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Rössler and Chen systems with time delay are shown to be hyperchaotic, which exhibits a more complex
dynamics, including multiple positive Lyapunov exponents and infinite dimension. The hyperchaos has better
application potential where hyperchaos synchronization is concerned. Univariate impulse control requires
smaller perturbation to the response system, thus promising better performance. However, synchronization of
two hyperchaotic systems using this control method is a challenging task due to the difficulty to guarantee
synchronization stability using a minimum number of manipulated variables. In this paper, a univariate impulse
control method is proposed for the synchronization of two hyperchaotic dynamics generated by time delay.
A theorem is developed and proved to provide the sufficient conditions for the synchronization of time delay
systems using the univariate impulse control. The upper bound of the impulse interval is proved to guarantee
the asymptotic synchronization. Simulation and circuit experiment show the correctness of the analysis and the
feasibility of the proposed method.
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I. INTRODUCTION

Chaos [1–3], displaying sensitive dependence on initial
conditions, has materialized in many fields. Chaos control [4]
and synchronization [5] have lighted the way to apply chaos in
the fields of engineering (secure communication [6–8] and vi-
bration compactors [9]), physics (turbulence [10], plasma [11]
and semiconductors lasers [12,13]), chemistry [14], ecol-
ogy [15], and biology [16].

As a widespread physical phenomenon in nature, chaos
synchronization has been investigated for nearly three
decades. To achieve two systems’ synchronization, various
synchronization control methods have been proposed since
the pioneering work of Pecora and Carroll [5], which includes
adaptive control [17], robust control [18], and others [19].
There are many practical synchronization experiments, in-
cluding circuits [20,21] and laser systems [12,22]. Most of
the existing synchronization control methods need to use the
state information of the drive system at all times, except the
impulse control [23].

The impulse control, which is the topic of this work, is at-
tractive because it permits stabilization and synchronization of
chaotic systems by only demanding small intervals of the state
variables and smaller influence on the response system, thus
providing a better energy efficiency and higher information
security [24]. In 1990, Yang presented a seminal impulse con-
trol method based on the impulse differential equation [25].
The uniform asymptotic stability of the impulse differential
system was established in Ref. [26]. Chen et al. investigated
the sufficient conditions to guarantee the global asymptotic
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stability for impulse control and synchronization based on the
Lyapunov function and linear matrix inequality [27]; some
valuable results are given in [28,29]. The impulse synchro-
nization has been investigated in various systems, including
continuous systems [30,31], hyperchaotic systems [23,32,33],
discrete chaotic systems [34], fractional-order systems [35],
and a delay neural network [36]. Among those works, the
reported impulse control methods are concerned with regu-
lation of all states [32], which is difficult to apply in systems
with uncontrollable variables, such as the Rössler system that
describes chemical reactions. The univariate impulse control
is capable of dealing with such problem, thus extending the
application potential in addressing practical problems. The
contribution of this work is listed as the following. First, in
the existing impulse synchronization method, all variables in
the response system are manipulated simultaneously [23,25–
31,33–36]. Furthermore, the univariate impulse synchroniza-
tion is proposed for chaotic systems, both with time delay,
which requires less manipulated variables and thus less re-
sources to achieve synchronization. Second, the asymptotic
univariate impulse synchronization stability is investigated
rigorously, providing the conditions for selecting synchroniza-
tion controller parameters. Third, an impulse synchronization
chaotic circuit and time delay unit are designed in order to
validate the simulations and the analytic results. Our work
achieves the theoretical analysis of univariate impulse syn-
chronization for hyperchaos generated by time delay and then
the circuit experimental verification is realized.

The remainder of the paper is organized as follows. In
Sec. II, the uniform asymptotic stability of univariate impulse
control and the sufficient condition to achieve the univariate
impulse synchronization are derived based on the stability
theory of the impulse delay-differential equation. Section III
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presents the simulation results of synchronization of two
hyperchaotic systems using the univariate impulse control
and one hyperchaotic circuit synchronization experiment to
show the feasibility and effectiveness of the proposed method
and the correctness of the analysis. Section IV gives the
conclusions.

II. IMPULSE SYNCHRONIZATION HYPERCHAOS
GENERATED BY TIME DELAY

For impulse synchronization, the most important issue is
the synchronization stability. In this section, based on some
basic definitions and a lemma from the literature [25], re-
viewed in Sec. II A, we derive the stability conditions of the
impulse synchronization in Sec. II B and prove a theorem
to guarantee the univariate impulse synchronization stability,
which lays the theoretical foundation for the ensuing simula-
tion and experiment.

A. Preliminary details of impulse delay-differential equations

The delay-differential equation is described by

ẋ = f1(t, x) + f2(t, x(t − τ )), (1)

where x(t ) ∈ Rn is the state vector, f1, f2 : R+ × S(ρ) → Rn

are continuous function vectors on (tk−1, tk] × S(ρ),
S(ρ) = {x ∈ Rn|‖x‖ < ρ}, and ‖ · ‖ represents the Rn space
Euclidean norm.

In the impulse delay-differential equations, an impulse is
added at tk , described by

x(t+
k ) = x(t−

k ) + C[x̃(t−
k ) − x(t−

k )], t = tk, (2)

where x represents the vector of the drive system, x̃ represents
the state vector of the response system, and C represents the
impulse control matrix.

The impulse delay-differential equation is then given by

ẋ = f1(t, x) + f2(t, x(t − τ )), t �= tk
�x = x(t+

k ) − x(t−
k ) = Ik(x), t = tk, k ∈ N

x(t+
0 ) = φ,

(3)

where Ik = Ce(t−
k ) : S(ρ) → Rn represents the impulse con-

trol variable. Ik is the “jump” state at the time tk , the impulse
time tk satisfies 0 < t0 < t1 < t2 < · · · and limk→∞tk = ∞,
and e(t−

k ) = x̃(t−
k ) − x(t−

k ).
Assuming that for all k, f (t, 0) ≡ 0 and Ik(0) = 0, Eq. (3)

has a trivial solution. The following definitions and lemmas
are introduced [33]:

Definition 1. Let V0 = {V : R+ × Rn
+ → R+}, V ∈ V0, for

[t, x(t )] ∈ [nT, (n + 1)T ] × Rn
+, and system (3) can

be described as ẋ(t ) = f1(t, x) + f2(t, x(t − τ )). Then
the upper right derivative of the solution of system (3)
is defined as D+V [t, x(t )] = limh→0+ sup 1

h {V [t + h, x(t ) +
h f (t, x(t ))] − V (t, x(t ))}.

Definition 2. Assume that r ∈ N , D ⊂ R, and F ⊂ R,
PC(D, F ) denotes a piecewise continuous function from D
to F , namely, if φ ∈ PC(D, F ), when t ∈ D, t �= tk , φ is
a continuous function, except t = tk , φ is a discontinuous
function, but left side continuous. Denote PCr (D, F ) as the
r-order piecewise global differentiable function from D to F ,
namely, if φ ∈ PCr (D, F ), then φ : D → F,

drφ

dtr ∈ PC(D, F ).

Definition 3. K1 = {g ∈ C(R+, R+)|g(0) = 0, g(s) > 0,
∀s > 0}, K3 = {g ∈ C(R+, R+)|g(0) = 0, g(s) > 0,∀s > 0,,
and g is a nondecreasing function in s.

Lemma 1. Assume that a, b, c ∈ K1, g ∈ K3,
p ∈ PC(R+, R+), and V : [−r,∞) × S(ρ)→ R+,
where V is continuous on (−r, t0] × S(ρ) and
(tk−1, tk] × S(ρ), k = 1, 2, . . ., for each x ∈ S(ρ), and
k = 0, 1, 2, . . . , lim(t,y)→(t−

k ,x)V (t, y) = V (t−
k , x) exists;

V is locally Lipschitz in x and the following conditions hold:
(1) b(|x|) � V (t, x) � a(|x|), (t, x) ∈ [−r,∞) × S(ρ).
(2) D+V (t, φ(0)) � p(t )c[V (t, φ(0))], for all t �= tk in

R+, and φ ∈ PC([−r, 0], S(ρ)) whenever V (t, φ(0)) �
g[V (t + s, φ(s))] for s ∈ [−r, 0].

(3) V (tk, φ(0) + Ik ) � g[V (t−
k

, φ(0))] for all (tk, φ) ∈
R+ × PC([−r, 0], S(ρ1)) for φ(0−) = φ(0).

(4) δ = supk∈z{τk − τk−1} < ∞, where δ is the impulse
interval,

M1 = sup
t>0

∫ t+δ

t
p(s)ds < ∞,

M2 = inf
q>0

∫ q

g(q)

ds

c(s)
> M1.

Then, the trivial solution of system (3) is uniformly asymp-
totically stable.

B. Time delay system synchronization using
univariate impulse control

Consider a general delay-differential equation given by

Ẋ = AX + BX(t − τ ) + ϕ(X), (4)

where A ∈ Rn×n is the state matrix, B is the time delay gain
matrix, ϕ(x) is the nonlinear function, and τ is the delay time.

Separate the states of Eq. (4) into controllable and uncon-
trollable state variables, as follows:

ẋ = A1x + B1x(t − τ ) + ϕ1(x, y),

ẏ = A2y + ϕ2(x, y), (5)

where x are the state variables and y is a controllable scalar
state variable, which is univariately manipulated.

To achieve synchronization with the drive system (5), the
response system using univariate impulse control is given by

˙̃x = A1x̃ + B1x̃(t − τ ) + ϕ1(x̃, ỹ),

˙̃y = A2ỹ + ϕ2(x̃, ỹ), �x̃ = 0,

�ỹ = ỹ(t+
k ) − ỹ(t−

k ) = c(ỹ(t−
k ) − y(t−

k )), (6)

where x̃ and ỹ represent the state variables of the response
system, �x̃ and �ỹ represent the impulse control force at
time tk , and c is a constant representing the impulse control
amplitude. The other variables are the same as in Eq. (5). From
the drive system (5) and the response system (6), we obtain the
synchronization error system given by

ėx = A1ex + B1ex(t − τ ) + f3(ex, ey, x, y, x̃, ỹ),

ėy = A2ey + f4(ex, ey, x, y, x̃, ỹ),

�ex = 0, �ey = cey(t−
k ), (7)
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where ex(t ) = x̃(t ) − x(t ), ey(t ) = ỹ(t ) − y(t ), f3(ex, ey, x, y,
x̃, ỹ) = ϕ1(x̃, ỹ) − ϕ1(x, y), and f4(ex, ey, x, y, x̃, ỹ) =
ϕ2(x̃, ỹ) − ϕ2(x, y).

As long as the error system (7) is asymptotically stable
at the origin, the response system (6) synchronizes with the
drive system (5). Generally speaking, the stability of the syn-
chronization is investigated using the conditional or maximum
Lyapunov exponent [5,13]. In this paper, we investigate it in a
rigorous way by a uniform asymptotic stability theorem of the
error system (7), given as follows.

Theorem 1. Considering system (7), if the following two
conditions are satisfied:

(1) there exist constants L1 and L2 so that ‖ϕ1(x, y)‖2 �
L1‖x‖2, ‖ϕ2(x, y)‖2 � L2‖x‖2,

(2) M = max{λmax(A1
T +A1)+2+L1+ ‖B1‖2

λmax(I2 ) , 2A2 +
1 + L2}, 0 < δ < − ln (1+c)2

M ,
where λmax(·) is the maximum eigenvalue of the matrix in
brackets and δ is the impulse interval, then the error system (7)
is uniformly asymptotically stable at origin.

The proof of Theorem 1 is given in Sec. 1 of the Appendix.

III. SIMULATION AND CIRCUIT EXPERIMENT RESULTS

A. Synchronization of the Rössler system with time delay

The Rössler system is given as follows [2]:

ẋ = −y − z,

ẏ = x + βy,

ż = β + z(x − γ ), (8)

where for β = 0.1, γ = 1.5, the Rössler system has a periodic
orbit.

The Rössler system with linear time delay feedback can be
given as follows:

ẋ = −y − z + k(x(t − τ ) − x(t )),

ẏ = x + βy,

ż = β + z(x − γ ), (9)

and when k = 10.5 and τ = 1s, the time delay Rössler
system is chaotic. Consider the equilibrium (X ∗,Y ∗, Z∗) of
system (9). Let X = x − X ∗, Y = y − Y ∗, Z = z − Z∗, and
XT = (X,Y, Z ); then the Rössler system with time delay is
transformed into

Ẋ = −Y − Z + K (X (t − τ ) − X ),

Ẏ = X + βY,

Ż = XZ + XZ∗ + Z (X ∗ − β ).w (10)

The impulse control is incorporated to the state variable
Y ; then we rewrite Eq. (10) in the form of Eq. (5) as A1 =
[
−K −1
Z∗ X ∗ − β

], B1 = [
K
0 ], ϕ1 = [

−Y
XZ

], A2 = β, ϕ2 = X .

The error system is the same as in Eq. (7), and
‖ϕ1(x(t ), y)‖2 � L1‖ex‖2 = 30‖ex‖2, ‖ϕ2(x(t ), y)‖2 �
L2‖ey‖2 = 3‖ey‖2. Select c = −1.8. From condition (2)

100 150 200 250 300
t/s

-5

0

5
ex

x
x̃

100 150 200 250 300
t/s

-10

0

10 ey

y
ỹ

100 150 200 250 300
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-5
0
5

10 ez

z
z̃

(b)

(a)
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FIG. 1. The synchronization error curves (red solid line) ex , ey,
ez; the waveform of the state variable x, y, z of the drive system (blue
dotted solid line); and the waveform of the state variables x̃, ỹ, z̃ of the
response system (black dash-dotted line) of the Rössler system with
time delay are presented in (a)–(c), respectively, where the impulse
control is active from t = 150s.

in Theorem 1, we have the following:
(1) M = λmax(A1

T +A1)+2+L1+ ‖B1‖2

λmax(I2 ) = 63.5 > 0,

(2) 0 < δ < − ln (1+c)2

M = − ln (0.64)
63.5 = 0.0007.

If we choose the impulse interval δ = 0.005 < 0.007, then
all the conditions of Theorem 1 are satisfied. When the initial
conditions of the drive system and the response system are
(−1,−0.2,−0.11) and (1,0.2,0.1), respectively, the simula-
tion results using univariate impulse control for δ = 0.005
are given in Fig. 1, where the impulse control is activated
at t = 150s, and the waveform of t = [0, 99] is removed to
avoid the initial condition effect. Figure 1(a) gives the curves
of the drive system state x, response system state x̃ wave, and
corresponding two state synchronization error ex as a blue
dotted solid line, black dash-dotted line, and red solid line,
respectively. Similarly, Figs. 1(b) and 1(c) give the curves of
the corresponding variables of states y and z, respectively. We
learn from Fig. 1 that the synchronization is achieved when
the impulse controller is active.

B. Synchronization of the Chen systems with time delay

The Chen system is given as follows [37]:

ẋ(t ) = a(y(t ) − x(t )),

ẏ(t ) = (d − a)x(t ) − x(t )z(t ) + dy(t ),

ż(t ) = x(t )y(t ) − bz(t ). (11)

When a = 35, b = 3, d = 18.35978, the Chen system is
nonchaotic. The Chen system with linear time delay feedback
is given by [38]

ẋ(t ) = a(y(t ) − x(t )),

ẏ(t ) = (d − a)x(t ) − x(t )z(t ) + dy(t ),

ż(t ) = x(t )y(t ) − bz(t ) + k(z(t ) − z(t − τ )), (12)
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FIG. 2. The synchronization error curves ex , ey, ez (red solid
line); the waveform of the state variables x, y, z of the drive system
(blue dotted solid line); and the waveform of the state variable x̃, ỹ, z̃
of the response system (black dash-dotted line) are given in (a)–(c),
respectively, where the impulse control is active from t = 50s.

and when k = 2.85 and τ = 0.3, the initial value is
x(0) = 2.27, y(0) = 2.27, z(0) = 1.72, z(t ) = 0 in
t ∈ [−0.3, 0). The Chen system with time delay is
hyperchaotic. The dynamical features of the chaotic
system (12) are given in the Appendix.

We apply the impulse control to the state ỹ in the
response system. The Chen system with linear time de-
lay feedback control can be transformed into the form of

Eq. (5), where x = [
x
z
], A1 = [

−a 0
0 −b + K

], B1 = [
0

−K
],

ϕ1(x(t )) = [
ay(t )

x(t )y(t )], A2 = d , ϕ1 = (d − a)x(t ) − x(t )z(t ).

The response system with impulse control is identical to the
drive system, except for the impulse control.

The error system is given in the form of Eq. (7); A1 and B1

are the same as that in the drive system.
The impulse control gain is c = −1.9. ‖ϕ1(x(t ), y)‖2 �

L1‖ex‖2 = 16‖ex‖2, ‖ϕ2(x(t ), y)‖2 � L2‖ey‖2 = 16‖ey‖2,
and thus condition (1) in Theorem 1 is satisfied.

For condition (2) in Theorem 1, we have the following:
(1) M = λmax(A1

T + A1) + 2 + L1 + ‖B1‖2

λmax(I2 ) = 91.8 > 0,

(2) 0 < δ < − ln (1+c)2

M = − ln (0.64)
91.8 = 0.0049.

If we choose the impulse interval δ = 0.0048 < 0.0049,
then all conditions of Theorem 1 are satisfied. The simulation
results using impulse control for δ = 0.0048 are given in
Fig. 2. Here the initial condition of the drive system and
the response system are (0.1, 1, 0.1) and (−0.01,−1,−1),
respectively, and the impulse control is activated at t = 50s.
Figures 2(a)–2(c) are the first, second, and third states of
the drive system, the response system, and the corresponding
synchronization error curves, respectively. We see from Fig. 2
that the synchronization errors shown in the three subplots

FIG. 3. The schematic diagram of the impulse control for the
hyperchaotic Chen circuit synchronization.

with red solid lines tend to zero after the controller is activated
at t > 50s. From Fig. 2, we learn that the synchronization is
achieved using univariate impulse control.

C. Chen circuit impulse synchronization experiment results

The schematic diagram of impulse control circuit is given
in Fig. 3, where block (a) is the proportional amplification.
Error ey = ỹ − y passes through the proportional amplifier,
getting the proportional gain c = −R37

R36
. The impulse interval

is controlled by a 555 timer, which generates an impulse
signal with 10% duty ratio and 0.0048s period.

The multipath selector (CD4066) in Fig. 3 is used to select
the inputs and to send the selected input to the output. When
the impulse signal generated by the 555 timer is high, the
control signal uy = cey, otherwise uy = 0. Block (b) in Fig. 3
is used for incorporating the control into the state and power
amplification.

The schematic diagram of the impulse synchronization of
two circuits with one compressed in block (b) is given in
Fig. 4, where block (b) is the drive system and block (a)
represents the response system. The circuit parameters are
summarized in Table I.

The experimental circuit photo is given in Fig. 5. The
operation amplifiers used in the circuits are LF347N, the
multipliers are AD633JN, the inverter is 74LS04, and the
multichannel selector is CD4066. The experimental results are
shown in Fig. 6.

Figures 6(a)–6(c) represent the states x, y, z of the two
systems and the corresponding synchronization errors [green
line (channel 4) in each subplot], before impulse control is put
into effect. Figures 6(d)–6(f) represent the states of the two
systems and the corresponding synchronization errors after
the controller is put into effect. From Fig. 6(a), we learn that
the synchronization error between x and x̃ oscillates between
−4V and +4V , before the controller takes over. However,
in Fig. 6(d), the synchronization error ex is stable to zero
after the controller is working, similarly for states y and z
and their synchronization errors before and after the impulse
control can be seen in other subplots, as described in the figure
caption. Therefore, the synchronization is achieved after the
univariate impulse control is put into effect in the circuits’
experiment.
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FIG. 4. The schematic diagram of the impulse control for circuits synchronization.

IV. CONCLUSION

To conclude, on one hand, with the Lyapunov stability
theory of the impulse delay-differential equation, we prove the
sufficient condition for the univariate impulse synchronization
with unidirectional coupling of two paradigmatic systems
with time delay. On the other hand, we validate the correctness
of the theory and effectiveness of the method, by simulations
and an electrical circuit experiment.

TABLE I. Circuit component values.

R1, R2, R3, R4, R6, R7, R13, R14, R16,
R17, R19, R21, R22, R23, R24, R27, R28 10k�

R28, R29, R30

R5 2.86M�

R8 16.5k�

R9 3k�

R10 18.5k�

R11 60k�

R12, R25, R31, R32, R33, R34, R36 1k�

R15 3.33M�

R18 1.765k�

R20 10M�

R26 285�

R35 12�

R37 1.8k�

C1, C2, C3 10000PF

The advantage of the impulse control method is being
intermittent, with less influence on the response system, and
coupled with energy saving. It only employs control impulses
to implement the synchronization. It is worth noticing that
chaotic systems with time delay, combined with impulse
control, can be used in secure communication, not only for
having the high complexity of the secret key caused by the
infinite-dimensional initial conditions needed for the delay-
differential equation [39], but also reducing the redundancy

FIG. 5. The photo of the chaotic synchronization circuit.
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FIG. 6. The experimental waveforms: (a) drive system waveform x (channel 1), response system waveform x̃ (channel 2), and error system
waveform ex (channel 4) without impulse control; (b) drive system waveform y (channel 3), response system waveform ỹ (channel 2), and
error system waveform ey (channel 4) without impulse control; (c) drive system waveform z (channel 3), response system waveform z̃ (channel
1), and error system waveform ez (channel 4) without impulse control; (d) drive system waveform x (channel 1), response system waveform x̃
(channel 2), and error system waveform ex (channel 4) when impulse controller is active; (e) drive system waveform y (channel 1), response
system waveform ỹ (channel 2), and error system waveform ey (channel 4) when impulse controller is active; (f) drive system waveform z
(channel 1), response system waveform z̃ (channel 2), and error system waveform ez (channel 4) when impulse controller is active.

of the transmitting signal by which the required channel
bandwidth can be effectively decreased.

The bidirectional coupled chaotic system’s synchroniza-
tion is a future possible extension of this work.
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APPENDIX

1. The proof of Theorem 1

The proof of Theorem 1 is given as follows:
Proof. Select a Lyapunov function candidate as

V (x) = eT (t )e(t ), (A1)

where e(t ) = [ex(t ) ey(t )]T . For t = tk ,

V(ex, ey) = eT
x ex + eT

y ey

= eT
x (t−

k )ex(t−
k ) + (1 + c)2eT

y (t−
k )ey(t−

k )

� (1 + c)2 · V(t−
k , e(t−

k ))

= g[V(t−
k , e(t−

k ))], (A2)

where g(V) = (1 + c)2V.

If V (t, e(t )) � g[V (t + s, e(t + s))], for −τ � s � 0, then
V (t, e(t )) � (1 + c)2V (t + s, e(t + s)). Therefore,

V (t, e(t )) � (1 + c)2‖e(t + s)‖2. (A3)

For t �= tk ,

D+V (t, e(t ))

= ėT
x (t )ex(t ) + eT

x (t )ėx(t ) + ėT
y (t )ey(t ) + eT

y (t )ėy(t )

=[A1ex(t ) + B1ex(t − τ ) + ϕ1(x, y)]T ex(t )

+ eT
x (t )[A1ex(t ) + B1ex(t − τ ) + ϕ1(x, y)]

+ 2[A2ey(t ) + ϕ2(x, y)]T ey(t )

� λmax
(
A1

T + A1
)
eT

x (t )ex(t ) + 2eT
x (t )B1ex(t − τ )

+ 2eT
x (t )ϕ1(x, y) + 2A2eT

y (t )ey(t ) + 2ϕ2(x, y)ey(t )

� λmax
(
A1

T + A1
)
eT

x (t )ex(t ) + 2‖ex(t )‖2

+‖B1‖2‖ex(t − τ )‖2 + ‖ϕ1(x, y)‖2 + 2A2eT
y (t )ey(t )

+‖ey(t )‖2 + ‖ϕ2(x, y)‖2

�
[
λmax

(
A1

T + A1
) + 2 + L1 + ‖B1‖2

λmax(I2)

]
eT

x (t )ex(t )

+ (2A2 + 1 + L2)eT
y (t )ey(t )

� p(t )V (t, e(t )), (A4)
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where p(t ) = max{λmax(A1
T + A1) + 2 + L1+ ‖B1‖2

λmax(I2 ) ,
2A2 + 1 + L2}, and assume c(s) = s, M = p(t ).

According to condition (4) of Lemma 1, we have

M2 − M1 = inf
q>0

∫ q

g(q)

ds

c(s)
− sup

t>0

∫ t+δ

t
p(s)ds

= ln q − ln g(q) − Mδ

= − ln g − Mδ > 0. (A5)

According to condition (2) of Theorem 1, if the following
conditions are held:

M = max

{
λmax

(
A1

T + A1
) + 2 + L1 + ‖B1‖2

λmax(I2)
,

2A2 + 1 + L2

}
,

0 < δ < − ln (1 + c)2

M
, (A6)

then the error system (7) satisfies the conditions of Theorem
1, and we have the conclusion that the error system is asymp-
totically stable. �

2. Time delay implementation using small
time-lag circuits cascade

Time delay can generate infinite-dimensional hyper-
chaos [40]. The Chen system with time delay is such an
example, having multiple kinds of attractors, including the
single scroll attractor [41], the double scroll attractors [38,40],
and the composite multiscroll attractors [42], which possesses
multiple positive Lyapunov exponents, more complex dynam-
ics, and better application potential.

In order to produce the chaotic attractors in the experiment,
we use a circuit to implement Eq. (12). The circuit is then
divided into two parts: Chen circuit and delay circuit. Methods
of delay circuit implementation include the delay-line based
oscillators operating at very high and ultrahigh frequency
ranges [43], a T-type LCL network [44], a digital sampling
and replying with memory shift method [38,45], the all-pass
filter method [46], and chains of n Bessel filters [47]. In this
work, small time-lag units cascade are used to implement
the needed time delay. Compared with the other methods,
this method is simpler to implement [42]. The time-lag unit
diagram is shown in Fig. 7.

The transfer function of the small time-lag units is given
by

G(s) = 1

1 + T s
= 1

(1 + RCs)
, (A7)

R

R

C

FIG. 7. The time-lag circuit unit.

where T = RC = τ
n is the time-lag constant. If T is small

enough, the phase frequency characteristics of the time-lag
units are close to that of the delay unit. Amplitude and phase
frequency properties of the n units time-lag cascade are given
as

|G′( jω)| =
(

K√
1 + (T ω)2

)n

,∠G′( jω) = −n ∗ arctan(T ω).

(A8)

If n is large enough and T is small enough, then the nth-
order time-lag units approximate the pure time delay unit [42].
This method of implementation of time delay has a modular
structure and it is simple to implement. In order to make the
cascading time-lag units have a unit gain as that of pure time
delay, we need to add an amplitude compensation circuit.

3. Lyapunov spectrum calculation of chaos with time delay

Fifteen time-lag units are used to implement time delay.
Then, an 18-order differential equation is derived to describe
the behavior of the system with time delay, given as

Ẋ = AX + B(X − un) + ϕ(X),

u̇i = 1

T
(ui−1 − ui ), i = 1, 2, 3, . . . , n, (A9)

where n = 15. The Lyapunov exponent spectrum is calculated
by using the Jacobi matrix method. We can conclude that
there are two positive Lyapunov exponents in both the Rössler
system with time delay and in the Chen system with time
delay. The positive Lyapunov exponents in the Rössler system
with time delay are 0.24 and 0.22. The positive Lyapunov
exponents in the Chen system with time delay are 0.8055 and
0.12. Both attractors are hyperchaotic attractors.
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