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Mobile discrete breathers (MDBs) are here suggested as localized excitations underlying the trapping and
transport of charged particles (electron or hole) along a DNA-like molecular wire with anchored ends such as
attached to two electrodes. For illustration the Peyrard-Bishop-Dauxois-Holstein (PBDH) model is used. MDBs
are excited by imposing appropriate disturbances to velocities or space positions of adjacent nucleotide pairs
or lattice units of the wire. They can be directed either towards or away from the wire hence transverse to it.
Numerical computer simulations show that a rather stable quasiparticle MDB + electron is possible when just a
few of the nucleotide pairs near one of the fixed ends of the wire are excited. For the process to be effective, the
charge, e.g., the electron, must be initially placed around the disturbed region of the molecule. Once the MDB +
electron quasiparticle is formed it may be transported to quite a long distance up to ca. 60–70 nm in real space.
Our findings show that such process does not demand intervention of an externally applied electric field and
hence it may be considered as alternative to the polaron transport process.
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I. INTRODUCTION

It is customary to assume polaron transport when, say,
an excess electron is injected into a crystal and there is an
applied external electric field [1–15]. A similar approach
has been used to account for possible charge transport in
DNA and the like [16–31]. Indeed, it has been advocated
that a DNA-like molecule can be used as a basic element
for a molecular wire in nanobioelectronics [32–35]. However,
polaron transport is not the only possible way to transfer
charges along, say, molecular wires. This was made clear
in the case of conducting polymers (aka synthetic metals)
and other systems [22,23,27,36–54]. In particular, it has been
proposed a field-free charge transport process based upon
the genuine nonlinear dynamics of the crystal lattice with
results applicable to, e.g., DNA-like molecular wires [55,56].
We know that in one-dimensional crystal lattices of units-
oscillators of appropriate dynamics, the nonlinearity of the
on-site potential along with the nonlinearity of intersite inter-
action combined with the dispersion resulting from the lattice
discreteness fosters localization of deformation excitations in
the form of solitons or discrete breathers (DB aka intrinsic
localized modes). Even more, localized modes, may occur
either in the absence of on-site dynamics or in the absence
of nonlinear intersite dynamics (albeit with harmonic ones)
[57,58]. For example, it has been shown that in a chain
where «angular» disturbances can be created and where on-
site potentials are absent there is chance for the formation of
lattice solitons [59,60]. For DNA-based and the like molecular
wires, a charge is expected to be transported by profiting of
suitable perturbations of the radii of base pairs, even when
the nucleotides play identical symmetric motions about an
equilibrium point created by a strong enough on-site potential.

Discrete breathers [54,57,58,61–65] are nonlinear localized
excitations fitting these conditions and, indeed, in DNA-like
molecular wires have been shown forming bound states DB
electron as polaro-breathers [21–31,39,54,57,58,61–69]. Note
that the latter, based on the polaron effect, comes from the
lattice disturbing action of the added, excess electron to the
wire as first discussed by Landau and Pekar [1–6]. In modern
parlance we say that the nonlinear interaction of the electron-
phonon interaction defines the Landau quasiparticle as charge
carrier. Another case is that of a heated wire when thermally
excited DB may also trap electrons. In such a case transport
may be hindered as too many lattice excitations can be created
with the electron wandering from one to another of them thus
leading to a kind of diffusion process demanding, needed less
to say, the action of an external electric field to provide definite
motion of the electron along the wire. Yet another attractive
idea is to externally excite a mobile DB (MDB) or a lattice
soliton by an appropriate action, on position or momentum or
in both, on units of the molecular wire. In DNA-like wires
this could allow a group of adjacent nucleotides to be able to
capture, bind and transport electrons along them. The process
may lead to a steady or a long transient quasiparticle with a
lifetime long enough to produce the transport of the electron
from one site to another given acceptor site far away from the
former [61–74].

In this paper we study the interaction of an elec-
tron with a MDB, excited in a small group of neigh-
boring base pairs near one of fixed ends of the molec-
ular wire due to initial nucleotide displacements or per-
turbations of their velocity. In Sec. II we introduce the
model we consider. It builds upon a Peyrard-Bishop-
Dauxois-Holstein model (PBDH) assuming there are only
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changes of base pair/unit radii and no angular displace-
ments [10,70] (see also Refs. [16,17,32,55,56,71–73]).
In our computer experiments we vary the number of excited
units, their location, excitation energy, and initial shape of
electron wave function to determine conditions for the for-
mation of stable (multistable) charged quasiparticles that is
mobile breather plus trapped electron. As a breather can be
excited by perturbations of transverse velocity or momentum
or by transverse displacements of positions of equilibrium
interbase distances (thus changing the transverse position of
units, in the Watson-Crick-like pairs) we examine effects of
the displacements from the wire axis independently from
the displacements in the reverse direction (towards its axis).
Section III is devoted to the case when disturbances are
imposed on velocities of units while in Sec. IV the excitation
is produced by their space displacements. In Sec. V an illustra-
tion is provided about the role of temperature upon excitation
of MDB and subsequent trapping and transport processes.
Finally, in Sec. VI a few remarks are provided supporting the
relevance that the proposed MDB-assisted charge transport
offers to molecular electronics.

II. PEYRARD-BISHOP-DAUXOIS-HOLSTEIN (PBDH)
MODEL-MOLECULAR WIRE

The building blocks of our extension of the Peyrard-
Bishop-Dauxois-Holstein (PBDH) model are the Peyrard-
Bishop-Dauxois Hamiltonian [67,71] (describing crystal lat-
tice classical dynamics) and the Holstein Hamiltonian [10]
(accounting for electron quantum dynamics). To be specific
the bond between nucleotides (all of them are taken identical)
in each base pair is described by the anharmonic Morse
potential

Vn = D(e−2σyn − 2e−σyn ), (1)

and the stacking interaction between neighboring base pairs is

Wn = K

2
(yn − yn−1)2[1 + ρe−α(yn+yn−1 )]. (2)

D, σ , K, ρ, and α are all taken real and positive, and the
variables yn denote positive or negative displacements of the
nth base pair from its equilibrium positions.

Then our DNA-like molecular wire Hamiltonian is

Ĥ =
N∑
n

αn|n〉〈n| −
N∑

n,m

νnm|n〉〈m|

+χ
∑

n

(wn − vn)|n〉〈n|

+
∑

n

[
1

2
M

(
ẇ2

n+v̇2
n

)+Vn(wn, vn)+Wn(wn,n−1, vn,n−1)

]
,

(3)

where M is the nucleotide mass, wn,vn, displacements of two
bases in the nth pair from an equilibrium position, a dot over
a quantity denotes time derivative, and corresponding values
include velocity of nucleotides in the nth base pair, αn is the
charge energy at the nth site, νnm are coefficients of hopping

and/or jumping integrals, χ characterizes the bond between an
external charge and the wire.

For convenience we introduce the compound variables

xn = (wn + vn)/
√

2, yn = (wn − vn)/
√

2, (4)

and we consider symmetrical motions (vn ≈ –wn). As the
electron obeys the discrete Schrödinger equation on the lattice
its wave function is sought in the form

|�〉 =
∑

n

cn(t ) |n〉. (5)

In view of the above, the nucleotide motions obey the com-
bined evolution equations

M
d2yn

dt2
+ K (2yn − yn−1 − yn+1) + ρ fn(yn−1,n,n+1)

+ ∂V (yn)

∂yn
=

√
2 · χ |cn|2, (6)

ih̄
dcn

dt
− αncn +

∑
m

vnmcm = −
√

2 · χyncn. (7)

Further, for a homogenous molecule we set (αn ≡ 0) and
reduce (7) to

ih̄
dcn

dt
+ ν(cn+1 + cn−1) = −

√
2 · χyncn, (8)

which defines cn. We shall be using values of the parame-
ters ν and χ obtained from comparison with experiment for
small displacements yn, when the harmonic approximation is
applicable, and the PBDH model reduces to just the Holstein
dynamics [10,75]. When ν and χ are both positive we have
the so-called minimal nonlinear model DNA [29,56,76], and
the evolution equations reduce to

..
qn + 	

.
qn = e−qn (e−qn − 1) + ω2

bond(qn+1 − 2qn + qn−1)

+ ρ fn(yn−1,n,n+1) + χh|cn|2 (9)

ċn = iτe(cn+1 + cn−1) + iχelqncn, (10)

together with the expression for the electron energy (in h̄ωM

units) [56]:

Eel = −τe

∑
n

(
с
∗
n(cn−1 + cn+1)

)−χel

∑
n

qn |cn|2, (11)

and, needless to say, the probability density normalization
requirement:

N∑
n=1

|cn|2 = 1. (12)

In the Eqs. (9)–(12) qn = σyn denote the dimensionless
displacement of the nth nucleotide from its equilibrium po-
sition. Now dots above quantities denote derivative with
respect to the dimensionless time τ = ωMt , thus providing
a numerical velocity. The quantity ωM = (2Dσ 2/M )1/2 de-
scribes the frequency of linear oscillations in the Morse po-
tential well and ωbond = (K/M )1/2/ωM is the dimensionless
frequency of small linear nucleotide oscillations. The groups
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FIG. 1. DNA-like molecular wire with anchored ends (N = 200 nucleotides/units). Excitation of pinned and mobile discrete breathers
depicted by the evolution of displacements of particles qn(τ ). (a) Excitation by momentum or velocity kicks, directed towards the axis of
the wire, for two adjacent particles located far from ends, v99(0) = v100(0) = –4, all other vn(0) = 0, and all qn(0) = 0. (b) The same when
excitation is realized near a fixed end, v2(0) = v3(0) = –4, all other vn(0) = 0, qn(0) = 0. The actual compression of the molecule is about
qmin/R0(qmin < 0) which does not exceed 4.5% and its expansion qmax/R0 does not exceed 18%. Here qmin and qmax are the respective minimal
and maximal deviations of particles from their equilibrium positions.

χh = √
2χ/2σD and χel = √

2χ/h̄ωMσ = χh(2D/h̄ωM) de-
fine parameters accounting for the interaction between the
electron and the lattice. τe = ν/h̄ωM is the ratio between
typical times of evolution of the electron wave function and
that of the lattice dynamics. Finally, the function fn describes
the nonlinearity of the interaction force [55,56]:

fn = (qn+1 − qn)[1 + 0.5α(qn+1 − qn)]e−α(qn+1+qn )

+ (qn−1 − qn)[1 + 0.5α(qn−1 − qn)]e−α(qn−1+qn ). (13)

The coefficient α is now also rescaled (α → α/σ ) due
to introduction of the dimensionless displacement q. Г is
a friction coefficient included into equations to account for
various possible losses of energy when units are in motion.

From (11) it follows that, when χ = 0, the electron has
zero energy being localized at one single site, while when
being localized in a cluster of k sites with, in particular,
uniform distribution of probability density |cn|2 in the cluster,
it has the energy:

Eel = −2τe
k − 1

k

∑
n

cos(ϕn − ϕn−1). (14)

Note that the sign of (14) depends on the distribution
of phases ϕn of the components cn = |cn|exp(iϕn). Hence,
there is minimal electron energy when all phases ϕn

coincide,

Eel = −2τe
k − 1

k
→ −2τe|k	1 , (15)

whereas there is maximal electron energy 2τe, when ϕn =
ϕn−1 ± π , and also Eel → 0 if phases of the wave-function
components are distributed chaotically.

For a localized distribution (small k) the value of elec-
tron energy is between these critical values evolving in time
to a distributed state. However, the energy of a localized
state may be less than –2τe if the electron interacts with a
localized excitation in a lattice for which the second term
in Eq. (11) is larger than the first one as we shall see
below.

With a suitable choice of initial states and boundary con-
ditions for an anchored molecular wire (q1,N = v1,N = 0),
the Eqs. (9)–(10) have been numerically integrated using a
fourth-order Runge-Kutta method. This permits determination
of displacements (of coordinates) qn(τ ), velocities vn(τ ), and
(probability density) wave function components cn(τ ). For
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FIG. 2. DNA-like molecular wire with anchored ends (N = 200 nucleotides/units). Evolution of electron probability densities |cn(τ )|2
when simultaneously there is breather excitation: left panel corresponds to the case of Fig. 1(a) and right panel to that of Fig. 1(b), respectively.
ωbond = 0.4, τe = 18, χh ≈ –0.5, χel ≈ –6, ρ = 0.5, α = 0.08, 	 = 0.001.
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FIG. 3. DNA-like molecular wire with anchored ends (N = 200 nucleotides/units). For the case presented in Figs. 1(b) and 2(b): (a) unit
displacements qn at time instant τ = 600, (b) kinetic energy of particles in time T(τ ), averaged over N sites, and (c) energy of the electron
relative to its initial value, Eel (τ )–Eel (0).

illustration, we use in simulations a set of dimensionless pa-
rameters, which provide efficient conditions for the phenom-
ena studied ωM ≈ 7.1 × 1012 c−1, τe = ν/h̄ωM ≈ 18, χh ≈
0.5, χel ≈ 6, ωbond ≈ 0.4, and a dimensionless radius of
the unperturbed molecule R0 = 44.5. In dimensional units
they correspond to the physical parameters in the range of
those considered in, e.g., [56,71,72,77,78]: D = 0.03 eV, σ =
4.45 Å

–1
, m = 210 Dalton, χ = 0.13 eV/A, v = 0.084 eV,

and the stiffness of stacking interaction equal to 0.17 eV/Å.
As time unit we use �t = 1/ωM = 0.14 × 10–12 s, as length
unit for the measurement of lateral displacements �y =
σ –1 = 2.2 × 10–11 m and as velocity unit of the motion of the
nucleotides �y/�t ≈ 161 m/s. The velocity of the breather
and the charged quasiparticle displacement along the wire’s
axis is measured in the units d/�t = 2.43 × 103 m/s at a
standard d = 0.34 nm, which implies that the numerical ve-
locity is measured by amounts �n of interbase distances,
passed in the numerical time interval τ (on the hypothesis that

the motion is uniform).α = 0.35 (Å)
–1

(as numerical 0.08)
and friction coefficient 0.001.

Now our aim is the determination and analysis of con-
ditions for the creation of a MDB due to initial pertur-
bation of velocities or space coordinates of nucleotides
in several neighboring pairs of the DNA molecular wire,
and the eventual trapping and transport of an electron
with energy close to the upper bound of the conductivity
band.

III. EXCITATION OF DISCRETE BREATHERS BY
PERTURBING THE VELOCITY OF A FEW UNITS IN THE

WIRE AND ELECTRON TRAPPING CONSEQUENCES

Figure 1 illustrates the results of appropriately identically
disturbing the velocity of two nucleotides. Figure 1(a) corre-
sponds to the case of a pinned DB while Fig. 1(b) is that of a
MDB. As the imposed velocity disturbances are the same, the
drastically different consequences prove the relevance of the
choice of their location. Now we inject the excess electron
nearby the same locations where those breathers are being
excited. Figure 2 depicts the time evolution of the electron
probability densities |cn|2 along the molecular wire when the
electron is initially placed distributed at eight sites: с

2
n0 =

1/8, �ϕ0 = 0, n = 96–103 for Fig. 1(a), and n = 5–12 for
Fig 1(b).

As expected there is electron trapping in both cases as a
consequence of the dominant role played by the nonlinear
lattice excitation (recall initial disturbance only on velocities
of the two units). Also as expected the compound DB +
electron remains pinned in the first case whereas it is a moving
quasiparticle in the second case. The latter, indeed, provides
charge transport for over 150 units along the molecular wire.
Figure 3(a) shows that the MDB keeps its form for very long
time leaving the lattice only weakly disturbed behind it. Its
energy decays albeit slowly as seen in Fig. 3(b). We also
observe that the amplitudes of units’ oscillations involved in
the quasiparticle decrease as well. The energy of the electron
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FIG. 4. DNA-like molecular wire with anchored ends (N = 200 nucleotides/units). The same as in Figs. 1–3 but for positive initial
disturbance of velocity of two units: v2(0) = v3(0) = 3.5, all other vn(0) = 0, qn(0) = 0 for all n. (a) unit displacements qn(τ ), (b) electron
probability densities |cn|2(τ ), and (c) Eel (τ )–Eel (0).
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FIG. 5. DNA-like molecular wire with anchored ends (N = 200
nucleotides/units). Electron path length, llim, against kinetic energy
of initial excitation by external kicks for two particles, directed away
from the axis (left curve, vn(0) > 0) and towards the axis [right
curve, vn(0) < 0] with parameter values corresponding to those of
Figs. 1–4.

Eel(t ) falls at first below its initial value Eel(0) due to being
trapped by the breather as shown in Fig. 3(c). Subsequently,
however, the energy grows in the mean because the positive
displacements prevail for anharmonic oscillations of the units
with the Morse on-site potential. Eventually, the electron
energy oscillates, following the breather oscillations. We have
also observed that the electron always tends to a polaron state,
whose structure does not correspond to that of the breather.
Yet such decaying process can take very long time and it
must go via a stage of destruction of the breather, after the
latter being unable to continue the trapping of the electron.
Similar results, as those presented in Figs. 1–3, are observed
for breather excitation due to positive initial disturbances at
two sites [from the axis, vn(0) > 0] as Fig. 4 shows.

By varying the initial velocities v2(0) = v3(0), for both
positive and negative values, we obtain the dependence of the
length of the electron path llim on the kinetic energy of the
initial excitation Tin = (1/N )

∑
vn(0)2/2 (Fig. 5). It appears

that its maximum value is reached in a limited range of energy
of initial excitations though the value llim > 100 sites may
be reached for quite a wide range of initial kinetic energy
values. Clearly, the quasiparticle formation takes place in a

limited range of initial energy for both cases with ranges of
energy for negative and positive kicks close to each other.
Nevertheless, the excitation by kicks directed from the axis
may be considered as more effective because the electron
trapping with the same path is possible at lower energies.

IV. EXCITATION OF DISCRETE BREATHERS BY
LATTICE DEFORMATION CONSEQUENCE OF INITIAL

DISPLACEMENTS OF A FEW UNITS IN THE WIRE
AND ELECTRON TRAPPING CONSEQUENCES

Figure 6 illustrates the results of initial displacement of
two particles. Noteworthy is that in the present case the
characteristics of the electron interaction are slightly different
from those analyzed in Sec. II. This is to be expected as now
the energy of interaction of the electron with the lattice wire is
a part of the energy of a bound electron treated as a quantum
particle as the Hamiltonian (3) and Eqs. (11), (14) imply. This
part of energy does not depend on disturbances of velocities vn

but it does depend on disturbances of positions of particles qn.
Thus, in the first case, the initial energy of a bound electron
depends on the configuration of the wave function only and
it is the same value, let Eel(0), as in an equilibrium chain
independently of initial disturbances of velocities. However,
in the last case it depends also on values of the particles’
displacements qn and relative positions of the breather and the
electron. The initial energy may be higher or lower relative
to Eel(0) according to whether the molecule is locally com-
pressed [qn(0) < 0] or locally stretched [qn (0) > 0].

Once more, the lifetime of such a quasiparticle and the
length of its path are both significantly long so much that
we can safely consider this form of transport as useful for
applications. Note that it covers up to about 200 interbase
distances corresponding to approximately 60 nm as Figs. 6(a)
and 6(b) show. During the trapping, the electron energy falls
below its initial value and then oscillates for a long time
with the frequency of the breather while slightly increasing
in the mean because the breather structure in such a case can
robustly bind the electron as depicted in Fig. 6(c).

The dependence of the maximum electron path length llim
on the initial space disturbances q2(0) = q3(0) is shown in
Fig. 7 together with the initial potential energy (relatively
minimal potential energy corresponding to the bottom of the
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FIG. 6. DNA-like molecular wire with anchored ends (N = 200 nucleotides/units). The same as in Fig. 4 when the excitation of the MDB
is done by displacing two adjacent particles towards the wire away from their equilibrium positions (negative values): q2(0) = q3(0) = –1.4
(all others qn(0) = 0) and all vn(0) = 0, ωbond = 0.4, τe = 18, χh≈ –0.5, χel ≈ –6, ρ = 0.5, α = 0.08, 	 = 0.001. Similar results are obtained
for positive displacement values.
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FIG. 7. DNA-like molecular wire with anchored ends (N = 200
nucleotides/units). Maximum electron path course, llim (solid line)
and potential energy (Uin–U0 )∗103 (dotted line) against initial dis-
placements qin = q2(0) = q3(0) (parameter values as in Fig. 6). The
initial compression of the molecule does not exceed 4.5% and its
expansion does not exceed 18%.

potential well, Uin–U0) as a function of q20. It appears that
such maximum length value is again about 200. Besides the
trap of the electron takes place for the same range of initial
energy as in the case of Sec. II corresponding to disturbances
of the velocity of the units. It also appears that the initial
disturbance must exceed some critical value for MDB to be
formed with eventual electron trapping.

Note that the curve llim(qin ) looks almost symmetric
relatively to its maximum for both ranges of positive
[q2(0) = q3(0) ≈ 6.5] and negative [q2(0) = q3(0) ≈ –1.6)
initial space displacements. Apparently, it seems better to use
initial disturbances of lower energy values to reach the same
value llim. Yet the MDB velocity grows with energy as it is
shown in Fig. 8.

The results presented above refer to the values χh≈ –
0.5,χel ≈ –6. It seems clear, however, that the actual value
of the strength of interaction of the electron with the lattice
must significantly affect the feasibility of electron trapping
by a MDB. For instance, it may be expected that for too
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FIG. 8. DNA-like molecular wire with anchored ends (N = 200
nucleotides/units). Typical MDB velocity plot (in units of number
of bases per dimensionless time) against the energy of the initial
excitation in a molecular wire with features presented in Figs. 2
and 3.
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FIG. 9. DNA-like molecular wire with anchored ends (N =
200 nucleotides/units). Maximum electron path length, llim against
electron-lattice interaction parameter χh(of negative value here).
Other parameter values are as in Fig. 6, the parameter χel changes
as proportional to χh.

a small value of such parameter a mobile breather may not
be able to keep an electron for a long time. At the other
extreme too, a strong interaction may lead to the electron
dramatically affecting the lattice so that an incipient MDB
would not develop thus aborting the excitation process. In
Fig. 9 the dependence of the maximum electron path length,
llim, is shown as a function of χh for cases corresponding, to
parameter values as in Fig. 6. Clearly, on the one hand, there is
an optimal value of the electron-lattice interaction parameter
when the electron path length appears maximal. On the other
hand, there is a wide range of values close to the optimal of
χh(and, correspondingly, χel) for the survival of the MDB and
the subsequent processes described above.

V. ILLUSTRATION OF THE ROLE OF TEMPERATURE
UPON LOCALIZED EXCITATIONS AND SUBSEQUENT

TRAPPING AND TRANSPORT PROCESSES

Finally, it seems pertinent to check the effect of tempera-
ture on the survival of MDB and the subsequent trapping and
transport processes. Just, for illustration Fig. 10 depicts the
evolution of electron probability densities |cn|2(τ ) in a lattice
heated up to T ∼ 200◦ K. It corresponds to augmenting
Eq. (9) with the Langevin dynamics a done in Eq. (16). Here
Dv is noise intensity and ξn(τ ) account for Gaussian white
noise sources. Following Einstein, the ratio Dv/	 defines the
temperature of a system. We have:

..
qn + 	

.
qn = e−qn (e−qn − 1)

+ω2
bond(qn+1 − 2qn + qn−1) + ρ fn(yn−1,n,n+1)

+
√

2Dvξn(τ ). (16)

The computer experiment can be done by straightforwardly
integrating the full set of equations for the lattice and the
electron dynamics with their corresponding coupling or one
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FIG. 10. DNA-like molecular wire with anchored ends (N = 200 nucleotides/units). Space and time evolution of lattice units and electron
probability densities |cn(τ )|2 when, simultaneously, there is MDB excitation by momentum or velocity kicks, directed towards the axis of the
wire, for two adjacent particles located near the extreme left end, as in Figs. 1 and 2. Left panel: evolution of lattice units for a heated wire when
the maximum of qn does not exceed 5 and a bunch of MDB excitations are observed. Central panel: similar case when the maximum of qn does
not exceed 16 yet with a value significantly higher than the level of thermal fluctuations thus providing stability to the excitation. Right panel:
for the conditions of the central panel it shows the corresponding evolution of a trapped electron illustrated by the evolution of the electron
probability densities |cn(τ )|2. Parameter values: ωbond = 0.4, τe = 18, χh ≈ –0.5, χel ≈ –6, ρ = 0.5, α = 0.08) but with v2(0) = v3(0) = –5,
	 = 0.0005, in a previously heated lattice.

step at a time. We have chosen to use the second approach.
First we use Eq. (16) to heat up the lattice and then we look for
the MDB and by adding the electron for the compound quasi-
particle electron MDB. The parameter values are those used
for Fig. 1 but, for easiness of the computations, with slightly
higher values of the initial velocities, v2(0) = v3(0) = –5. It
seems clear that excitation of MDB, electron trapping, and
transport are feasible at such temperature. The MDB, either
alone or carrying an electron, traverses the lattice weakly
interacting with the latter’s thermal excitations. As expected,
the velocity of the electron-lattice quasiparticle compound
is slightly less than the corresponding value at zero K. In
a subsequent paper, we plan to fully explore the role of
temperature by enlarging its range of values.

VI. CONCLUDING REMARKS

Polaron transport is not the only possible way to transfer
charges along, say, molecular crystal wires. This was made
clear in the case of conducting polymers, DNA-like molecular
wires, and other dynamically similar systems. Further, for
certain nonlinear systems it has been suggested a field-free
charge transport process based upon the possibility of charge
surfing on lattice solitons or mobile discrete breathers (a
clear case of mechanical control of charges at the nanolevel).
For modeling DNA-like molecular wires a valuable dynam-
ical system is the mixed classical-quantum Peyrard-Bishop-
Dauxois-Holstein model. Here we have presented results of
computer simulations using such a model. First we have
shown how mobile discrete breathers can be excited in such
a model either by locally altering velocities of lattice units
or nucleotides or by displacing such units from their original
equilibrium positions in an appropriate albeit generic manner.
We have found that localizing initial disturbances near the

anchoring ends of the model molecular crystal lattice seems
to be the easiest and best choice for creating such mobile
excitations. Indeed, we have seen that when localizing initial
disturbances far away from the anchoring ends of the wire the
tendency is to excite pinned breathers. Then we have shown
how discrete breathers, mobile and otherwise, are capable of
trapping injected excess charges. This trapping mechanism
relies on the anharmonicity of the interaction potential used
for intersite and on-site interactions. Once a charge, say, an
electron, is trapped by the breather the formed compound
quasiparticle can play a role similar to the polaron. It can
move together with the trapped charge along the molecular
wire with a significantly long lifetime over a wire length of
up to 200 interunit distances, i.e., approximately 60–70 nm.
The simplest case considered here is that when only two
nucleotide pairs are excited identically, but other cases are
expected to produce similar results. Noteworthy is that the
proposed charge transport process does not require application
of an external electrical field. Thus it appears as a clear
and useful extension of the polaron transport. Building upon
the Peyrard-Bishop-Dauxois-Holstein model we can conclude
that DNA-like molecular wires could be used as conducting
nanowires of great potential for molecular electronics.
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