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Noise-induced macroscopic oscillations in a network of synaptically
coupled quadratic integrate-and-fire neurons
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We consider the effect of small independent local noise on a network of quadratic integrate-and-fire neurons,
globally coupled via synaptic pulses of finite width. The Fokker-Planck equation for a network of infinite size is
reduced to a low-dimensional system of ordinary differential equations using the recently proposed perturbation
theory based on circular cumulants. A bifurcation analysis of the reduced equations is performed, and areas in the
parameter space, where the noise causes macroscopic oscillations of the network, are determined. The validity
of the reduced equations is verified by comparing their solutions with “exact” solutions of the Fokker-Planck
equation, as well as with the results of direct simulation of stochastic microscopic dynamics of a finite-size
network.
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I. INTRODUCTION

Understanding the macroscopic behavior of complex sys-
tems consisting of large numbers of interacting oscillators or
excitable elements is of great interest because such systems
occur in a wide variety of significant applications [1–3].
Synchronization between the elements constituting such sys-
tems may lead to the occurrence of oscillating macroscopic
fields. Such a phenomenon is well explained by the Kuramoto
paradigmatic model [1,4], which describes a system of glob-
ally coupled phase oscillators with distributed natural frequen-
cies. Ott and Antonsen [5] analyzed this model in the infinite-
size (thermodynamic) limit and found that it displays low-
dimensional dynamics that can be described by a macroscopic
order parameter governed by a simple nonlinear differential
equation. The dimensionality reduction approach developed
in Ref. [5] is known as the Ott-Antonsen (OA) Ansatz. It
has been successfully applied in a number of subsequent
publications for various networks of phase oscillators [6–11]
(see also Ref. [12] for a recent review).

Synchronization effects are of particular interest in neu-
roscience. In the brain, oscillations are a prominent feature
of neuronal activity and the synchronization of oscillations
is a mechanism for neural communication, which endows
individual brain areas with the ability to perform specific
tasks [13]. Abnormal synchronization can cause neurological
diseases like Parkinson’s disease [14–17]. Simple models of
neural networks help us to understand the synchronization
mechanism in neural systems. One such model is a hetero-
geneous network of globally coupled quadratic integrate-and-
fire (QIF) neurons. The QIF neuron is the canonical model
for the class I neurons near the spiking threshold [18]. The
QIF neuron model can be transformed into a theta neuron
model using a simple variable transformation. The network
consisting of theta neurons admits an analytical treatment
via the OA Ansatz [19–22]. Thus, the QIF neural network,
after a suitable transformation, can also be treated with the

OA Ansatz. Alternatively, the QIF neural network model can
be directly reduced to a low-dimensional system using the
Lorentzian Ansatz (LA) [23]. The order parameters of the
OA and LA Ansätzes are related with each other by a simple
conformal mapping. The LA Ansatz has been successfully
applied in recent publications to analyze the occurrence of
macroscopic oscillations in networks of QIF neurons with a
realistic synaptic coupling [24], in the presence of a delay
in couplings [25,26], in an inhibitory network with finite
synaptic time [27], in the case of heterogeneous coupling [28],
as well as in two interacting populations [29].

The AO and LA Ansätzes are applicable only for noiseless
networks. Although noise is an important ingredient in neural
systems [30], the low-dimensional theory for QIF neural
networks in the presence of noise is still lacking. The aim of
this work is to fill the gap. In this paper, we consider a network
of globally coupled QIF neurons subjected to independent
local noise. The interaction between neurons is provided by
synaptic pulses of a finite width [24]. We apply the newly de-
veloped method of circular cumulants [31–33], and we derive
a low-dimensional system of ordinary differential equations
that describes the macroscopic behavior of a network in the
thermodynamic limit. The obtained low-dimensional model
allows us to perform a bifurcation analysis of the system and
determine the regions in the parameter space where noise
induces macroscopic oscillations.

The effect of noise on nonlinear dynamical systems has
been a topic of great interest in recent decades [34]. The
greatest influence of noise occurs near the bifurcation points.
An example is the coherence resonance [35] observed in a
noise-driven excitable system near the excitability threshold.
In a network of interacting excitable elements, noise can
induce global synchronous oscillations. Such a collective
effect was first demonstrated numerically for an ensemble of
globally coupled active rotators [36]. Later this model and
its various modifications were comprehensively studied by
different authors [37–40]. Noise-induced coherent oscillations
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were also considered in networks of excitable integrate-and
-fire neurons [41,42] as well as FitzHugh-Nagumo neurons
[43–48] (see Ref. [49] for a review). Most of the previous
studies considered only the diffusive coupling between ex-
citable elements, while here we analyze the QIF neurons
interacting via synaptic pulses. The low-dimensional model
derived here can be considered as an alternative to the phe-
nomenological neural mass models that are used to simulate
the coarse-grained activity of large populations of neurons
[50].

The paper is organized as follows. In Sec. II, we describe
the stochastic QIF neural network model and transform it
into a network of theta neurons. Then, in the thermodynamic
limit, we reduce the corresponding Fokker-Planck equation
to a low-dimensional system of equations for two circular
cumulants. Section III is devoted to bifurcation analysis of the
reduced equations and a comparison of their solutions with
“exact” solutions of the Fokker-Planck equation, as well as
with the results of direct simulation of a microscopic network
model. Finally, in Sec. IV we discuss our results.

II. LOW-DIMENSIONAL REDUCTION OF THE
STOCHASTIC QIF NEURAL NETWORK MODEL

A. Microscopic model

We consider a network of N all-to-all coupled quadratic
integrate-and-fire neurons subjected to local Gaussian noise.
The microscopic state of the network is defined by the set of
neurons’ membrane potentials {Vj} j=1,...,N , which satisfy the
following equations:

V̇j = V 2
j + η j + S + σξ j (t ). (1)

Here the constants η j specify the behavior of individual
neurons, S stands for the synaptic current, and the last term
σξ j (t ) represents independent white Gaussian noises with
〈ξ j (t )〉 = 0 and 〈ξi(t )ξ j (t ′)〉 = δi jδ(t − t ′), where σ governs
the amplitude of noise, δi j is the Kronecker delta, and δ(t − t ′)
is the Dirac delta function. Each moment the membrane
potential Vj reaches the peak value Vpeak, its voltage is reset
to the value Vreset. To simplify future analysis, we set Vpeak =
−Vreset → ∞. We also assume that synaptic dynamics is fast
and the synaptic current can be written as [24]

S ≡ S(t ) = J
Vth

N

N∑
i=1

H[Vi(t ) − Vth]. (2)

Here J represents the coupling strength, H (·) is the Heaviside
step function, and Vth is a threshold potential. The positive and
negative signs of J correspond to the excitatory and inhibitory
interactions, respectively. At the moment t , only those neurons
whose membrane potential Vi(t ) exceeds the threshold value
Vth contribute to the synaptic current. In fact, the parameter Vth

determines the width and height of the synaptic pulses. When
the ith neuron spikes, the therm VthH[Vi(t ) − Vth] generates
rectangular pulses of height Vth. The width of the pulses for
large Vth can be approximated as 1/Vth [24]. When Vth → ∞,
the pulses turn into Dirac δ spikes of zero width.

The noiseless (σ = 0) and isolated (S = 0) QIF neuron
is the canonical model for the class I neurons near the
spiking threshold. The spiking instability in such neurons

appears through a saddle-node bifurcation on an invariant
curve (SNIC), in which a pair of fixed points on a closed curve
coalesce to disappear, converting the curve to a periodic orbit.
A remarkable feature of a system following this scenario is
that it exhibits excitability before the bifurcation. For the QIF
neuron, this scenario is provided by the bifurcation parameter
η j . For η j < 0, the neuron is in an excitable regime, and for
η j > 0 it is in the spiking regime. Generally, we suppose that
the values of the parameters η j are distributed according to
some defined density function g(η).

Analytical processing and numerical simulation of the
model are more convenient after changing variables

Vj = tan(θ j/2) (3)

that turn QIF neurons into theta neurons. Such a transfor-
mation of variables allows us to avoid the problem associ-
ated with jumps of infinite size (from +∞ to −∞) of the
membrane potential Vj of the QIF neuron at the moments
of firing. The phase θ j of a theta neuron simply crosses the
value of θ j = π at these moments. For theta neurons, Eqs. (1)
transform to

θ̇ j = 1 − cos θ j + (1 + cos θ j )[η j + S + σξ j (t )]. (4)

In Eqs. (1) noise is additive, while here it is multiplica-
tive. Equations (4) should be interpreted in the sense of
Stratonovich [51].

B. Thermodynamic limit N → ∞
In the limit of an infinite number of neurons, the state of

the system can be described by the Fokker-Planck equation

∂ρ

∂t
= − ∂

∂θ

{[
f + h

2

∂h

∂θ

]
ρ

}
+ 1

2

∂2

∂θ2
(h2ρ). (5)

Here ρ = ρ(θ |η, t ) is the probability density function (PDF)
that defines the density of theta neurons with phase θ and
parameter η at time t . The functions f = f (θ ) and h = h(θ )
are as follows:

f = 1 − cos(θ ) + [1 + cos(θ )](η + S), (6a)

h = σ [1 + cos(θ )]. (6b)

In the thermodynamic limit, the sum in Eq. (2) should be
replaced by the integral

S = JVth

∫ +∞

−∞
g(η)

∫ π

−π

ρ(θ |η, t )H

[
tan

(
θ

2

)
− Vth

]
dθ dη.

(7)

Following the Ott-Antonsen theory [5], we expand the PDF
in Fourier series

ρ(θ |η, t ) = 1

2π

⎧⎨
⎩a0 +

⎡
⎣ ∞∑

j=1

a j (η, t )e−i jθ + c.c.

⎤
⎦

⎫⎬
⎭ (8)

with a0 = 1 due to the normalization condition, and we
rewrite Eq. (5) as an infinite system for the complex
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amplitudes of the Fourier modes,

ȧ j = i j(S + η + 1)a j + i

2
j(S + η − 1)(a j+1 + a j−1)

+ σ 2 j

4
[(1 − 2 j)a j−1 − (1 + 2 j)a j+1 − 3 ja j]

+ σ 2 j

8
[(1 − j)a j−2 − (1 + j)a j+2], j � 1. (9)

The amplitudes a j = ∫ π

−π
ρ(θ |η, t )ei jθ dθ are the local order

parameters at a given η. The global Kuramoto-Daido order
parameters are obtained by the averaging of these amplitudes
over the distribution of the parameter η:

Zj (t ) =
∫ +∞

−∞
g(η)a j (η, t )dη. (10)

Below we consider the Lorentzian distribution

g(η) = 1

π




(η − η̄)2 + 
2
, (11)

where 
 and η̄ are the width and the center of the distribution,
respectively. We adopt Ott-Antonsen’s assumption [5] on the
analyticity of a j (η, t ) as a function of complex η in the upper
half-plane. Then by using the residues theorem, we obtain
the following expression for the global Kuramoto-Daido order
parameters:

Zj (t ) = a j (η̄ + i
, t ), (12)

and we derive for them an infinite system of equations,

Ż j = i j(S + η̄ + 1 + i
)Zj

+ i

2
j(S + η̄ − 1 + i
)(Zj+1 + Zj−1)

+ σ 2 j

4
[(1 − 2 j)Zj−1 − (1 + 2 j)Zj+1 − 3 jZ j]

+ σ 2 j

8
[(1 − j)Zj−2 − (1 + j)Zj+2], j � 1, (13)

where Z0 = 1. The synaptic current (2) is expressed through
the parameters Zj as

S = JVth

2π

⎡
⎣π − θth − 2 Im

∞∑
j=1

Zj

j
((−1) j − e−i jθth )

⎤
⎦, (14)

where

θth = 2 arctan(Vth). (15)

In the absence of noise σ = 0, the system of Eqs. (13) has
an exact solution,

Zj = (Z1) j, (16)

known as an Ott-Antonsen invariant manifold or OA Ansatz
[5,6]. This reduces the system (13) to just one differential

equation for the first (main) order parameter Z ≡ Z1:

Ż = i

2
[(S + η̄ + i
)(Z + 1)2 − (Z − 1)2]. (17)

The synaptic current (14) is expressed through the parameter
Z as

S = JVth

2π

[
π − θth − 2 arg

(
1 − e−iθth Z

Z + 1

)]
. (18)

Equations (17) and (18) make up a closed low-dimensional
model for the noiseless network of synaptically coupled QIF
neurons. This model was analyzed in Ref. [24] using other
variables that correspond to the order parameters of the LA
Ansatz.

In the presence of noise, σ �= 0, the system of Eqs. (13)
does not satisfy the OA Ansatz (16), and we have to deal with
an infinite number of the variables Zj (t ), j = 1, . . . ,∞. An
approximate solution of this system can be found by truncat-
ing it at some j = M, i.e., assuming that Zj (t ) ≡ 0 for j > M.
However, the convergence of the solution with increasing M
may be slow, and to ensure sufficient accuracy, we may need
to solve a large number of equations, say M ∼ 100. Especially
bad convergence occurs in states with high synchrony, where
|Z1| ≈ 1, since the parameters Zj decay slowly with j [see
Fig. 8(a) in the Appendix].

Recently, Tyulkina et al. [31] presented an efficient gen-
eralization of the OA Ansatz in the case of weak noise,
σ � 1. They proposed to rewrite the equations for the Zj

parameters in terms of cumulants. It turned out that such a
reformulation of the problem is suitable for the perturbation
approach. The authors showed that for small σ , one can be
limited by only two-cumulant equations. Below, we use this
approach to obtain a low-dimensional model for the ensemble
of noisy QIF neurons interacting via synaptic pulses.

C. Cumulant equations

To write down the basic expressions necessary for the
low-dimensional reduction of the system (13) and (14), we
briefly describe the main ideas of Ref. [31]. According to
this reference, order parameters Zj = 〈ei jθ 〉 can be treated as
moments of the observable eiθ . They are determined via the
power series of the moment-generating function:

F (k) = 〈exp(keiθ )〉 ≡
∞∑
j=0

Zj
k j

j!
. (19)

The circular cumulants κ j , introduced in [31], are determined
from the power series of the cumulant-generating function:

�(k) = k
∂

∂k
ln F (k) ≡

∞∑
j=1

κ jk
j . (20)

From Eqs. (19) and (20) one can find the relationship between
κ j and Zj and thus rewrite Eqs. (13) and (14) in terms of
cumulants κ j . For the first two cumulants, this relationship is
as follows:

κ1 = Z1, κ2 = Z2 − Z2
1 . (21)

The benefit of cumulants becomes evident when considering
the case of small noise. Without noise, the moments satisfy
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the OA Ansatz (16), and from Eqs. (19) and (20) we have
F (k) = ekZ1 and �(k) = kZ1. It follows that only the first
cumulant is nonzero, κ1 = Z1, and all the higher cumulants
are zero: κ j = 0 for j > 1. In the presence of noise, all the
cumulants are generally nonzero. However, for small noise,
the cumulants with orders larger than 1 are small. In Ref. [31],
the dependence of the cumulants on the noise amplitude was
estimated as |κ j | ∼ σ 2( j−1). The universality of this scaling
law was recently demonstrated in Ref. [33] for various dis-
tributions. We verified that this scaling law is also valid for
the case of QIF neurons [see Fig. 8(b) in the Appendix].
Given this scaling law, the authors of Ref. [31] proposed a
simple approximation that takes into account only the first two
cumulants κ1 and κ2 and neglecting all higher cumulants. The
accuracy of such an approximation is O(σ 4). With the given
accuracy, the moments Zj can be expressed through these two
cumulants as

Zj = Z j
1 + κ2Z j−2

1 [ j( j − 1)]/2. (22)

Taking into account the above expressions, we obtained the
following two-cumulant approximation for the system (13):

Ż = i

2
[(S + η̄ + i
)(Z + 1)2 − (Z − 1)2] − σ 2

4
(Z + 1)3

+ κ

2

[
i(S + η̄ + i
 − 1) − 3

2
σ 2(Z + 1)

]
, (23a)

κ̇ = κ{2i[(Z + 1)(S + η̄ + i
) − Z + 1] − 3σ 2(Z + 1)2}

− σ 2

4
(Z + 1)4. (23b)

Here, for simplicity, the notations Z ≡ κ1 = Z1 and κ ≡ κ2 =
Z2 − Z2

1 for the first two cumulants are used. In the two-
cumulant approximation, the expression (14) for a synaptic
current is reduced to

S = JVth

2π

{
π − θth − 2 arg

(
1 − e−iθth Z

Z + 1

)

− Im

[
κ

(
1

(1 + Z )2
− 1

(eiθth − Z )2

)]}
. (24)

Equations (23) and (24) represent a low-dimensional model
for describing the evolution of a noisy QIF neural network.
For σ = 0 and κ = 0, this model coincides with the noiseless
model defined by Eqs. (17) and (18). In the next section, we
use the reduced model of Eqs. (23) and (24) to analyze the
effect of noise on network dynamics. We also compare the
solutions of this model with the solutions of a large system
of Eqs. (13) and (14), as well as with the results of numerical
simulation of the microscopic model (4) for a finite number of
neurons.

III. NUMERICAL ANALYSIS

We begin our analysis from the case of an excitable net-
work, when all free neurons in the network are excitable. For
the Lorentz distribution (11) of the parameter η, the absence
of spiking neurons requires that the distribution parameters be

 = 0 and η̄ < 0. This corresponds to a network of identical
excitable neurons. We consider this problem in Sec. III A,
and the effect of neural heterogeneity (
 �= 0) is discussed

FIG. 1. Bifurcation diagram of the two-cumulant approximation
[Eqs. (23) and (24)] in the (σ, J ) plane for fixed Vth = 5 and η̄ =
−0.01. The solid blue curve represents the saddle-node bifurcation
of fixed points, the dashed red curve shows the supercritical Hopf
bifurcation, and the dotted blue curve indicates the homoclinic bifur-
cation or the end of the quasiperiodic oscillation. The regions marked
with different letters correspond to different dynamic modes: L and
H , stable equilibrium regimes with low and high synaptic activity,
respectively; O, the limit-cycle oscillations; L/H , bistable mode with
low and high constant values of synaptic current; L/O denotes a
bistable mode with low constant synaptic activity and limit-cycle
oscillations. Two horizontal dotted lines (J = 0.62 and 1.7) show
cross sections of the bifurcation diagram, which are analyzed in
Figs. 2 and 3 in more detail.

in Sec. III B. Numerical analysis shows that macroscopic
oscillations do not occur in a network of excitable neurons
when the coupling is inhibitory (J < 0). Therefore, below
we present the bifurcation diagrams only for the excitatory
(J > 0) coupling.

A. Network of identical excitable neurons

The reduced model of Eqs. (23) and (24) is convenient for
bifurcation analysis, because it contains only two complex
dynamic variables: Z and κ . Generally, the behavior of the
model depends on five parameters: 
, η̄, J , σ , and Vth. Here
we consider the case of identical neurons, so 
 = 0. In the
bifurcation analysis, one of the remaining four parameters
can be fixed without loss of generality. This was shown in
Ref. [23] by rescaling the parameters of the Fokker-Planck
equation for the membrane potential. Here we fix the value
of the parameter η̄ and analyze the behavior of the system
depending on the parameters J , σ , and Vth.

Figure 1 shows the bifurcation diagram of Eqs. (23) and
(24) in the (σ, J ) plane for fixed Vth = 5 and η̄ = −0.01. The
diagram was built using the MATCONT package [52]. The
plane is divided into five areas by three bifurcation curves:
the solid blue curve represents the saddle-node bifurcation of
fixed points, the dashed red curve shows the supercritical Hopf
bifurcation, and the dotted blue curve indicates the homo-
clinic bifurcation or the end of the quasiperiodic oscillation.
Note that quasiperiodic solutions do not appear in a more
accurate model described by a large system of Eqs. (13) and
(14); they are artifacts of the two-cumulant approximation
associated with truncation of the cumulant equations. Five
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regions marked with different letters correspond to different
dynamic modes: L denotes a stable equilibrium mode with
low synaptic activity (low constant values of synaptic current
S) in which almost all neurons are quenched; H is another
stable equilibrium mode with high synaptic activity (high
constant values of synaptic current), where almost all neurons
fire, but incoherently, therefore the mean field is constant;
O denotes the area where a large part of the neurons fire
coherently and produce macroscopic periodic oscillations;
L/H denotes a bistable region with low and high constant
synaptic current values; and finally, L/O denotes a bistable
mode with low constant synaptic activity and macroscopic
oscillations.

To verify the accuracy of the above bifurcation diagram,
we compared the solutions of the two-cumulant Eqs. (23)
and (24) with “exact” results obtained from a large (M =
150) system of Eqs. (13) and (14), as well as the results
of numerical simulation of a stochastic microscopic model
(4), consisting of N = 2000 theta neurons. The microscopic
model was integrated by the Euler-Heun method, with a time
step 
t = 0.001. The two other models were integrated by
the standard Runge-Kutta 4/5 scheme. Below we present the
results for two different fixed values of the coupling strength
J = 0.62 and 1.7, which correspond to the two cross sections
of the bifurcation diagram shown in the Fig. 1 with dotted
horizontal lines.

For fixed J = 0.62 (bottom dotted line in Fig. 1), the
two-cumulant model predicts one or two stable equilibrium
states (fixed points) depending on the noise amplitude; the
number of stable equilibrium states changes via saddle-node
bifurcations of fixed points, which occur at the intersection
of the blue curve with the dashed line. Figure 2 shows the
dependence of the synaptic current S on the noise amplitude
σ for fixed J = 0.62 obtained by the three different methods
mentioned above: the green squares correspond to the two-
cumulant approximation, the blue circles show the “exact”
results obtained from Eqs. (13), and the red asterisks represent
the results of a stochastic microscopic model (4). In the latter
case, the synaptic current is a stochastic variable, and here
we show its time average value. To reveal the bistability,
the amplitude σ of the noise was changed in the forward
(upper panel) and reverse (lower panel) directions. We see a
hysteresis in the dependence of S on σ for all three models.
Thus, the low-dimensional model (23) correctly predicts the
existence of the L/H bistability, although the exact values
of the noise amplitude, at which the synaptic current un-
dergoes jumps from small to large values and vice versa,
differ for different models. Note that synaptic current values
outside the hysteresis are in good agreement for all three
models. In addition, we remark that although true bistability
in noisy systems can take place only in the thermodynamic
limit, numerical simulation of a finite-size microscopic model
shows extremely long residence times close to each stable
equilibrium (see the caption of Fig. 2). Similar effects were
described in Ref. [23].

For a larger value of the coupling strength J = 1.7, the
influence of noise on the asymptotic dynamics of the network
becomes more interesting (see the upper dotted line in Fig. 1).
Here, along with stable equilibrium states, the limit-cycle
oscillations occur. To demonstrate such noise-induced oscil-

0.02 0.03 0.04
0

0.01

0.02

0.03

0

0.01

0.02

0.03

(a)

(b)

FIG. 2. The dependence of the synaptic current S on the noise
amplitude σ for fixed J = 0.62: (a) forward continuation and
(b) backward continuation. The continuations were performed with a
step size 
σ = 10−3. At each step, the system was idly integrated
for a period T = 1500 to eliminate transient. The values of the
parameters are Vth = 5 and η̄ = −0.01. The green squares show the
solution of the two-cumulant Eqs. (23) and (24), the blue circles
show the “exact” results obtained from a large (M = 150) system of
Eqs. (13) and (14), and the red asterisks show the results of numerical
simulation of a stochastic microscopic model (4), consisting of N =
2000 theta neurons.

lations, in Fig. 3 we plot the dependence of the variance
Var(S) of the synaptic current on the noise amplitude for
fixed J = 1.7. Zero or small values of the variance correspond
to nonoscillating states, while large values of the variance
indicate macroscopic oscillations of the network. Here, as in

0 0.05 0.1 0.15
0

0.02

0.04

0.06

0

0.02

0.04

0.06

(a)

(b)

FIG. 3. The forward (a) and backward (b) continuations of the
variance Var(S) of the synaptic current for the coupling strength
J = 1.7. Other parameters and markings are the same as in Fig. 2.
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0 0.05 0.1
0

1

2

3

4

FIG. 4. The influence of the width of synaptic pulses determined
by the threshold potential Vth on the Hopf and saddle-node bifurca-
tions. The bifurcation curves are presented for three different values
of Vth: 5, 25, and 50. The corresponding Hopf bifurcation curves are
shown by dashed red, dotted black, and dashed-dotted green curves.
The saddle-node bifurcation curves (solid blue curve) practically
coincide for all given values of Vth.

Fig. 2, we present forward and backward continuations of this
characteristic for the above three different models using the
same symbolic notations. Again, we see that the two-cumulant
Eqs. (23) and (24) describe well the asymptotic behavior of
the network in the entire range of σ , with the exception of
a narrow hysteresis region, where L/O bistability occurs. We
tried to improve the results in this region by testing various
methods of truncating the cumulant equations. Along with
the closure κ3 = 0 used here, we checked two other closures
κ3 = (3/2)κ2

2 /Z1 and (3/2)κ2
2 Z∗

1 proposed in Ref. [32]. In
both cases, no tangible benefit was obtained.

Figure 3 shows that noise acts in two antagonistic ways:
while sufficient noise intensity can excite quenched neurons,
causing a synchronized firing, large-amplitude noise deterio-
rates the synchronization properties of the network. As a re-
sult, coherent firing is observed only for an intermediate noise
level, similar to the classical coherence resonance [35]. Unlike
classical coherence resonance, which deals with one noise
driven excitable element, here we are dealing with a network
of interacting excitable neurons. In our network, noise-excited
neurons synchronize due to synaptic interaction and produce
coherent macroscopic oscillations. The fact that coupling can
enhance noise-induced coherence in excitable systems was
reported for an array of diffusely coupled FitzHugh-Nagumo
neurons in Refs. [43,44].

We also investigated the effect of the width of synaptic
pulses, determined by the threshold potential Vth, on the Hopf
bifurcation. The results are presented in Fig. 4. Here, Hopf
curves are plotted in the (σ, J ) plane for three different values
of the threshold potential Vth. We see that for a fixed noise
intensity, an increase in Vth (a decrease in the width of synaptic
pulses) shifts the threshold of macroscopic oscillations toward
higher values of the coupling strength J . For Vth → ∞, the
threshold of the coupling strength tends to infinity, so that
macroscopic oscillations become impossible for any finite J
and σ . Thus, macroscopic oscillations in the noisy network of
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FIG. 5. Spiking rate (a) and raster plot (b) for the oscillating
mode at σ = 0.05, J = 1.7, and Vth = 5. The solid blue and dashed
pink curves show the results obtained from the stochastic micro-
scopic model (4) consisting of N = 2000 neurons and two-cumulant
approximation [Eqs. (23), (24), and (25)], respectively. Dots in the
raster plot correspond to firing events of individual neurons. Parts
(c) and (d) show the same results as in (a) and (b), respectively,
but for the stable equilibrium mode with high synaptic activity at
the parameters σ = 0.12, J = 1.7, and Vth = 5. Spiking rate of the
microscopic system is smoothed by using a moving average with a
time window of size δt = 10−2.

QIF neurons, as well as in the deterministic network consid-
ered in Ref. [23], cannot occur in the case of interaction via
instantaneous pulses. Interestingly, a change in Vth has almost
no effect on the saddle-node bifurcation. The saddle-node
bifurcation curves, shown in Fig. 4 for different values of Vth,
are indistinguishable.

In experimental neuroscience, the dynamic properties of
neural populations are usually analyzed by measuring the fir-
ing rate. In Fig. 5 we present the dynamics of this characteris-
tic estimated from the microscopic model (4), and we compare
it with that obtained from the two-cumulant approximation
(23). We demonstrate this for two different dynamic modes,
namely the mode of macroscopic oscillations [Figs. 5(a) and
5(b)] and the mode of stable equilibrium with high synaptic
activity [Figs. 5(a) and 5(b)]. For the microscopic model,
the firing rate is just the number of neurons that cross the
phase θ = π in one integration step size 
t divided by 
t .
In Figs. 5(a) and 5(c) this is shown by solid blue curves.
In the thermodynamic limit, the firing rate r(t ) is defined
as a probability flux at θ = π : r(t ) = 2ρ(π |η̄ + i
, t ). For
the two-cumulant approximation, this gives the following
expression:

r(t ) = 1 − |Z|2
π |1 + Z|2 + Re

[
2κ

π (1 + Z )3

]
. (25)
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FIG. 6. (a) “Exact” PDF of a stable equilibrium mode with
high synaptic activity estimated from a large (M = 150) system
of Eqs. (13) and (14). The parameter values are the same as in
Figs. 5(c) and 5(d). (b) The absolute value of the difference between
“exact” PDF and PDF, estimated from the two-cumulant approxima-
tion (solid blue curve), as well as “exact” PDF and PDF, estimated
from the stochastic microscopic model (4), consisting of N = 2000
neurons (red dotted curve).

This expression is obtained using the relation defined by
Eq. (22). Since the accuracy of Eq. (22) is O(σ 4), it follows
that the accuracy of the spiking rate Eq. (25) is also O(σ 4).
Note that Goldobin and Dolmatova [33] have recently shown
that the cumulant-generating function, which consists of only
two nonzero cumulants, leads to a divergence of the firing
rate. However, in the presence of a small parameter and the
hierarchy of cumulants, the spiking rate can be estimated
with any given accuracy. The estimation of the spiking rate
with the accuracy O(σ 4) presented in Ref. [33] coincides
with our Eq. (25). In Figs. 5(a) and 5(c), the spiking rate
is shown by dotted pink curves. For the oscillatory mode
[Fig. 5(a)], it does not exactly match the firing rate estimated
from the microscopic model, but it has a similar amplitude
and frequency. For equilibrium mode [Fig. 5(c)], the results
of the two-cumulant and microscopic models are in good
agreement: the two-cumulant approximation gives the mean
value of the fluctuating firing rate of the microscopic model.
In the latter case, fluctuations occur due to the finite size of
the network, while in the first case there are no fluctuations
because of the infinite size of the network. To visualize the
behavior of the system at the microscopic level, in Figs. 5(b)
and 5(d) we present the spike raster plots for the oscillating
and equilibrium modes, respectively. In the first case, the
raster plot shows highly correlated spikes, while in the second
case the spikes of the neurons are not correlated.

Finally, in Fig. 6 we plot a stationary PDF ρ(θ |η̄, t ) ≡
ρ(θ ) corresponding to a stable equilibrium mode with high
synaptic activity at the same values of the parameter used
in Figs. 5(c) and 5(d). Figure 6(a) shows the “exact” PDF
obtained from a large (M = 150) system of Eqs. (13) and
(14). To estimate the accuracy of the two-cumulant approx-
imation, in Fig. 6(b) we show (solid blue curve) the absolute
value of the difference |δρ(θ )| between the “exact” PDF and
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0.015
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FIG. 7. A plot of the variance Var(S) of the synaptic current
in the (σ,
) plane, estimated from the numerical simulation of
the stochastic microscopic model (4). The solid pink curves show
the boundaries of limit-cycle oscillations, obtained from the two-
cumulant approximation (23) and (24). Parameters: J = 1.7, η̄ =
−0.01, Vth = 5, and N = 2000.

the PDF estimated from the two-cumulant approximation.
The maximal error of the two-cumulant approximation is
max[|δρ(θ )|] ≈ 5 × 10−4. For a given noise amplitude σ =
0.12, this result confirms the fact that the accuracy of the
two-cumulant approximation is O(σ 4) [31]. In this figure,
we also show (dotted red curve) the absolute value of the
difference between the “exact” PDF and the PDF, estimated
from a stochastic microscopic model (4) consisting of N =
2000 neurons. Here, the maximum deviation between the
PDFs is ≈4 × 10−3. This deviation is mainly due to the fact
that the “exact” PDF corresponds to a network of infinite size,
and the PDF, estimated by Eqs. (4), corresponds to a network
of finite size.

B. The effect of neural heterogeneity

To test the robustness of macroscopic oscillations caused
by noise, we investigated an influence of neural heterogeneity
on the occurrence of such oscillations. In our model, the
heterogeneity of neurons is determined by the width 
 of the
Lorentzian distribution (11) of the parameter η. In Fig. 7 we
present a color plot of the variance Var(S) of the synaptic
current in the (σ,
) parameter plane, estimated from the
stochastic microscopic model (4), and we compare it with
the bifurcation diagram, obtained from the two-cumulant ap-
proximation. The two-cumulant Eqs. (23) and (24) predict the
limit-cycle oscillations in the region lying between two solid
pink curves. This prediction is in good agreement with the
simulation of the stochastic microscopic model: small values
of the parameter Var(S) correspond to a stable equilibrium
of the network, while large values indicate macroscopic os-
cillations. We see that noise-induced oscillations exist when

 > 0, which means that they are robust with respect to
the heterogeneity of neurons. Moreover, heterogeneity is a
favorable factor for the occurrence of macroscopic oscilla-
tions, and its influence on this phenomenon is similar to the
effect of noise. This can be seen from the shape of the (σ,
)
diagram; its topology remains unchanged after a symmetric
transformation along the diagonal.
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IV. DISCUSSION

In this paper, we analyzed the dynamics of a large net-
work of globally coupled quadratic integrate-and-fire neurons
subjected to independent local noise. The interaction between
neurons is determined by synaptic pulses of a finite width.
The quadratic integrate-and-fire neuron is the canonical model
for the class I neurons in which spiking instability occurs
through a saddle-node bifurcation on an invariant curve. Using
a standard change of variables, we transformed a network
of quadratic integrate-and-fire neurons into an equivalent
network of theta neurons, and we considered this network
in the limit of infinite size. This allowed us to apply the
newly developed perturbation method [31] to reduce the
corresponding Fokker-Planck equation to a low-dimensional
dynamical system determined by only two circular cumulants.
The two-cumulant approximation is a natural extension of
the Ott-Antonsen Ansatz [5], applied to purely deterministic
systems, for the case of dynamical systems with small noise.

We used the advantage of the reduced two-cumulant equa-
tions in order to perform a bifurcation analysis of the system
depending on various network parameters. For a network con-
sisting of identical excitable neurons, we found three different
modes: two of them are stable equilibrium states with low and
high synaptic activity, and the third is a mode of limit-cycle
oscillations. We also detected two regions of bistability with
a mixture of the above two states of equilibrium or a state of
equilibrium and oscillations of the limit cycle.

The most interesting mode of the network is the limit-cycle
oscillations. Here, the initially quenched neurons are excited
by noise, and their spikes are synchronized due to the interac-
tion, so that an oscillating macroscopic field is formed. Such
oscillations occur for a sufficiently high coupling strength and
for intermediate noise amplitudes. When the noise amplitude
decreases or increases, the system goes out of the oscillation
mode and enters a stable equilibrium mode with low or
high synaptic activity, respectively. We also investigated the
effect of neural heterogeneity on the excitation of macroscopic
oscillations. Our studies have shown that heterogeneity is a fa-
vorable factor for the occurrence of macroscopic oscillations,
and its influence on this phenomenon is similar to the effect of
noise. Note that global oscillations caused by heterogeneous
coupling were reported in an inhibitory network of spiking
QIF neurons in Ref. [28].

We verified the accuracy of the two-cumulant approxima-
tion, comparing it with the “exact” solution of the Fokker-
Planck equation. The latter was obtained by expanding the
probability density function in a truncated Fourier series and
solving a large system of differential equations for the Fourier
amplitudes. This comparison showed that the two-cumulant
approximation gives good results almost everywhere, except
for narrow regions of bistability. The two-cumulant equations
correctly predict the existence of bistabilities, although the
predicted boundaries of the bistabilities differ from the ex-
act boundaries. In general, we can conclude that the two-
cumulant approximation is a good low-dimensional model
for describing the dynamics of a noisy infinite-size network
of synaptically coupled QIF neurons. We also showed that

this model is well suited for predicting the dynamics of
finite-size networks. This was demonstrated by comparing its
solutions with the results of direct numerical simulation of a
microscopic model of a stochastic network consisting of 2000
synaptically coupled neurons.

This paper extends the research of Refs. [19–29], devoted
to a low-dimensional description of the dynamics of noise-
less globally coupled QIF or theta neuron networks, to the
case of noisy networks. Such model networks are universal
in the sense that they describe the dynamics of coupled
canonical class I neurons, which are modeled by a normal-
form equation that is universal near the spiking threshold.
The low-dimensional models derived from the microscopic
spiking neurodynamics can be considered as an alternative
to the phenomenological neural mass models that are used
to simulate the coarse-grained activity of large populations of
neurons [50]. The two-cumulant model of the noisy QIF neu-
ral network can be useful for testing new neural stimulation
protocols needed for medical applications.
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APPENDIX: HIERARCHY OF CUMULANTS IN QIF
NEURON NETWORK

In Fig. 8, we show the dependence of the order parameters
|Zj | and the cumulants |κ j | on the index j for different
values of the noise amplitude σ 2. The order parameters were
estimated using the truncated system of Eqs. (13) and (14)
with M = 300. We see that the cumulants decay faster than
the order parameters. What is more important, the linear
dependence on the semilog graph in Fig. 8(b) indicates that the
cumulants’ hierarchy satisfies the scaling law κ j ∝ σ 2( j−1).
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FIG. 8. (a) Order parameters |Zj | and (b) circular cumulants |κ j |
are plotted for η̄ = −0.01, Vth = 5, 
 = 0, and different values of the
noise amplitude: σ 2 = 0.01 (stars), σ 2 = 0.005 (circles), and σ 2 =
0.001 (crosses).
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