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Simulation of geochemical banding: Theoretical modeling and fractal structure
in acidization-diffusion-precipitation dynamics
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In an earlier work, we presented an experimental study wherein reaction-transport processes were forged in
a real rock medium. Zonation of CaSO4-rich and CaSO4-depleted domains were obtained and characterized.
In the present study, we present a theoretical model to simulate the reaction-diffusion processes underlying the
dynamics of the system. An H2SO4-acidization front propagating radially from a central source into a CaCO3

rock bed causes dissolution of the calcite mineral and precipitation of CaSO4 as either gypsum (CaSO4 · 2H2O)
or anhydrite (anhydrous CaSO4). The deposition of CaSO4 is shown to exhibit a banded texture (irregular
concentric rings in two dimensions). The model involves reaction-diffusion evolution equations for three aqueous
species (H+, Ca2+, and SO4

2−), the CaCO3 dissolution, and the deposition of CaSO4, which is taken to obey a
scaled Cahn-Hilliard equation. The output captures the zonation observed experimentally. Fractal analysis of the
experimental contour shapes of the deposits reveals an oscillation in the fractal dimension over successive band
numbers. Such oscillation is interpreted in terms of the precipitation-depletion tug scenario, not observable in
regular two-dimensional Liesegang systems with high circular symmetry.
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I. INTRODUCTION

In an earlier work [1], we attempted the experimental
simulation of band formation in rocks, by designing a spon-
taneous acidization-diffusion-precipitation dynamical process
in the bed of a bare rock medium, thus mimicking a possibly
real natural scenario. An acidic water front was initiated at
the center of a ferruginous limestone (dominantly CaCO3)
rock sample, via a diffusion-acidization propagation, causing
the dissolution of the calcite mineral and releasing Ca2+,
according to the reaction

CaCO3(s) + 2H+(aq) −→ Ca2+(aq) + CO2(g) + H2O(l ).

(1)

The sulfate containing water (acidified by H2SO4) triggers
the precipitation of CaSO4 (as gypsum and anhydrite miner-
als), by virtue of the reaction

Ca2+(aq) + SO4
2−(aq) −→ CaSO4(s). (2)

This coupled reaction-diffusion scheme was shown to
yield bands of CaSO4, just like in a Liesegang patterning
regime [2–5]. The zonation obtained in this attempt (the
detailed procedure is described in Ref. [1]) is depicted in
Fig. 1.

In the present study, we propose a theoretical scheme in-
corporating reduced forms of reactions 1 and 2, coupled to the
diffusion of H+ and SO4

2−, to model the dynamical processes
leading to the pattern formation. Subsequently, we analyze the
textural and topological aspects of the band contours, from the
viewpoint of fractal structure.
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Theory background

Interest in modeling geochemical dynamical processes
started growing since the early 1980s [6], when the need
for such a theoretical framework became a necessity for
the understanding of a broad class of natural phenomena.
Although our study focuses on the beautiful periodicity, often
manifested as colorful band alternations in a wide variety
of rocks and notably in agates, dynamic processes in geo-
physics and geochemistry are not limited to this widely spread
scenery. They extend over the various aspects of environmen-
tal changes in the complex geospace surrounding our planet,
and their formulation has become indispensable, notably in
facing the intricate problems of climate change. Thus earth-
quakes, floods, winds, atmospheric pollution, coastal alter-
ations, and topographical and tectonic deformations have all
necessitated a relatively new approach, involving nonlinear
dynamical formulation. Many such processes obey power
laws [7], and are described by nonlinear differential equations.

Banding in rocks has commonly been associated with
the Liesegang phenomenon [8,9] of rhythmic precipitation in
gels. Two principal processes taking place on widely different
time scales, namely a fast precipitation reaction, coupled to
slow diffusion of coprecipitate ions generate a pattern of
parallel precipitate bands, coined a “Liesegang pattern” since
its observation by Liesegang in 1896 [2–4]. This striking
similarity has inevitably led to a similitude in the model
equations describing the formation of the Liesegang bands on
one hand, and the geochemical bands on the other. Once it is
formed, a Liesegang pattern is spatially “locked” in the gel,
just like the mineral bands persist in the rock bed for very
long times (millions of years). A survey of geochemical self-
patterning phenomena and geochemistry-Liesegang analogy
studies in literature reviews and special edited volumes is
found in Refs. [6,10–13].

2470-0045/2019/100(5)/052214(6) 052214-1 ©2019 American Physical Society

https://orcid.org/0000-0002-4119-3078
https://orcid.org/0000-0003-1272-9993
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.100.052214&domain=pdf&date_stamp=2019-11-25
https://doi.org/10.1103/PhysRevE.100.052214


MAZEN AL-GHOUL AND RABIH SULTAN PHYSICAL REVIEW E 100, 052214 (2019)

FIG. 1. Ferruginous limestone rock infiltrated by an H2SO4-
acidulated water from the center, outwards. Zonation inside the rock
is marked by an alternation of CaSO4-rich and CaSO4-depleted
domains. The experiment is described in Ref. [1]. The rock piece
is 25 cm (length) × 23 cm (width) × 3 cm (height or depth).

Mathematical modeling in geomorphological dynamics,
shear-flow mechanisms, melt pressure deformations, rheo-
logical flow, and metamorphism has witnessed growing im-
portance in the last four decades, notably in unraveling the
complex scenarios underlying the physicochemical phenom-
ena involved in architecting the emerging relief and geo-
graphical landscape. The dynamical description (equations)
encompasses the flow and percolation of underground water,
heat transfer processes, mass transfer, and last but not least (of
particular relevance in the present study), chemical reactions.
Phillips established that self-organization dynamical theories
have profound implications on the nature and trajectories of
landscape evolution and earth-surface system behavior [14].
He advanced a theory of spatially divergent self-organization
wherein autogenic differentiation is proved to be directly
linked to dynamical instability and chaos. A review of math-
ematical models and analytical methods describing basin-
scale hydrogeologic transport processes, with applications
to specific, world-spread sedimentary basins, is presented
by Person et al. [15]. Nonequilibrium actively deforming
orogenetic belts may generate dissipative structures by self-
organization [16]. The modeling of melt pressure buildup
helps in the interpretation of crustal-scale shear-zone and
fracturing systems [16]. An overview of the methodologies
for the simulation of fractured porous media based on the
evaluation of excluded volume, continuum percolation, and
power laws is found in Ref. [17]. Physical models for the
seismic cycle were developed [18] to provide alarming tools
for upcoming earthquakes.

In his monograph [19], Ortoleva demonstrates that geo-
chemical self-organization is possible in all types of rocks:
sedimentary, metamorphic, and igneous. Omnipresent noise
and small local perturbations can be amplified to unfold into
dissipative structures, yielding patterns of all symmetries and
spanning widely different length scales.

Geochemical banding is not always a result of a self-
patterning “template.” Sedimentary layering is merely formed
by seasonal variations, attributed to causes external to the rock
system [19,20]. Yet, self-organization mechanisms mediated

FIG. 2. Acid infiltration front (H+) causing the dissolution of the
main rock mineral (CaCO3). Another mineral (CaSO4) undergoes a
banded deposition behind the dissolution front.

by nonequilibrium instabilities within the rock medium were
thoroughly investigated and demonstrated in a variety of
studies [19–29].

II. MODELING GEOCHEMICAL SELF-ORGANIZATION

A. Model equations

In this subsection, we present a model of geochemical
banding, incorporating the diffusion of H+ and SO4

2− from
a central reservoir coupled to the reactions of dissolution of
CaCO3 [Eq. (1)] and precipitation of CaSO4 [Eq. (2)].

Equations (1) and (2) describing the chemistry that takes
place in the system are further simplified to the reduced
scheme:

CaCO3(s) + 2H+(aq)
k1−→ Ca2+(aq) + · · · , (3)

Ca2+(aq) + SO4
2−(aq)

k2−→ CaSO4(s), (4)

where k1 and k2 are the rate constants for the dissolution of
CaCO3 in acid and the precipitation of CaSO4, respectively.
We anticipate the precipitation of CaSO4 behind the CaCO3

dissolution front, depicted in Fig. 2 for a one-dimensional
(1D) spatial propagation. Such a scheme was predicted and
demonstrated [30] for the deposition of the goethite mineral,
behind a pyrite dissolution front.

The system can then be modeled using the following set of
reaction-diffusion equations [31]:

∂cH+

∂t
= DH+∇2cH+ − 2k1c2

H+ρCaCO3 , (5)

∂cCa2+

∂t
= DCa2+∇2cCa2+ + k1c2

H+ρCaCO3 − k2cCa2+cSO4
2− ,

(6)

∂cSO4
2−

∂t
= DSO4

2−∇2cSO4
2− − k2cCa2+cSO4

2− , (7)

∂ρCaCO3

∂t
= DCaCO3∇2ρCaCO3 − k1c2

H+ρCaCO3 , (8)

where ci, ρi, and Di represent the concentration, number
density (for solids), and diffusion coefficient of the ith species.
These reaction-diffusion equations in principle model a
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FIG. 3. Upper panels: Time evolution of the simulated gypsum banding pattern (φ): (a) t = 14, (b) t = 20, (c) t = 140, (d) t = 250, (e)
t = 600. Lower panels: Evolution of the bands via a one-dimensional cut of the patterns above along a diagonal radius r (solid line) and of
the dissolution of calcium carbonate ρCaCO3 (dashed line). Model parameters: k1 = k2 = 1; DH+ = 10, DCa2+ = 2, DSO4

2− = 2, DCaCO3 = 1;
σ = 0.1, λ = 1.

moving dissolution front which generates a homogeneous
colloidal cluster of CaSO4 in its wake. When its local concen-
tration attains a certain critical value, CaSO4 segregates into
regions of high concentrations ρh

CaSO4
(precipitate) and low

concentrations ρ l
CaSO4

(no precipitate) via a spinodal decom-
position scenario, which is described by a Cahn-Hilliard equa-
tion [32,33]. This mixing of reaction-diffusion processes with
a spinodal decomposition setting for precipitate formation was
proposed by Antal et al. [32] to explain Liesegang banding
in precipitate systems. In this model, the periodic precipitate
pattern emerges from a spinodal decomposition of colloidal
reaction products in the wake of a moving reaction front. It
provides an alternative view to those that invoke nucleation
and growth models (such as those used to generate Fig. 2),
and this in fact results in evolution equations that are simpler
to solve numerically and yield very good agreement with ex-
periments, especially those related to the spacing, width, and
time laws encountered in the classical Liesegang systems [32].
Subsequently, many theoretical studies that are constructed on
such a prototype have followed; for example, to model the
transition from bands to spots in the cadmium hydroxide and
cadmium sulfide precipitation systems [33] and to describe
the effect of noise on helical patterns [34]. We hereby couple
the evolution equations (5)–(8) to the following Cahn-Hilliard
equation describing the formation of the precipitate CaSO4:

∂φ

∂t
= −λ∇2(σ∇2φ + φ − φ3) + k2cCa2+cSO4

2−, (9)

where φ = (ρCaSO4 − ρ̄CaSO4 )/ρ̂CaSO4 represents the precipi-
tation field that is shifted by ρ̄CaSO4 = (ρh

CaSO4
+ ρ l

CaSO4
)/2

and scaled by ρ̂CaSO4 = (ρh
CaSO4

− ρ l
CaSO4

)/2 so that its value
ranges between −1 (no precipitate) and +1 (precipitate).
The parameters λ and σ are the rescaled kinetic coefficient
and surface tension, respectively. The ratio σ/λ defines a
characteristic time scale of the growth of unstable modes in
precipitation.

B. Method and results

We consider solving the evolution equations (5)–(9)
inside the domain � that consists of an outer quar-
ter circle of radius rout = 100 and an inner radius (the
reservoir) of radius rin = 5. The initial conditions in-
side � for cH+ , cCa2+ , cSO4

2− , ρCaCO3 , and φ are cho-
sen such that cH+ (t = 0) = cCa2+ (t = 0) = cSO4

2− (t = 0) = 0,
ρCaCO3 (t = 0) = 1, and φ(t = 0) = −1, all perturbed with
1% Gaussian noise. The boundary conditions are chosen such
that cH+ is fixed at the inner circular boundary, and no-flux
boundary conditions for all the species along the outer circular
boundary are applied. Equations (5)–(9) are solved numeri-
cally using a vertex-based finite volume method on unstruc-
tured meshes, whereby the spatial discretization is carried out
using the control volume finite element method (CVFEM).
The resulting nonlinear differential equations are successfully
integrated using a fast and robust scheme based on opera-
tor splitting and a line search Jacobian-free Newton-Krylov
method [35]. The structureless mesh, which is generated by
the open source software TRIANGLE, is suitable to reproduce
the complex geometry of �. The time evolution of the banding
of gypsum is represented by the field φ as depicted in Fig. 3
and in the movie in the Supplemental Material [36].

FIG. 4. Outer contours of the various zones of the acidified rock
shown in Fig. 1.
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FIG. 5. Variation of the fractal dimension with contour number
from the inner to outer regions. The alternation seems to be correlated
with the process delineating the contour, i.e., precipitation (troughs)
vs depletion (peaks).

The features of the bands are elucidated by a one-
dimensional radial cut through the two-dimensional patterns,
clearly showing congruence with the well-known empirical
laws of Liesegang banding. These are verified by an in-
creasing spacing (often referred to as direct spacing) and an
increasing bandwidth as a function of the radius r (see lower
panels in Fig. 3). The bands start growing in the wake of
the dissolution front of calcium carbonate (the dashed curves
in Fig. 3), due to the invading acid which in turn generates
the calcium ions via reaction 1. It is also important to note
that the model accounts for the wiggle structure in the band
contours, i.e., the departure from circularity, as observed in the
experiments [1]. The introduced noise perturbation captures
the randomness in the contour shapes in lieu of percolation,
as rock porosity effects were not considered here.

The present method is a distinct variant from our work on
Liesegang patterns with redissolution in the absence [37] and
presence [38] of an electric field, using the model of Müller
and Polezhaev [39].

III. FRACTAL REACTION FRONT CONTOURS

We now focus on the shape of the front contours in the
different regions. The shape of the acidization front is to a
large extent governed by porosity variations [40,41]. As a
result, irregularities emerge, and thus may give rise to fractal
structures. After choosing a specific region (from domains 1
to 8; see Fig. 1), the RGB (Red-Green-Blue) image is cropped,
and its outer contour is retained, as seen in Fig. 4.

The contour image is then transformed to black and white
and analyzed using the FRACTALYSE and FRAC3E software.
The results agree within 5–7%, but the qualitative trend in
moving from contour 1 to contour 8 is similarly and almost
exactly reproduced.

We characterize each contour by its fractal dimension
D, which is the slope of the linear plot of ln n(ξ ) versus
ln(1/ξ ), where n(ξ ) is the contour coverage, and ξ is the
varied length scale. D is determined here by the box count

FIG. 6. Band contours similar to the ones in Fig. 4, but here
obtained theoretically by the computations of Sec. II. In each band,
the red portion represents the band tail (back), while the blue portion
describes the band head (front).

method [7,42]. The values of the fractal dimension D and its
variation throughout the regions are plotted in Fig. 5.

The outcome is quite interesting, as we remark that D
oscillates in going from one contour to the next one. This
oscillation can be understood on the following basis. We
distinguish between two types of contours: depletion contours
defining the edge of a zone rich in CaSO4 (contours 1, 3, 5,
and 7 in Fig. 1), and precipitation contours which mark the
onset of the formation of a new band beyond an interband
zone (contours 2, 4, 6, and 8 in Fig. 1). The peaks corre-
spond to depletion contours while the troughs represent the
precipitation ones. When a band starts forming, the delineated
contour will eventually have a lower fractal dimension than
the outer edge of the preceding one; and when the medium
is depleted marking the ending edge of the newly formed
band, the fractal dimension increases. In other terms, the head
contour of a CaSO4-rich band will always have a higher D
than its tail contour.

FIG. 7. Fractal dimensions of the back (b) and the front (f)
of the conjectured bands of Fig. 6. The oscillations capture the
experimental oscillations and the decreasing trend seen in Fig. 5.
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In parallel to this experimental fractal analysis, we now
consider the fractal contours in the bands simulated in Sec. II.
We consider the final pattern and distinguish between the
fractal structure of the back contours (red) and the front ones
(blue), as depicted in Fig. 6. The back and the front portions of
a given band are analyzed for fractal structure, each separately.
The fractal dimension is computed by the box-count method,
and the results are plotted in Fig. 7.

We see that the oscillations in the fractal dimension of
the conjectured contours strikingly capture the features of the
experimental ones. The maxima and the minima appear to be
in harmony with those of Fig. 5. The essentially decreasing
strength in the fractal dimension is also reproduced.

IV. CONCLUSIONS

This work complements the in situ experimental work
of Ref. [1]. A model of nonlinear reaction-diffusion equa-

tions coupled to a Cahn-Hilliard-type precipitation scheme
for CaSO4 captured the formation of CaSO4 Liesegang
bands. The band contours exhibited wiggled structures, in-
stead of the traditional circular shapes obtained in a nor-
mal gel experiment. Oscillations in the fractal dimension
from one contour to the next one suggest a bifractal na-
ture, which seems to be correlated with the depletion-
precipitation scenario in the gypsum mineral. The theoretical
oscillations are in good agreement with the ones obtained
experimentally.
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