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Asymptotic relationship between homoclinic points and periodic orbit stability exponents
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The magnitudes of the terms in periodic orbit semiclassical trace formulas are determined by the orbits’
stability exponents. In this paper, we demonstrate a simple asymptotic relationship between those stability
exponents and the phase-space positions of particular homoclinic points.
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I. INTRODUCTION

A variety of properties of chaotic quantum systems can be
calculated with semiclassical trace formulas, which are sums
over certain sets of classical orbits (periodic, heteroclinic, or
closed orbits, etc.) arising in their classical counterparts. For
example, Gutzwiller’s trace formula [1] is a sum over periodic
orbits that determines the spectrum, and the near-threshold
absorption spectra of an atom in a magnetic field involve a
sum over closed orbits that begin and end at the nucleus [2,3].
Such orbit sums properly account for quantum interferences
as each orbit carries a magnitude determined by its stability
exponent, and a phase factor determined by its classical action
and Maslov index. The orbits with shorter periods give long-
range structure to the quantum spectra, and the longer the
period orbits are, the finer scale is the structure. Due to
exponential proliferation and instability, explicit construction
of a complete set of orbits with longer and longer periods
rapidly becomes prohibitive.

In two previous publications [4,5], we developed an an-
alytic scheme to express the classical actions of unstable
periodic orbits in terms of action differences between certain
homoclinic orbits. The homoclinic orbit action differences can
then be obtained as phase-space integrals along the stable
and unstable manifolds, which can be calculated stably by
efficient numerical techniques [6–9]. Thus, the phase factors
can be obtained via stable computations without the explicit
construction of the orbits. Here, we address the magnitudes,
i.e., the stability exponents of the periodic orbits. A new
relationship is developed to link the stability exponents of
unstable periodic orbits to the phase-space positions of spe-
cific homoclinic points. The exponent is determined by the
ratio between relative positions from an asymptotic family of
homoclinic points. Thus, the periodic orbit magnitudes can
also be determined without explicit construction. This implies
a unified scheme of interchanging the periodic orbits with
homoclinic orbits, which may be very beneficial depending
on the circumstances.

The paper is organized as follows: Section II introduces
the basic concepts of hyperbolic orbits and the main language
for the description of unstable orbits— symbolic dynamics. A
generic model for the symbolic dynamics, the Smale horse-
shoe [10,11], is also introduced in this section. Section III is

the main content of this work, which develops the central the-
orem. Section IV provides numerical verification. Section V
makes a brief conclusion and points to directions for future
work.

II. BASIC CONCEPTS

A. Symbolic dynamics

Let us consider a two-degree-of-freedom chaotic Hamil-
tonian system. With energy conservation and applying the
Poincaré surface of section technique [12], the Hamiltonian
flow is reduced to a discrete area-preserving map M on the
two-dimensional phase space (q, p). Assuming the dynamics
of the Hamiltonian systems is hyperbolic, the corresponding
Poincaré map M is also hyperbolic. The orbit of a phase-space
point z0, denoted by {z0}, is the bi-infinite collection of all
Mn(z0):

{z0} = {. . . , M−1(z0), z0, M(z0), . . . }
= {. . . , z−1, z0, z1, . . . },

where zn = Mn(z0) for all n. Generic orbits are hyperbolic, or
exponentially unstable, as two orbits starting from nearby ini-
tial conditions will typically be separated exponentially under
successive iterations. The exponential rate of a typical orbit is
captured by the Lyapunov exponent, μ, which quantifies the
mean stretching and compressing rate of the hyperbolic map.
In open systems, such stretching and compressing behaviors
of the dynamics lead to certain escaping orbits that tend to
infinity under successive inverse or forward iterations. How-
ever, we concentrate on the orbits that do not escape to infinity,
the nonwandering set (the results apply equally well in closed
systems). Denote the set of interest by �. The main object
of study in this article, namely the homoclinic and periodic
orbits, all belong to �.

Let x = (q, p) be a hyperbolic fixed point from �, i.e.,
M(x) = x. Denote the unstable and stable manifolds of x by
U (x) and S(x), respectively. Typically, U (x) and S(x) intersect
infinitely many times and form a complicated pattern called a
homoclinic tangle [12–14]. The notation U [a, b] is introduced
to denote the finite segment of U (x) extending from a to b,
both of which are points on U (x), and similarly for S(x).
These manifolds are important skeleton-like structures of the
dynamics since the exponential stretching and compressing

2470-0045/2019/100(5)/052202(6) 052202-1 ©2019 American Physical Society

https://orcid.org/0000-0002-1084-2047
https://orcid.org/0000-0001-9933-1392
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.100.052202&domain=pdf&date_stamp=2019-11-04
https://doi.org/10.1103/PhysRevE.100.052202


JIZHOU LI AND STEVEN TOMSOVIC PHYSICAL REVIEW E 100, 052202 (2019)

of the map are fully captured by the unstable and stable
manifolds, respectively. Furthermore, the folding of phase-
space regions is also described by the folding of the manifolds.

It is well known that Markov partitions to the phase
space [15,16] exist that use segments on U (x) and S(x) as
boundaries, which are used to assign symbolic dynamics
[17–20] as phase-space itineraries of orbits in �. The cells
of the partition V = [V0,V1, . . . ,VL] are closed curvilinear
parallelograms bounded by the stable and unstable manifolds.
The symbolic dynamics assigns a one-to-one correspondence
between orbits of the system and sequences of symbols taken
from an alphabet, si ∈ [0, 1, . . . , L], which are in one-to-
one correspondence with the cells [V0,V1, . . . ,VL] [16]. The
symbolic code of a phase-space point z0 is then a bi-infinite
sequence of alphabets,

z0 ⇒ · · · s−2s−1 · s0s1s2 · · · , (1)

where each digit sn in the symbol denotes the cell in which
Mn(z0) belongs to Mn(z0) = zn ∈ Vsn , sn ∈ {0, . . . , L}. The
dot in the middle indicates the current iteration: z0 ∈ Vs0 . In
that sense, the symbolic code gives an “itinerary” of z0 under
successive forward and backward iterations, in terms of the
Markov cells in which each iteration lies. The mapping M
under the symbolic dynamics is then reduced to a simple shift
of the dot in the code:

Mn(z0) = zn ⇒ · · · sn−1 · snsn+1 · · · .

Points along the same orbit have the same symbolic strings
but shifting dots. Therefore, an orbit can be represented by
the symbolic string without the dot.

B. The horseshoe map

Assuming the system is highly chaotic, the homoclinic
tangle forms a complete horseshoe, part of which is shown
in Fig. 1, as this is generic to a significant class of dynamical
systems. In such scenarios, the Markov partition is a simple
set of two regions [V0,V1], as shown in the upper panel of
Fig. 1. Each phase-space point z0 that never escapes to infinity
can be put into a one-to-one correspondence with a bi-infinite
symbolic string in Eq. (1), where each digit sn ∈ 0, 1 such that
Mn(z0) ∈ Vsn .

Throughout this paper, we use the area-preserving Hénon
map [21] with parameter a = 10 for illustration and numerical
implementations:

pn+1 = qn,

qn+1 = a − q2
n − pn. (2)

This parameter is well beyond the first tangency, thus
giving rise to a complete horseshoe-shaped homoclinic tangle
with highly chaotic dynamics. It serves as a simple paradigm
since the symbolic dynamics permits all possible combina-
tions of binary codes, and no “pruning” [22,23] is needed.
The results derived below mostly carry over into more compli-
cated systems possessing incomplete horseshoes, or systems
with more than binary symbolic codes, though more work is
needed to address such systems. Appendix A of [5] has more
details on the partition and symbolic dynamics relevant here.

The intersections between S(x) and U (x) give rise to
homoclinic orbits, which are asymptotic to x under both M±∞.

FIG. 1. Example partial homoclinic tangle from the Hénon map,
which forms a complete horseshoe structure. The unstable (stable)
manifold of x is the solid (dashed) curve. There are two primary
homoclinic orbits: {h0} and {g0}. Let R be the closed region bounded
by manifold segments U [x, g−1], S[g−1, h0], U [h0, g0], and S[g0, x].
In the upper panel, R can be identified as the region composed by
V0, V ′, and V1. Under forward iteration, the vertical strips V0 and V1

(including the boundaries) from the upper panel are mapped into the
horizontal strips H0 and H1 in the lower panel. At the same time,
points in region V ′ are mapped outside R into region H ′, never to
return and escape to infinity. There is a Cantor set of points in V0 and
V1 that remain inside R for all iterations, which is the nonwandering
set �. The phase-space itineraries of points in � in terms of V0 and
V1 give rise to symbolic dynamics.

From the infinite families of homoclinic orbits, two special
ones, {h0} and {g0}, can be identified as primary homoclinic
orbits in the sense that they have the simplest phase-space
excursions. The segments S[x, h0] and U [x, h0] intersect only
at h0 and x, and the same is true for all its orbit points hi;
this holds for {g0} as well. There are only two primary orbits
for the horseshoe, but possibly more for systems with more
complicated homoclinic tangles.

Under the symbolic dynamics, a period-T point y0, where
MT (y0) = y0, can always be associated with a symbolic string
with infinite repetitions of a substring with length T :

y0 ⇒ · · · s0s1 · · · sT −1 · s0s1 · · · sT −1 · · · = γ · γ , (3)

where γ = s0 · · · sT −1 is the finite substring, and γ · γ denotes
its infinite repetition (on both sides of the dot). Notice that the
cyclic permutations of s0 · · · sT −1 can be associated with the
successive mappings of y0, generating a one-to-one mapping
to the set of points on the orbit. Since an orbit can be
represented by any point on it, the position of the dot does
not matter, therefore we denote the periodic orbit {y0} as

{y0} ⇒ γ (4)
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with the dot removed. Similarly, the finite length-T orbit
segment [y0, y1, . . . , yT −1], which composes one full period,
is denoted

y0, y1, . . . , yT −1 ⇒ γ (5)

with the overhead bar removed, as compared to Eq. (4). Any
cyclic permutation of γ refers to the same periodic orbit.

The hyperbolic fixed point has the simplest symbolic code
x ⇒ 0 · 0, and its orbit {x} ⇒ 0 correspondingly. A homo-
clinic point h0 of x has a symbolic code of the form [24]

h0 ⇒ 01s−m · · · s−1 · s0s1 · · · sn10 (6)

along with all possible shifts of the dot, where the 0 on both
ends means the orbit approaches the fixed point (therefore it
stays in V0) under both M±∞. Similar to the periodic orbit
case, the homoclinic orbit can be represented as

{h0} ⇒ 01s−m · · · s−1s0s1 · · · sn10 (7)

with the dot removed, as compared to Eq. (6).
A heteroclinic orbit {h′

0} between the periodic point y ⇒
γ · γ and the fixed-point x ⇒ 0 · 0 arises from h′

0 = U (y) ∩
S(x), and it can be represented by

{h′
0} ⇒ γ γ ′0, (8)

where the asymptotic behaviors of the orbit are described by
γ and 0 on the two ends, and the finite symbolic string γ ′
describes the connection from {y} to {x}, which depends solely
on the choice of h′

0.

III. PERIODIC ORBIT STABILITY EXPONENT

Consider an arbitrary unstable periodic orbit {y} with sym-
bolic code {y} ⇒ γ . Let the length of the symbolic string γ

be nγ , which is also the periodic of {y}. The periodic point y
can also be viewed as a fixed-point under the nγ th compound
mapping of M: Mnγ (y) = y. Denote the eigenvalue of the
unstable subspace of the tangent space of {y} under one full
period (nγ ) by λγ . Thus λγ > 1 if {y} is hyperbolic without
reflection (λγ < −1 with reflection). The stability exponent
of {y}, denoted by μγ , is then nγ μγ = ln |λγ |.

To help determine λγ and thus μγ , choose a family of
auxiliary homoclinic points of the fixed-point x, namely h(m)

0
(m = 1, 2, . . . ), that has the symbolic codes

h(m)
0 ⇒ 0γ m · 0, (9)

where γ m denotes m repetitions of γ and m = 1, 2, . . . . Hav-
ing identified the auxiliary homoclinic points, let us consider
the homoclinic orbit segments generated by certain numbers
of inverse iterations of them, namely

Seg(k,m) = {
h(m)

−N (k,m), . . . , h(m)
−1 , h(m)

0

}
, (10)

where N (k, m) = (k + m)nγ is a positive integer determined
by k and m (k, m � 1). Ahead k is taken to ∞, which yields
the limit

lim
k→∞

h(m)
−N (k,m) = x. (11)

The key to the derivation lies in the normal-form trans-
formation [25–27] of three orbit segments. For well-behaved

FIG. 2. Schematic visualization of the normal form transforma-
tion N. It transforms points from the normal form coordinate (Q, P)
into the phase-space coordinate (q, p). The Q and P axes are mapped
into U (y) and S(y), respectively. The advantage of normal form
coordinates is that the dynamics preserves the QP product [Eq. (12)],
thus points are mapped along invariant hyperbolas, as shown by C
in the right panel. The family of invariant hyperbolas then gives
rise to a family of Moser invariant curves in phase space via the
transformation N(C) = c, shown in the left panel.

(invertible and analytic) Poincaré maps, the nonlinear dynam-
ics near the stable and unstable manifolds can be linearized
via a common technique called normal-form transformation,
denoted by N, which transforms points from the normal form
coordinates (Q, P) to the neighborhood of stable and unstable
manifolds of the hyperbolic fixed point y: N : (Q, P) �→
(q, p), as shown in Fig. 2. In the normal-form coordinates of
y, the compound mapping Mnγ takes a simple form:

Qn+1 = �(QnPn)Qn,
(12)

Pn+1 = [�(QnPn)]−1Pn,

where �(QnPn) is a polynomial function of the product QnPn

[28]:

�(QP) = λγ + w2(QP) + w3(QP)2 + · · · . (13)

The normal form convergence zone was first proved by Moser
[26] to be a small disk-shaped region centered at the fixed
point (D0 and its image d0 in Fig. 2), and later proved by da
Silva Ritter et al. [27] to extend along the stable and unstable
manifolds to infinity. The extended convergence zone follows
hyperbolas to the manifolds (“gets exponentially close” the
further out along the manifolds). The stable and unstable
manifolds are just images of the P and Q axes, respectively,
under the normal form transformation.

All points inside the extended convergence zone near the Q
or P axis move along invariant hyperbolas, which are mapped
to Moser invariant curves in phase space. A schematic exam-
ple is shown in Fig. 2, where the hyperbola C in the normal
form coordinates is transformed into a Moser curve c in phase
space. Being confined in the extended convergence zone, the
Moser invariant curves also get exponentially close to the
stable and unstable manifolds while extending along them
outward to infinity. In fact, as shown by [28], the convergence
zone can be quantified using the outermost Moser curve with
the largest QP product.

Let the image of Seg(k, m) in the normal-form coordinate
of y be

Seg(k,m) = {
H (m)

−N (k,m), . . . , H (m)
−1 , H (m)

0

}
, (14)

where N(H (m)
n ) = h(m)

n . In the normal-form coordinates, every
Seg(k, m) lies on a hyperbola, labeled by Cm in Fig. 3. This
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FIG. 3. (Schematic) Normal-form coordinate picture of the aux-
iliary homoclinic orbit segments. Y is the image of y, and the P
and Q axes are the images of S(y) and U (y), respectively, in the
normal-form coordinate. X is the image of the fixed-point x. Three
auxiliary homoclinic orbit segments, corresponding to m, m + 1,
and m + 2 in Eq. (14), lie on the hyperbolas Cm, Cm+1, and Cm+2,
respectively. Note that only the first and the last points of each orbit
segment are drawn here.

figure shows Seg(k, m), Seg(k, m + 1), and Seg(k, m + 2) in
the normal-form coordinate of the periodic point y. Letting
k → ∞, because of Eq. (11), the initial points of the three
segments, namely H (m)

−N (k,m), H (m+1)
−N (k,m+1), and H (m+2)

−N (k,m+2), are
all located infinitesimally close to X along U (x):

lim
k→∞

H (m)
−N (k,m) = lim

k→∞
H (m+1)

−N (k,m+1)

= lim
k→∞

H (m+2)
−N (k,m+2) = X. (15)

Then, under N (k, m), N (k, m + 1), and N (k, m + 2) itera-
tions, respectively, they are mapped to the final points H (m)

0 ,
H (m+1)

0 , and H (m+2)
0 , as shown near the heteroclinic point H ′

on the Q axis. This heteroclinic point has the symbolic code

N(H ′) = h′ ⇒ γ · 0, (16)

which is the simplest heteroclinic connection between {y} and
{x}. Recall that

N
(
H (m)

0

) = h(m)
0 ⇒ 0γ m · 0. (17)

Comparing the symbolic strings in Eqs. (16) and (17), it
follows that the codes of h′ and h(m)

0 to the right of the
dot are identical, and to the left of the dot they match up
to γ m (which has length mnγ ). This indicates that h(m)

0 is
∼O(e−mnγ μγ ) close to h′ along S(x) (for more details, see
Appendix A of Ref. [5]). Due to the same reason, h(m+1)

0

and h(m+2)
0 are ∼O(e−(m+1)nγ μγ ) and ∼O(e−(m+2)nγ μγ ) close to

h′, respectively, along S(x). Therefore, the three homoclinic
points, h(m)

0 , h(m+1)
0 , and h(m+2)

0 , are all within an ∼O(e−mnγ μγ )
neighborhood of h′. See Fig. 3 for a schematic demonstration
of this in the normal-form coordinate.

The same conclusion holds true in the normal-form coor-
dinates. In fact, as shown by Fig. 3, in the normal coordinate

of y, the proportionality factors of the distances between
them can be determined analytically. Plotted in the figure are
the initial and final points of Seg(k, m), Seg(k, m + 1), and
Seg(k, m + 2). The k here is assumed to be a large integer, so
H (m)

−N (k,m), H (m+1)
−N (k,m+1), and H (m+2)

−N (k,m+2) are exponentially close
to X . Under successive forward iterations, they are mapped
along the hyperbolas Cm, Cm+1, and Cm+2, respectively, into
H (m)

0 , H (m+1)
0 , and H (m+2)

0 :

MN (k,m+i)
(
H (m+i)

−N (k,m+i)

) = H (m+i)
0 , (18)

where i = 0, 1, 2. The mapping equations take the simple
form of Eq. (12), with the stability factor � given by

�(QP) = λγ + w2(QP) + w3(QP)2 + · · · . (19)

Under the limit m → ∞, H (m+i)
0 → H ′ (i = 0, 1, 2), so their

QP products along the hyperbolas → 0. Correspondingly,
the stability factor �(QP) → λγ , and the Cm curve becomes
infinitely close to the P and Q axes when m → ∞.

Consequently, the P coordinate values of H (m+i)
0 , namely

P(H (m+i)
0 ), are determined asymptotically by

lim
m→∞ P

(
H (m+i)

0

) = lim
k → ∞
m → ∞

P(X )λ−(k+m+i)
γ (20)

for i = 0, 1, 2, . . . , where P(X ) denotes the P-coordinate
value of X . Furthermore, notice that N (k, m + j) −
N (k, m) = jnγ , thus using Eq. (20) we get

lim
m→∞ P

(
H (m+ j)

0

) = lim
m→∞ P

(
H (m)

0

)
λ− j

γ (21)

for j = 0, 1, 2, . . . . Therefore, the family of homoclinic
points, H (m+ j)

0 ( j = 0, 1, 2, . . . ), converges to H ′ under con-
vergence factor λ−1

γ . Since the normal-form transformation
preserves the convergence factor of asymptotic series of points
(see Appendix B 2 of Ref. [29] for a detailed proof), the family
h(m+ j)

0 ( j = 0, 1, 2, . . . ) also converges to h′ in phase space.
Therefore, their phase-space positions satisfy

lim
m→∞

p
(
h(m)

0

) − p(h′)

p
(
h(m+ j)

0

) − p(h′)
= λ j

γ ,

lim
m→∞

q
(
h(m)

0

) − q(h′)

q
(
h(m+ j)

0

) − q(h′)
= λ j

γ , (22)

where p(a) and q(a) denote the p- and q-coordinate values,
respectively, of the point a. Here we assume the generic case
that the local direction of S(x) at h′ is not strictly vertical
or horizontal, so the differences between the p and q values
of successive members do not vanish. The distances between
successive members of the family are also in scale:

lim
m→∞

p
(
h(m)

0

) − p
(
h(m+1)

0

)

p
(
h(m+1)

0

) − p
(
h(m+2)

0

) = λγ , (23)

and the same is true for the q coordinate values as well.
Therefore, the stability exponent nγ μγ = ln |λγ | of the peri-
odic orbit {y} ⇒ γ can be determined using Eq. (23) from the
family of auxiliary homoclinic points h(m)

0 ⇒ 0γ m · 0, which
does not require the numerical construction of the periodic
orbit. In practice, for long periodic orbits with large periods
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TABLE I. Unstable eigenvalues and the corresponding exponents
of the periodic orbits in Eq. (25). λγ are calculated from the numer-
ical orbits, and λ′

γ are determined from Eq. (24). The exponents are
obtained as nγ μγ = ln |λγ | and nγ μ′

γ = ln |λ′
γ |.

γ λγ λ′
γ nγ μγ nγ μ′

γ

1011 −586.069 −584.741 6.37343 6.37116
0011 1602.00 1602.20 7.37900 7.37913
0001 −2609.92 −2609.72 7.86707 7.86699
00011 14176.1 14180.5 9.55931 9.55962

(nγ ), the leading terms in the h(m)
0 family should provide an

accurate enough calculation of λγ :

λγ ≈ p
(
h(1)

0

) − p
(
h(2)

0

)

p
(
h(2)

0

) − p
(
h(3)

0

) . (24)

IV. EXPLICIT EXAMPLE

To verify Eq. (24), we have numerically constructed four
different periodic orbits in the Hénon map [Eq. (2)], namely
{v}, {y}, {w}, and {z}, with symbolic codes

{v} ⇒ 1011,

{y} ⇒ 0011,

{w} ⇒ 0001,

{z} ⇒ 00011. (25)

The phase-space positions of one of their orbit points are

v = (3.162 277 660 168, 1.917 144 929 227),

y = (−3.162 277 660 168, 3.162 277 660 168),

w = (−4.040 365 740 912,−3.162 277 660 168),

z = (−3.300 504 906 006, 3.181 101 045 340), (26)

which are mapped back into themselves under their respective
periods. Using these numerical orbits, their respective stability
eigenvalues λγ and exponents μγ have been calculated. In

addition, by constructing the respective auxiliary homoclinic
points in Eq. (9) for each orbit, the same stability eigenvalues
λ′

γ and exponents μ′
γ have been approximated with Eq. (24).

The results are listed in Table I. Although only the leading
terms in each auxiliary homoclinic family are used, due to the
relatively long periods chosen in the examples (nγ � 4), the
resulting nγ μγ products are all large enough to provide rapid
convergence. Therefore, the agreement is excellent.

V. CONCLUSIONS

An exact formula [Eq. (23)] is introduced that links the
stability properties of unstable periodic orbits to the phase-
space locations of certain homoclinic points. Although the
formula is asymptotic in nature, the numerical results from
using the leading term already reproduce the actual exponents
quite accurately in the numerical model used. Since the nu-
merical computation of long periodic orbits suffers from an
exponential instability problem, whereas the positions of ho-
moclinic points can be determined relatively easily as the in-
tersections between the invariant manifolds [6], this approach
may provide an efficient alternative to direct calculations.
Furthermore, in previous work [4,5], the classical actions of
periodic orbits are expressed in terms of certain homoclinic
orbit action differences. Combined with the current results,
they provide a unified scheme of replacing the periodic orbits
in the trace formula by homoclinic orbits, which may lead to
new resummation techniques in semiclassical methods.

An important generalization of the current theory would
be to extend it to higher-dimensional symplectic maps with
chaotic dynamics. For instance, in four-dimensional (4D)
maps, the stable and unstable manifolds of hyperbolic fixed
points will each be two-dimensional surfaces. They intersect
in the 4D phase-space generating homoclinic points. It may be
the case that the relative positions of certain homoclinic points
distributed along the dominant contraction direction in the sta-
ble manifolds yield the dominant stability exponent, and the
relative positions of the homoclinic points along the subdom-
inant contraction direction of the stable manifolds yield the
subdominant stability exponent. However, the generalization
of the symbolic code description to higher dimensions is a
challenging issue.
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[23] P. Cvitanović, Physica D 51, 138 (1991).

[24] R. Hagiwara and A. Shudo, J. Phys. A 37, 10521 (2004).
[25] G. D. Birkhoff, Acta Math. 50, 359 (1927).
[26] J. Moser, Commun. Pure Appl. Math. 9, 673 (1956).
[27] G. L. da Silva Ritter, A. M. Ozorio de Almeida, and R. Douady,

Physica D 29, 181 (1987).
[28] M. Harsoula, G. Contopoulos, and C. Efthymiopoulos, J. Phys.

A 48, 135102 (2015).
[29] K. A. Mitchell, J. P. Handley, B. Tighe, J. B. Delos, and S. K.

Knudson, Chaos 13, 880 (2003).

052202-6

https://doi.org/10.2307/2371264
https://doi.org/10.2307/2371264
https://doi.org/10.2307/2371264
https://doi.org/10.2307/2371264
https://doi.org/10.1007/BF01608556
https://doi.org/10.1007/BF01608556
https://doi.org/10.1007/BF01608556
https://doi.org/10.1007/BF01608556
https://doi.org/10.1103/PhysRevA.38.1503
https://doi.org/10.1103/PhysRevA.38.1503
https://doi.org/10.1103/PhysRevA.38.1503
https://doi.org/10.1103/PhysRevA.38.1503
https://doi.org/10.1016/0167-2789(91)90227-Z
https://doi.org/10.1016/0167-2789(91)90227-Z
https://doi.org/10.1016/0167-2789(91)90227-Z
https://doi.org/10.1016/0167-2789(91)90227-Z
https://doi.org/10.1088/0305-4470/37/44/005
https://doi.org/10.1088/0305-4470/37/44/005
https://doi.org/10.1088/0305-4470/37/44/005
https://doi.org/10.1088/0305-4470/37/44/005
https://doi.org/10.1007/BF02421325
https://doi.org/10.1007/BF02421325
https://doi.org/10.1007/BF02421325
https://doi.org/10.1007/BF02421325
https://doi.org/10.1002/cpa.3160090404
https://doi.org/10.1002/cpa.3160090404
https://doi.org/10.1002/cpa.3160090404
https://doi.org/10.1002/cpa.3160090404
https://doi.org/10.1016/0167-2789(87)90054-6
https://doi.org/10.1016/0167-2789(87)90054-6
https://doi.org/10.1016/0167-2789(87)90054-6
https://doi.org/10.1016/0167-2789(87)90054-6
https://doi.org/10.1088/1751-8113/48/13/135102
https://doi.org/10.1088/1751-8113/48/13/135102
https://doi.org/10.1088/1751-8113/48/13/135102
https://doi.org/10.1088/1751-8113/48/13/135102
https://doi.org/10.1063/1.1598311
https://doi.org/10.1063/1.1598311
https://doi.org/10.1063/1.1598311
https://doi.org/10.1063/1.1598311

