇2 ∂V (r, t )

∂t
. (12)

Here, D′
V (t ) = DV (1 − e−t/τV ), D′′

V (t ) = DV (τV − (t + τV )
e−t/τV ), and τV = 1/γV is the characteristic memory kernel
decay time for the inhibitor. D′

V (t ) and D′′
V (t ) are monoton-

ically increasing functions of time with 0 < D′
V < DV and

0 < D′′
V < DV τV . In the second relation in (12), ∂V (r,t )

∂t appears
on both sides. We replace the right one with the full expression
for ∂V (r,t )

∂t . Since 0 < D′′
V < DV τV and τV is small, if DV is not

so large, we can truncate the process to obtain

∂U

∂t
= A − (B + 1)U + U 2V + DU ∇2U,

∂V

∂t
= BU − U 2V + D′

V (t )∇2V − BD′′
V (t )∇2U

+ D′′
V (t )∇2(U 2V ) − D′

V (t )D′′
V (t )∇2(∇2V ). (13)

We are interested in the long-time behavior of the system to
study the formation of patterns. On the other hand, in the case
of short-term memory where τV is small, the exponential term
in D′

V (t ) and D′′
V (t ) goes to 0 rapidly. Therefore, Eq. (13) can

be approximated by

∂U

∂t
= A − (B + 1)U + U 2V + DU ∇2U,

∂V

∂t
= BU − U 2V + DV ∇2V − BDV τV ∇2U

+ DV τV ∇2(U 2V − DV ∇2V ). (14)

In order to perform a linear stability analysis, small pertur-
bations, u(r, t ) and v(r, t ), about the steady state (U0,V0) are
considered:

U (r, t ) = U0 + u(r, t ), V (r, t ) = V0 + v(r, t ).
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Inserting the above into Eq. (14) and choosing the linear
part, we obtain a linear equation governing the dynamics of
perturbations. Using the normal-mode ansatz(

u
v

)
=

(
c1

c2

)
exp(λt + ik · r)

in the linearized equations leads to(
a11 a12

a21 a22

)(
c1

c2

)
= 0, (15)

where

a11 = B − 1 − DU k2 − λ,

a12 = A2,

a21 = −B − DV τV Bk2,

a22 = −A2 − DV k2 − DV τV A2k2 − D2
V τV k4 − λ.

λ is the perturbation growth rate, k is the wave vector, and k =
|k|. The characteristic equation in the presence of memory
takes the form

λ2 + g(k, τV )λ + h(k, τV ) = 0, (16)

where

g(k, τV )=1 − B + A2+[DU + DV + DV τV A2]k2 + D2
V τV k4,

and

h(k, τV ) = A2B(1 + DV τV k2) + (1 − B + DU k2)

× (A2 + DV k2 + DV τV A2k2 + D2
V τV k4).

Using the characteristic equation, one can find the perturba-
tion growth rate, λ, in terms of k. Wave vectors that result in a
nonnegative real part of the growth rate λ are critical. Note that
this equation depends on the memory properties of the system,
and in the limit of no memory (τV → 0) we recover the char-
acteristic equation for the Markovian Brusselator model [95].

The steady state is linearly stable if and only if both
g(k, τV ) and h(k, τV ) are nonnegative for all k. Clearly, this
stability condition can be violated in either of the following
two ways:

(1) h(k, τV ) vanishes for some k, but g(k, τV ) and h(k, τV )
remain positive for all k. This condition together with
∂h(k, τV )/∂k|k=kcT = 0 determines the critical parameter, BcT ,
and also kcT for a Turing bifurcation.

(2) g(k, τV ) vanishes for some k, but g(k, τV ) and h(k, τV )
remain positive for all k. This condition together with
∂g(k, τV )/∂k|k=kcH = 0 leads to the critical values kcH and
BcH for a Hopf bifurcation. The frequency of oscillation is
ω = ±√

h(BcH , kcH ).
Focusing on the latter, we find that ∂g(k, τV )/∂k = 0 leads

to a solution of k = 0 as well as

k2 = −DU + DV + DV τV A2

2D2
V τV

. (17)

Since the right-hand side of (17) is always negative, it is not
an acceptable solution and we obtain that

kcH = 0, BcH = 1 + A2, (18)

which means that the critical values for Hopf instability do not
change when memory is present in the diffusion of inhibitor.
On the other hand, since the characteristic function depends
on the memory property of the system, the growth rates of the
modes depend on memory as well. This affects the modula-
tion of unstable modes near the Hopf bifurcation and, thus,
influences the formation of spatiotemporal patterns. In fact,
linear analysis only provides us with insight about the critical
behavior of the system. However, in order to investigate the
effect of memory on pattern formation, we need to go beyond
the linear analysis. To summarize, in this section we have
reduced the integrodifferential equation, (9), to a system of
nonlinear partial differential equations, (14), in the limit of
short-term memory and for a small diffusion coefficient of the
inhibitor. This makes the system amenable to an analytical
treatment in the form of a classical weakly nonlinear analysis.
In the next section, we use a reductive perturbation method
to investigate the effect of memory on the formation of a
spatiotemporal pattern near a Hopf instability.

IV. REDUCTIVE PERTURBATION METHOD

Near a bifurcation the neighboring modes of the critical
mode, which have decay times of the same order of magnitude
as the critical mode, play an important role in the long-
time behavior of the system that results in the generation
of patterns. According to the slaving principle [94], near a
bifurcation we are left with a couple of relevant dynamical
variables whose time scales are distinguishably slower than
the other dynamical variables so that the latter can be elimi-
nated adiabatically using rescaled space-time coordinates. In
this section, we investigate the non-Markovian Brusselator
model analytically using the reductive perturbation method.
The results indicate that memory changes the properties of
the spatiotemporal patterns.

Starting from Eq. (14), considering small perturbations
about the steady state and keeping nonlinear terms as well
as the linear terms results in the equation governing the
fluctuations as (

u̇
v̇

)
= L

(
u
v

)
+ N + D, (19)

where

L =
(

B − 1 A2

−B −A2

)
(20)

is the Jacobian matrix, N = ( β

−β) is the nonlinear part with

β = B
A u2 + 2Auv + u2v, and D = (D1

D2
) is the diffusion term

with

D1 = DU ∇2u,

D2 = DV (1 + τV A2)∇2v + DV τV

(
B∇2u

+ 2A∇2(uv) + B

A
∇2u2 + ∇2(u2v) − DV ∇2(∇2v)

)
.

We introduce a new bifurcation parameter by considering
μ = B−BcH

BcH
. By this definition the steady state is stable for μ <

0 and is unstable for μ > 0. Near the instability, L, N, D, (u
v),
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and the eigenvalues of the Jacobian matrix can be expanded in
powers of μ as

L = L0 + μL1 + μ2L2 + . . . ,

N = N0 + μN1 + μ2N2 + . . . ,(
u
v

)
= μ

1
2

(
u1

v1

)
+ μ

(
u2

v2

)
+ μ

3
2

(
u3

v3

)
+ . . . ,

λ = λ0 + μλ1 + μ2λ2 + . . . , (21)

where λ0 = iω0 = iA = ULL0UR and λi = σi + iωi =
ULL1UR. The vectors UR and UL are right and left
eigenvectors of L0, respectively. L0 and L1 are given by

L0 =
(

A2 A2

−1 − A2 −A2

)
, L1 = (1 + A2)

(
1 0

−1 0

)
,

(22)

and the right and left eigenvectors of L0 are

UR =
(

1
−1 + iA−1

)
, UL = 1

2

(
1 − iA, −iA

)
.

We must get inside the neighborhood of the critical mode
to consider just the important modes based on the slaving
principle. We do this by rescaling the time and space variables
as [94,95]

T = |μ|t, R = |μ| 1
2 r = εr,

where ε2χ ≡ μ and χ = sgn(μ). Since we are interested
in the supercritical Hopf bifuracation, χ is positive. The
reductive perturbation method is a multiscale method, so we
consider (u

v) as a function of t , T , R. This means that we
are dealing with the long-time, long-wavelength modes in
their natural variables T and R and reserving t for the overall
periodic motion (limit cycle). Substituting (21) into (19) and
equating coefficients of different powers of ε yields a set of
equations in the form of(

∂

∂t
− L0

)(
uν

vν

)
= Bν, ν = 1, 2, . . . , (23)

where the first three B’s are

B1 = 0,

B2 =
(

1+A2

A u2
1 + 2Au1v1

− 1+A2

A u2
1 − 2Au1v1

)
,

B3 = −
(

∂

∂T
− L1 + D̂∇2

R

)(
u1

v1

)

+
(

2(1+A2 )
A u1u2 + 2A(u1v2 + u2v1) + u2

1v1

− 2(1+A2 )
A u1u2 − 2A(u1v2 + u2v1) − u2

1v1

)
,

and D̂ is given by

D̂ =
(

DU 0
DV τV (1 + A2) DV (1 + τV A2)

)
.

Note that, in the limit of τV → 0, this matrix reduces
to (DU 0

0 DV
), which is identical to D̂ in the Markovian

Brusselator model [95]. The solution for ν = 1 is(
u1

v1

)
= W (T, R)UReiω0t + c.c.,

where c.c. stands for the complex conjugate and W (T, R)
is a complex amplitude to be determined. Using this so-
lution in the equation for ν = 2 leads to an expression
for (u2

v2
). Putting these two solutions into the equation for

ν = 3 together with the solvability condition for the set of
equations (23) [94] results in the equation governing the
amplitude W ,

∂W

∂T
= λ1W + d∇2

RW − g|W |2W, (24)

where λ(1), d , and g are generally complex numbers and are
given by

λ1 = ULL1UR = 1 + A2

2
,

d = ULD′(τU , τV )UR

= 1

2
[DU + DV − A2DV τV − iA(DU − DV + DV τV )],

g = 1

2

(
2 + A2

A2
+ i

4 − 7A2 + 4A4

3A3

)
. (25)

Equation (24) is the well-known complex Ginzburg-
Landau equation, but note that the coefficient d depends on
the memory kernel decay time. In fact, the presence of non-
Markovian diffusion of the inhibitor results in the change in
the real and imaginary part of the coefficient d . For τV → 0,
we recover the complex Ginzburg-Landau equation in the
Markovian Brusselator model [94,95]. With a redefinition as

r′ = (σ1/dr )1/2R, t ′ = σ1T, W ′ =
√

gr/σ1e−iω1T W,

(26)

the complex Ginzburg-Landau equation above the criticality
can be written in a more convenient form (after dropping the
primes),

∂W

∂t
= W + (1 + ic1)∇2W − (1 + ic2)|W |2W, (27)

where

c1 = di/dr = −A
DU − DV + DV τV

DU + DV − A2DV τV
(28)

and

c2 = gi/gr = 4 − 7A2 + 4A4

3A(2 + A2)
. (29)

Since the parameter c1 depends on the memory prop-
erty of the system [see (28)], one can change the stability
of solutions of the complex-Ginzburg Landau equation by
changing the memory property of the system and, thus, control
the resulting spatiotemporal pattern. In fact, by looking at
the phase diagram of the complex Ginzburg-Landau equa-
tion [96], one can see how the solutions of the complex
Ginzburg-Landau equation and their stability change over
the parameter space. By introducing memory or changing its
properties (here by varying τV ), we can cross the boundaries
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of different regimes in any spatial spatial dimension, which
enables us to change the selected spatiotemporal patterns. To
explicitly illustrate how to achieve this and also to provide
further support for our analytical results, we exploit numer-
ical simulations in the next section using τV as our control
parameter.

V. NUMERICAL SIMULATIONS

In this section, we perform numerical simulations of
the complex Ginzburg-Landau equation obtained analytically
in Sec. IV as well as direct numerical simulations of the
non-Markovian Brusselator model, (9), with the exponential
memory kernel, (11). For integrating the complex Ginzburg-
Landau equation we use a pseudospectral method to perform
numerical computations in Fourier space based on the method
of exponential time differencing (ETD2) [97]. Low-amplitude
random initial data about W = 0 and periodic boundary con-
ditions are used. For the direct numerical simulation of the
non-Markovian Brusselator model, we also consider a low-
amplitude random initial condition about the steady state and
use a periodic boundary condition. We chose to focus on
two spatial dimensions, which display a rich spectrum of
dynamical behavior including spiral waves.

As a specific example, we focus on the stability of spi-
ral waves. Figure 1(a) shows rotating spiral waves that are
generated in the absence of memory for the Markovian ap-
proximation of the Brusselator model, which is achieved by
considering a delta function for the memory kernel in (9). For
the selected parameters and no memory, Eqs. (28) and (29)
give rise to (c1, c2) = (−0.33, 0.96) for the coefficients of
the corresponding complex Ginzburg-Landau equation, (27).
As expected based on our analytical calculations, for these
parameters the complex Ginzburg-Landau equation gives ba-
sically identical results as shown in Fig. 1(c). Note that the
change in scales between Figs. 1(a) and 1(c) is a conse-
quence of rescaling (26) in obtaining (27). Most importantly,
(c1, c2) = (−0.33, 0.96) belong to the spiral bound states in
parameter space [96], consistent with the observed behavior.
On the other hand, if we introduce memory into the Brus-
selator model, direct numerical simulations of (9) indicate
that the selected pattern changes and spiral waves break up
[see Fig. 1(b)]. In fact, by introducing memory with τV =
1/γV = 1/3.5, the coefficient c1 of the complex Ginzburg-
Landau equation changes and the new coefficients (c1, c2) =
(−0.97, 0.96) belong to the defect turbulence regime beyond
the absolute instability line where spiral waves are unsta-
ble [96,98]. This is directly confirmed by Fig. 1(d), providing
further support for our analytic calculations above. Thus, τV

can be used as a control parameter to select stable or turbulent
spiral patterns.

Changing the memory property of the system (τV ) and
consequently changing the coefficient c1 in the complex
Ginzburg-Landau equation not only helps us to break up
spiral waves but also enables us to change the properties of
spiral patterns. To this end, one can start from the monotonic
range [96,99] and cross the oscillatory range line [96,99] by
changing c1 to end up in the bound-state regime. Figure 2 il-
lustrates the behavior of the complex Ginzburg-Landau equa-
tion, obtained in (27), for two sets of coefficients (c1, c2) with

FIG. 1. (a) Snapshot of U (x, y, t ) in the Brusselator model, (9),
in the absence of memory for parameters A = 1.9, B = 4.8, DU = 1,
and DV = 0.7 and a system size of 256 × 256. Rotating spiral waves
appear in the system. (b) Same as (a), but in the presence of memory
with τV = 1/γV = 1/3.5. Spiral waves break up when memory is
turned on. (c–f) Illustrative snapshots of the complex Ginzburg-
Landau equation, (27), for parameters equivalent to those used in
(a) and (b) using (28) and (29). (c) and (e) show Re(W ) and |W |,
respectively, in the absence of memory (c1, c2) = (−0.33, 0.96).
(d) and (f) show Re(W ) and |W |, respectively, in the presence of
memory (c1, c2) = (−0.97, 0.96).

different c1 values. Figure 2(a) shows Re(W ) for (c1, c2) =
(0.2, 0.82) in the monotonic range where pairs of spirals
form that drift and annihilate by interacting with each other.
However, Fig. 2(b) corresponds to (c1, c2) = (−0.33, 0.82)
in the spiral bound-state regime of the oscillatory range. In
order to illustrate the difference between the properties of the
solutions, |W | is shown in Figs. 2(c) and 2(d). There are no
shock lines in Fig. 2(c) for the monotonic range, in contrast to
Fig. 2(d) for the oscillatory range where cellular structures are
formed.

The change in the selected spatiotemporal pattern, due to
changing the memory property of the system, is not limited
to spiral patterns. One can change the coefficient c1 in the
complex Ginzburg-Landau equation to make a transition, for
instance, from the defect turbulence regime to the phase
turbulence regime as well. Also, by focusing on the solution
of the complex Ginzburg-Landau equation in one dimension
or three dimensions, we can study the effect of memory on
plane waves or vortex filaments, respectively.
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FIG. 2. Snapshots of the complex Ginzburg-Landau equa-
tion, (27), for two sets of coefficients with the same c2 but different
c1. (a) and (c) show Re(W ) and |W |, respectively, for (c1, c2) =
(0.2, 0.82) in the monotonic range. (b) and (d) show Re(W ) and |W |,
respectively, for (c1, c2) = (−0.33, 0.82) in the oscillatory range.
Changing c1 by varying the characteristic time of the short-term
memory (τV ) enables us to cross the oscillatory range line in param-
eter space [96,99] and helps us to change the properties of the spiral
waves.

VI. SUMMARY AND DISCUSSION

Realistic systems possess a finite correlation or scattering
time and are generally non-Markovian. In spite of this fact,
they are usually treated in the context of Markov approxi-
mation where memory is neglected. We studied the effect of
non-Markovian diffusion on the instability and spatiotemporal
pattern formation in reaction-diffusion systems and showed
that considering memory near the instability might be in-
evitable. For this purpose, we constructed a general non-
Markovian reaction-diffusion system by starting from the
generalized master equation under the assumption, (5), to take
into account memory effect.

We considered the Brusselator model as a typical reaction-
diffusion system in the presence of non-Markovian diffusion
of the inhibitor. In the limit of short-term memory and for a
small diffusion coefficient of the inhibitor, the non-Markovian
Brusselator model reduced to a set of equations that could be
solved analytically. Linear stability analysis indicated that, in
the presence of memory, the characteristic equation depends
on the characteristic memory kernel decay time. Then we used
the reductive perturbation method near the Hopf instability
to investigate the effect of memory on the formation of
spatiotemporal patterns. We found that a memory-dependent
complex Ginzburg-Landau equation governs the amplitude of

the critical mode and obtained how its coefficients relate to the
underlying parameter of the non-Markovian diffusion. Since
the derived complex Ginzburg-Landau equation was memory
dependent, we can change the stability of its solutions by
changing the memory property of the system and, thus, control
the selected spatiotemporal pattern. These analytical findings
were confirmed by numerical simulations of both the non-
Markovian Brusselator model and the complex Ginzburg-
Landau equation. The results indicate that going beyond the
Markovian approximation might be necessary to study the
formation of spatiotemporal patterns in many cases and also
opened up a new window to the control of these patterns using
memory. Finding conditions for and establishing a systematic
way to do this is one of the achievements of this paper.

We would like to point out that the analytical approach we
established here is general. In particular, it is not limited to
the non-Markovian Brusselator model. In fact, it can be used
to study other reaction-diffusion systems beyond the Marko-
vian approximation in any dimensions. While we showed
that considering short-term memory in the diffusion of an
inhibitor can result in a significant impact on the selected
spatiotemporal patterns, considering memory in the diffusion
of the activator can lead to an even richer dynamical behavior.
In the latter case, the right-hand side of Eq. (17) changes
and will not necessarily be negative. Therefore, for some
parameters, the system can admit nonzero solutions for critical
wave numbers (kc �= 0) where considering them in the system
demands more investigations. In addition, one cannot readily
use the reductive perturbation method to study the system
in the presence of any nonzero modes. This is because the
reductive perturbation method is based on the coarse graining
of the system to consider important long-wavelength modes
(with k = 0 and its neighboring modes). Similarly, while
we largely focused on the case of a Hopf bifurcation, the
presented framework for studying reaction-diffusion systems
in the limit of short-term memories directly gives the condi-
tions for a Turing bifurcation [see Eq. (16) for the case of a
Brusselator model]. This allows one to investigate the effect
of short-term memories on Turing patterns using weakly
nonlinear analysis [100,101]. The mathematical treatment of
this case is challenging because of the complicated equations
beyond the Markov approximation. Since the main goal of this
paper is to provide a proof of concept of how non-Markovian
diffusion can affect the formation of spatiotemporal patterns
in an analytically tractable way, the detailed investigation of
memory in the diffusion of the activator as well as the effect
of memory on Turing patterns remains an interesting topic for
the future.
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