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Range of geometrical frustration in lattice spin models
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The concept of geometrical frustration in condensed matter physics refers to the fact that a system has a locally
preferred structure with an energy density lower than the infinite ground state. This notion is, however, often used
in a qualitative sense only. In this article, we discuss a quantitative definition of geometrical frustration in the
context of lattice models of binary spins. To this aim, we introduce the framework of local energy landscapes,
within which frustration can be quantified as the discrepancy between the energy of locally preferred structures
and the ground state. Our definition is scale dependent and involves an optimization over a gauge class of
equivalent local energy landscapes, related to one another by local energy displacements. This ensures that
frustration depends only on the physical Hamiltonian and its range, and not on unphysical choices in how it is
written. Our framework shows that a number of popular frustrated models, including the antiferromagnetic Ising
model on a triangular lattice, only have finite-range frustration: geometrical incompatibilities are local and can
be eliminated by an exact coarse graining of the local energies.
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Frustration refers to the situation in which the simultaneous
minimization of all local interaction energies in a system is
not possible, due to the incompatibility of local constraints
[1]. We can distinguish here the cases in which this frustration
is forced by the imposition of a frozen disorder in the form
of random fields or interactions (such as in spin glasses [2]
or in complex biomolecules [3]) from those in which the
frustration arises directly from an intrinsic mismatch in the
uniform interactions between constituents. The latter situa-
tion, referred to as geometrical frustration [4–6], is the topic
of this article. This definition is essentially conceptual and
qualitative [7], although some system-specific quantitative
measurements exist, such as the measure of a spontaneous
curvature of hard sphere systems [4,5], the incompatibility be-
tween spontaneous splay and bend in bent-core liquid crystals
[8], the bipartiteness [7] or ground state degeneracy [9,10] in
molecular magnetic systems, or the amount of entanglement
in quantum spin systems [11]. It is often rephrased in the
following way: the locally preferred structure, which results
from local minimization of the energy, cannot tile the whole
space. Note that we consider here constraints intrinsic to the
geometry of the local order, but not surface effects induced by
a mismatch at the boundaries of the system.

In this article, we examine this notion of geometrical
frustration, i.e., the incompatibility of the best local order
with space filling, and attempt to make it quantitative within
the realm of lattice spin models (without quenched disorder).
We start in Sec. I by motivating this work through the study
of frustration in two simple lattice models, which reveal two
caveats for a quantitative measure of frustration: (i) it depends
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on the scale considered, and (ii) it should not be affected
by energy displacements, a type of gauge transformation
that locally redistributes the energy while leaving the total
Hamiltonian unaffected. In Sec. II, we then address these
challenges and propose a formalism, local energy landscapes,
within which, we argue, geometrical frustration can be well
defined. This allows us to distinguish two classes of frustrated
systems: in most models, including the archetypal antiferro-
magnetic Ising model on a triangular lattice, frustration has a
finite range and can be eliminated in a single exact coarse-
graining step. In other cases, it could persist at all scales,
a behavior we term long-range frustration. Our framework
allows to distinguish these qualitatively distinct facets of
frustration, and quantitatively measure it in a way that depends
only on the scale considered and on the global Hamiltonian,
not on unphysical details.

I. TWO CASE STUDIES

To motivate our study, and in particular illustrate the diffi-
culties encountered when attempting to define a quantitative
measure for frustration, we first discuss frustration in two
simple models.

A. Antiferromagnetic Ising model

We start by examining what is probably the most popular
example of frustrated system [12]: the antiferromagnetic Ising
model on a triangular lattice (Fig. 1). Its Hamiltonian reads

H =
∑
i∼ j

sis j, (1)

where the sum runs over all edges of the lattice, and si = ±1
are the local spin variables. The ground state energy per site
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FIG. 1. (a) A ground state configuration of the antiferromagnetic
Ising model on a triangular lattice [Eq. (1)]. The color of sites
indicates their state of spin. The color of bonds indicates their energy;
blue bonds correspond to the locally preferred structure (LPS). Red
bonds are defects due to frustration. (b) The same configuration, now
showing the energy of triangles as in Eq. (2). All triangular plaquettes
are in the LPS, and the model appears to be unfrustrated.

of this model is E0 = −1 [Fig. 1(a)]. However, minimizing
independently each term in the sum of Eq. (1) would re-
sult in an energy per site of E∗

bonds = −3, corresponding to
each edge having an energy of −1. The “locally preferred
order,” corresponding to antiparallel spins, is thus frustrated,
as E∗

bonds < E0: it cannot be simultaneously achieved at all
edges, due to the presence of triangles that overconstrain
the system [12,13]. A simple quantification of frustration in
this model would thus be fbonds = E0 − E∗

bonds = 2, i.e., the
difference between the energy per site in the ground state, and
that in an ideal state where the preferred local order would be
achieved everywhere. This frustration is generally invoked as
the cause of the extensive degeneracy of the ground state of
this system.1

This definition is not without danger, however: indeed,
consider the following rewriting of the Hamiltonian,

H =
∑

triangles (i jk)

τi jk, (2)

where the sum runs over triangles of three bonds, and we
define τi jk = 1

2 (sis j + s jsk + sksi ) as the energy of such a
triangle. As each bond is part of two triangles, Eqs. (1)
and (2) are clearly two equivalent ways of writing the same
Hamiltonian. However, minimizing each term independently
in Eq. (2) now results in an energy per site of E∗

triangles = −1,
corresponding to each triangle having the minimum possible
energy of ti jk = −1/2 [Fig. 1(b)]. We thus have ftriangles =
E0 − E∗

triangles = 0: the Hamiltonian written in Eq. (2) is un-
frustrated, as its locally preferred order can tile the whole
lattice. From this point of view, this system is extensively

1Note that an extensively degenerate ground state, i.e., a nonzero
entropy at zero temperature, is sometimes considered to be the
definition of frustration, rather than one of its effects. We will not
take that point of view here.

FIG. 2. The “frustrated model” defined by Eq. (3). The degrees
of freedom are the orientation of the edges connecting two nodes.
(a) A typical ground state configuration. The color of each node
indicates its energy φi. (b) The locally preferred structure at the scale
of a single node has an energy −6. (c) At the scale of three nodes,
the LPS has energy −4 per site.

degenerate because it is underconstrained: as in some plaque-
tte models, the simultaneous minimization of all terms of the
Hamiltonian is not sufficiently constraining to select a single
periodic ground state [12].

These two ways of writing the same Hamiltonian thus
lead to different conclusions as to whether it is frustrated
or not. Clearly, there is more information in Hamiltonian
(1) in terms of the locality of the energy: Eq. (2) is a less
local way of writing the energy, and its energy density can
be seen as an exact coarse graining of the energy density of
Eq. (1), by averaging the energy of each triangle. Since this
coarse graining removes frustration, we can qualify this type
of frustration of finite range, or irrelevant: it vanishes under
renormalization. In order to quantify frustration in this system,
one should therefore specify what scale is being considered:
the antiferromagnetic Ising model on the triangular lattice is
frustrated when going from the scale of a single bond to a tri-
angle, but not from the scale of a triangle to the infinite lattice.

B. A minimal frustrated model?

We now discuss a second simplistic model that exhibits,
we suggest, surprising frustration properties. Consider a tri-
angular lattice where each bond carries a binary variable of
orientation, pointing toward either of the two sites it connects
[Fig. 2(a)]. We define the following Hamiltonian for this
system:

HFNM =
∑

i

φi, (3)

where the local energy φi is the difference between the number
of edges attached to i, pointing toward i, to the number of
edges pointing against i, i.e., the local flux at i. This is a
specific instance of the 64-vertex model [12]. The locally
preferred structure corresponds to six edges pointing away
from i [Fig. 2(b)], and tiling the lattice with such sites would
result in an energy of E∗

site = −6. This is, however, impossible,
and ground state configurations include many defects to this
ideal structure [Fig. 2(a)]: this system is frustrated.
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Grouping local energy variables together, as we did in
Eq. (2), reduces the frustration but does not cancel it: the
locally preferred order at the scale of a triangle of three sites
has energy per site E∗

triangles = −4, still higher than the ground
state [Fig. 2(c)]. This can be easily generalized to any cluster
of sites: frustration in this model thus appears to be long
range, that is, it cannot be blurred out by a coarse graining.
This model has many peculiar properties, such as extensive
degeneracy of the ground state, characterized for instance by
the fact that the reversal of any closed loop of edge variables
leaves the energy unchanged.

Rather than leading the reader further on, let us examine
more closely the Hamiltonian proposed in Eq. (3). Each edge
contributes to two φi variables, each with an opposite sign:
reversing its orientation thus displaces energy from one site to
the other, but leaves the total energy unchanged; specifically,
each edge variable has a zero contribution to the total energy,
and thus Eq. (3) can be rewritten exactly as

HFNM = 0. (4)

This model thus has the appearance of being frustrated,
while being completely trivial, in a sense, it is a frustrated
nonmodel (FNM). Admittedly, the Hamiltonian in Eq. (3) is
quite simple, and an aware reader could have realized that its
frustration is only superficial. However, for an observer who
only has access to the φi variables and the resulting field of
local energies [Fig. 2(a)], this is far from being obvious.

The field of local energies φi as defined here con-
sists in what we define as an energy displacement, i.e., a
configuration-dependent spatial patterning of the energy that
always has zero sum, and thus no influence on the total Hamil-
tonian. Importantly, adding such an energy displacement to
any nontrivial Hamiltonian would leave it unchanged: it would
change “local energies,” but not the total energy of any state,
and hence result in identical dynamical and thermodynamical
properties. Two models that differ by a local energy displace-
ment are thus physically and mathematically equivalent: their
only difference lies in the way that the Hamiltonian is written
in terms of local energies, a distinction that is arguably un-
physical, and can be compared to a gauge change. However, as
local energies are modified by energy displacements, they can
affect the energy and even the nature of the locally preferred
structure. This significantly complicates the problem of quan-
tifying frustration. Indeed, any useful and physically mean-
ingful definition of frustration should be gauge invariant and
depend only on the Hamiltonian, not on the specific way that it
is written; it should, in particular, see through Eq. (3) and con-
sider this model as nonfrustrated, as its equivalent formulation
in Eq. (4) is trivial. Note that there is a scale to such energy
displacements: as they change the local energies, they can also
effectively change the range of interactions of the Hamilto-
nian. Indeed, in the case of the antiferromagnetic Ising model,
going from Eq. (1) to (2) can be seen as an energy displace-
ment, moving the energy from the bonds to the triangles.

II. FRUSTRATION OF LOCAL ENERGY LANDSCAPES

In the previous section, we have identified two caveats
that should be addressed in order to quantify geometrical
frustration in a meaningful way. First, frustration should be

a function of scale: as the structures considered get larger, the
locally preferred structure will resemble more and more the
ground state, as it internalizes constraints. Second, at a given
scale, frustration should not depend on the specific way that
the Hamiltonian is written, i.e., it should not be affected by a
gauge change of the field of local energies, corresponding to
local energy displacements. We now propose a framework to
define and measure scale-dependent frustration. This frame-
work relies on the classification of all possible local structures
of the model at a given scale, and considering the ways to
attribute an energy to each of them, i.e., the ways to define the
local energy landscape (LEL).

This approach is common in the study of supercooled
liquids and glassy systems, where the idea of studying local
structures is that a finite number of geometries can accurately
describe the local environments of particles in a liquid: in
supercooled liquids, distortions around local energy minima
can be neglected in first approximation, and it makes sense
to consider the energy of these local structures [4,14–16].
This point of view is even more relevant in lattice models of
discrete spins, in which the local structures are truly discrete:
in such cases, models with short-range interactions can be
exactly expressed in terms of their LEL, i.e., the energy
associated to each possible local structures [17].

In this section, we first define the set of local structures
corresponding to a given scale (Sec. II A), and introduce the
local energy landscapes framework that maps structures onto
local energies (Sec. II B). We then show how to characterize
the gauge of energy displacements that change the LEL, but
not the total Hamiltonian (Sec. II C). This allows us to propose
a quantitative, gauge-invariant measure of frustration at a
given scale (Sec. II D). We then discuss the scale dependence
of this measure of frustration (Sec. II E). Finally, we discuss
a practical application of this method in the identification
of ground state energies of spin systems (Sec. II F). In each
subsection, we first discuss concepts in their generality, then
apply them to the practical case of triangular lattices.

A. Local structures

We consider a system of N binary spins on a Bravais
lattice with periodic boundary conditions, in the limit of a
large number of sites N → ∞ where the effect of boundaries
becomes irrelevant, and translation-invariant Hamiltonians
with finite-range interactions on this spin system. All sites
are thus equivalent, and can be characterized by their spin
environment, with which they interact. To classify these envi-
ronments, we first decide on a cluster of sites on which we will
define local structures. This cluster should be larger than the
interaction range of the Hamiltonian; the size z of this cluster
(the number of sites it contains) sets the scale at which we
define and study frustration. It is convenient to use a cluster
that has the highest possible symmetry, as this will limit the
number of structures to consider. In Table I we present a
selection of high-symmetry clusters on the triangular lattice.
In most of this article, we will take the coordination shell
cluster (one site and its six neighbors, z = 7) as an example
to illustrate the concepts we discuss.

Having chosen a cluster of sites, we now introduce the set
of all possible local structures on this cluster, i.e., the possible
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TABLE I. High-symmetry local clusters on the triangular lattice, and the properties of corresponding local energy landscapes. Numbers in
brackets correspond to chiral cases, i.e., considering enantiomeric structures as being distinct.

Cluster

Size z 2 3 4 7 10 13 19
Number of LSs n 3 4 9 (10) 26 (28) 208 (352) 828 (1,400) 45,336 (87,600)
Energy displacements dim � 0 0 2 3 (3) 20 (37) 59 (103) 3,504 (6,753)

spin patterns on this cluster. There are 2z distinct patterns;
however, if the Hamiltonian is isotropic (i.e., invariant under
the discrete lattice rotations) it makes sense to consider two
structures that differ by a rotation as identical. Depending
on whether the considered Hamiltonian is chiral, one can
choose to treat enantiomeric structures (i.e., nonidentical mir-
ror copies) as distinct structures or not. Using these symme-
tries results in a set of n distinct local structures. The values of
n corresponding to each cluster are presented in Table I. In the
case of the triangular coordination shell, the n = 26 structures
are depicted in Fig. 3.

A spin configuration of the system can be described by its
structural composition c, an n-dimensional vector that speci-
fies the fraction of sites in each local structure. The number of
sites in structure s is thus Ns = Ncs in this configuration. Note
that a configuration is not fully characterized by its structural
composition; conversely, as we will see, not all compositions
are possible. Nevertheless, since the range of the Hamiltonian
is shorter or equal than the size of the cluster we consider,
the energy of a configuration is completely determined by the
corresponding structural composition vector c.

B. Local energy landscapes

We now introduce the local energy landscape (LEL) that
relates the structural composition to the energy of the system.
We associate an energy εs to each site in structure s, such that
the energy per site of the system reads

E (c) =
n∑

s=1

csεs = c · ε, (5)

where the vector ε = {εs}s=1..n is the LEL of the system. A
vast class of popular models can be written exactly in such a
form, which includes the Ising model, its variants with antifer-
romagnetic and/or next-to-nearest-neighbor interactions, and
plaquette models. The LEL thus fully characterizes the ener-

getics of the system in terms of local structures. While struc-
tures are not energetically coupled in Eq. (5), it is important
to note that they are not independent: each spin is part of sev-
eral structures, and these overlaps result in entropic couplings
between structures. Indeed, the system’s free energy per site
at temperature T can be written (setting kB = 1) [17]

F (T ) = min
c,S(c)�0

[c · ε − T S(c)], (6)

where S(c) is the entropy per site of a system with structural
composition c, which effectively counts the states available in
the model compatible with these fractions of local structures.
By convention we have S(c) = −∞ if there are no states
compatible with the structural composition c, for instance, if it
violates the basic constraints that all cs’s are non-negative and
that

∑
s cs = 1. The appeal of this approach lies in the fact that

S(c) depends only on the lattice geometry and the choice of
cluster, not on the LEL. The thermodynamics of a broad class
of models can thus be related, by Legendre transformation
[Eq. (6)], to a single function S(c). From this point of view,
finding the ground state energy E0(ε) of a model with LEL ε

corresponds to finding the extremal point of definition of S(c)
along the direction ε,

E0(ε) = inf
c,S(c)�0

c · ε, (7)

which corresponds to the zero-temperature equilibrium state.
The minimum of ε corresponds to the minimal possible

energy of a site, i.e., its energy when in the so-called locally
preferred structure (LPS). This energy is a lower bound to the
ground state energy of the system:

E0(ε) � min
s=1...n

εs. (8)

When there is equality, the system is unfrustrated at the scale
of the structure considered: it can be uniformly tiled by locally
preferred structures.

FIG. 3. The n = 26 distinct local structures corresponding to the coordination cluster with z = 7 sites. The second row is spin reversed
compared to the first. Note that structures 12 and 25 are chiral; we treat both enantiomers as the same structure here. Distinguishing enantiomers
would lead to two more local structures.
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C. Gauge of energy displacements

The framework of local energy landscapes is significantly
complicated by the fact that Eq. (5) is not sufficient to define
the LEL: two distinct local energy landscapes ε and ε′ can
indeed correspond to the same physical system. This is the
case if the difference between them, δ = ε′ − ε, is an energy
displacement, i.e., a nonzero LEL corresponding to a vanish-
ing Hamiltonian. In this section, we show how to characterize
the set � of possible energy displacements corresponding to a
choice of local structures.

A LEL δ is an energy displacement if the energy of any
possible configuration, as given by Eq. (5), is zero: c · δ = 0
for all structural compositions c such that S(c) � 0. The set �

of energy displacements δ thus has a vector space structure (a
linear combination of energy displacements still corresponds
to a zero Hamiltonian), which is a subspace � ⊂ Rn. A linear
analysis of the entropy functional S(c) around the infinite-
temperature limit is sufficient to fully characterize this vector
space. Indeed, one can write the following expansion for the
entropy as a function of structural composition [17–19]:

S(c) = S∞ − 1
2 (c − c∞) · C−1 · (c − c∞) + O[(c − c∞)3],

(9)
where S∞ = ln 2 is the infinite-temperature entropy per site of
a binary spin system. Here, c∞ is the structural composition
at infinite temperature: in a fully random spin state, the
proportion of sites in structure s is c∞

s = gs/2z where gs is
the number of rotational variants of structure s and z is the
number of sites in a structure [18]. The matrix C in Eq. (9)
relates to structural fluctuations at infinite temperature, and
can be written as a covariance matrix

Css′ = 1

N
CovT =∞(Ns, Ns′ ) (10)

for a large system of N sites, where Ns is the number of sites in
structure s in a given configuration. This matrix can either be
obtained by simulations, or computed exactly by enumerating
overlaps of structures [17,18].

Importantly, the matrix C typically has a nontrivial null
space Ker(C), i.e., the set of eigenvectors associated to a
zero eigenvalue. As Eq. (9) involves (c − c∞) · C−1 · (c −
c∞), we have S(c) = −∞ for any composition c for which
c − c∞ has a nonzero projection on Ker(C): the expansion
of S(c) “detects” forbidden configurations. The elements of
Ker(C) correspond to the existence of conserved quantities.
For instance, the constraint that

∑
s cs = 1 (i.e., that the set of

structures is complete) implies that (1, 1, . . . , 1) ∈ Ker(C) for
all choices of local cluster. In the case of the triangular coordi-
nation shell, there are also three nontrivial conservation laws,
corresponding to redundancies in one-, two-, and three-body
interaction terms within the shell (see Fig. 4 and caption). As
a result, Ker(C) is four dimensional for this choice of local
cluster.

The space � of energy displacements corresponds to vec-
tors that have δ · c = 0 for all “acceptable compositions” c
such that S(c) � 0. As we have seen, these compositions are
such that for any λ ∈ Ker(C), we have λ · (c − c∞) = 0. The
set of energy displacements thus corresponds to vectors δ that
are both orthogonal to c∞ and to all (c − c∞) for acceptable

FIG. 4. Schematic of the conserved quantities leading to the gen-
erators of the three-dimensional gauge space of energy displacements
for the triangular coordination shell. (a) Here δ1 is the difference
between the spin value of the central site (light red), to the average
over its six neighbors (dark blue). This quantity is nonzero for all
structures presented in Fig. 3 except 0 and 13. However, the spatial
average of the dark blue and the light red terms are both equal to the
average spin value, for any configuration. Therefore, δ1 · c = 0 for
all possible structural composition c. (b) Similarly, δ2 corresponds to
the difference of two-spin interactions for radial edges (light red) and
lateral edges (dark blue) in the structure. While this can be locally
nonzero, the spatial average of this quantity always vanishes. (c) The
last energy displacement corresponds to three-spin interactions that
involve, or not, the central spin (averaged over all orientations).

compositions c. Mathematically, we thus have

� = Ker(C) ∩ Perp(c∞) (11)

with Perp(c∞) the hyperplane orthogonal to the vector c∞,
and Ker(C) the null space of C. The exact values of both the
covariance matrix C and the infinite-temperature composition
c∞ are analytically accessible; Eq. (11) thus provides an
operational way to classify energy displacements for a given
definition of local structures. In Table I, we indicate the
dimensionality of the vector space � for all choices of local
cluster. All clusters except the smallest ones admit energy
displacements.

To summarize, the space � of energy displacements acts as
a gauge group for the definition of local energy landscapes: for
δ ∈ �, the landscapes ε and ε + δ are physically equivalent,
as they correspond to the same Hamiltonian.

D. A gauge-invariant definition for frustration

We now examine the influence of energy displacements
on the quantification of frustration. As discussed in Sec. I A,
one should first specify the scale z at which we define it,
corresponding to the number of sites in the cluster used to
define the local energy landscape. The idea of frustration as
the incompatibility between the locally preferred structure
(LPS) and filling space can be intuitively quantified by the dif-
ference between the energy of a site in the LPS, i.e., the local
energy landscape minimum mins εs, and the average energy
per site in the ground state E0. This quantity, however, is not
gauge invariant: two energy landscapes corresponding to the
same Hamiltonian may have different minima. In particular,
arbitrarily large “apparent frustration” can be produced by
adding a large energy displacement to any LEL, as we made
evident in Sec. I B.
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FIG. 5. Two equivalent local energy landscapes, at the scale of
the coordination shell, for the antiferromagnetic Ising model. Dark
blue: the local energy is 1

2 si
∑

j∼i s j , which corresponds to taking into
account the energy of the radial bonds connecting i to its neighbors.
The local structures 1 and 14 are locally preferred, with energy −3,
to compare with the ground state energy E0 = −1. Light orange:
the optimal LEL for this model, as defined by Eq. (12). The LPS is
largely degenerate (1, 4, 7, 8, 10 and their spin-reversed variants),
and all have energy −1, equal to the ground state energy. Any
configuration composed exclusively of these structures is a ground
state configuration; as many such configurations exist, the ground
state is extensively degenerate.

We thus argue that the pertinent way to quantify the frustra-
tion of a Hamiltonian is to minimize it over the gauge group �.
This way, a system will be considered unfrustrated if it admits
a LEL representation ε∗ such that mins ε∗

s = E0. If it does not,
then the system is frustrated, and the smallest gap fz between
the ground state energy and the energy of the LPS quantifies
frustration at scale z:

fz(ε) = E0(ε) − max
δ∈�

[
min

s=1...n
(εs + δs)

]
. (12)

Here, fz(ε) is a non-negative quantity, and the optimization
over δ ensures that it is gauge invariant. Note that the quan-
tity mins(εs + δs), corresponding to the LPS energy of the
LEL ε + δ, is a linear-by-parts, concave function of δ: the
maximization in Eq. (12) is thus nonambiguous (there are no
local maxima). While this optimization might not be tractable
analytically, it can be efficiently performed numerically with
algorithms such as the Nelder-Mead simplex.2

In Eq. (12), the LELs ε∗ = ε + δ that maximize the LPS
energy play a special role. They typically have at least two
distinct, degenerate LPS: indeed, as the smallest LPS energy
is maximal, it should be such that no further energy displace-
ment can increase the energy of a LPS without also decreasing
the energy of the other.

We now apply our quantitative definition of frustration
[Eq. (12)] to specific models. In Fig. 5, we consider the
antiferromagnetic Ising model, and compare ε∗ with a usual
local energy landscape representation of the Hamiltonian. As
we discussed in Sec. I A, this model only has finite-range
frustration: already at the scale of a three-sites triangle, the
model can be written in a frustration-free manner [Eq. (2)].

2Importantly, symmetries of the original LEL ε (for instance, a
discrete rotation or spin-flip symmetry) cannot be spontaneously
broken when optimizing this concave function, so it is enough to
consider energy displacements that preserve all symmetries. This
makes the problem numerically tractable.

Our approach consistently finds that this is also true at the
scale of the coordination shell: f7 = 0.

A more complex class of models is presented in Table II:
the favored local structures (FLS) model. This model is de-
fined directly through its local energy landscape, which is
delta peaked to favor a single structure (the FLS, with energy
−1) while all others have zero energy. We have previously
studied this model on two- [22] and three-dimensional [20]
lattices, revealing that the geometry of the FLS controls a sur-
prisingly rich phenomenology, including complex crystalline
ground states [20], liquid-liquid transitions [19,23], and slow
dynamics [20,23]. In Table II, we summarize results for the
variant of this model where local structures are defined on
the coordination shell.3 Twelve of the thirteen distinct choices
of FLS (the exception being the trivial all-up case, labeled 0)
result in nontrivial ground states with E0 > −1 (i.e., including
non-FLS defects), and would thus be traditionally tagged as
frustrated. However, applying our formalism to each local
energy landscape, we find that in 9 of these 12 systems,
frustration has a finite range and vanishes at the scale of the
coordination shell itself: f7 = 0. While these systems appear
frustrated, they are thus completely equivalent to models with
the same interaction range, but for which there are multiple
minima to the LEL, and a combination of them can tile the
lattice perfectly. The remaining three systems (corresponding
to structures 6, 9, and 11) have nonzero f7, although the
numerical values for this frustration parameter (respectively,
1/12, 2/117, and 1/22) are substantially smaller than the gap
between the FLS energy and the ground state energy in the
initial formulation of the problem (respectively, 1/3, 5/9, and
1/2). Thus, even in the FLS model, a model explicitly built to
study geometrical frustration of local structures, most systems
that are apparently frustrated do not resist a closer investi-
gation: our gauge-invariant algorithm to quantify frustration
shows that frustration is an exception, rather than the norm.

E. Range of frustration

Our quantitative definition of frustration [Eq. (12)] depends
on the size z and geometry of the cluster on which we define
the LEL. This cluster must be at least as large as the range
of interactions of the Hamiltonian; it can however be larger.
Hierarchically increasing the cluster size by including more
sites, as in the sequence shown in Table I, gives access to more
energy displacements, which are less local as they displace
energy over a longer range. The optimization in Eq. (12) thus
occurs on a higher dimensional space when z increases; as a
result, fz is a nonincreasing function of z when considering a
hierarchical family of clusters.

Our formalism thus distinguishes two classes of frustrated
systems:

(i) Systems with finite-range frustration have a characteris-
tic size z∗ such that fz∗ = 0. This size corresponds to the scale

3In Refs. [20,22], the local cluster considered are empty coordina-
tion shells, where the spin value at the central site is indifferent. This
choice was made to limit the number of possible structures. However,
in view of the results presented in this article, including the central
spin is a more natural choice.
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TABLE II. Frustration analysis of the favored local structures (FLS) model. Each line corresponds to a Hamiltonian where sites in the
selected local structure, the FLS, are attributed an energy −1, while all other sites have zero energy. We consider all 13 distinct structures
on the triangular lattice coordination shell (Fig. 3, the other 13 being equivalent through spin inversion). We identify ground state structures
and their energies E0 using the systematic search algorithm described in Ref. [20]. The plots show two equivalent LEL representations of the
Hamiltonian on the coordination shell cluster: its original definition as a delta-peaked LEL (blue dashes), and ε∗ (one of) the LEL with highest
minimal energy (orange line). We finally indicate the frustration defined in Eq. (12) at the scale of three different clusters. This optimization is
performed using the SciPy implementation of the Nelder-Mead algorithm [21].

ID FLS Ground state E0 Cell size Local energy landscape f7 f10 f13

0 −1 1 0 0 0

1 −0.3333 3 0 0 0

2 −0.8571 7 0 0 0

3 −0.75 4 0 0 0

4 −0.4 5 0 0 0

5 −0.6667 3 0 0 0

6 −0.6667 9 0.0833 0 0

7 −0.6667 3 0 0 0

8 −0.5 2 0 0 0

9 −0.4444 27 0.0171 0.0171 0

10 −0.5 4 0 0 0

11 −0.5 12 0.0455 0 0

12 −0.6 10 0 0 0
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at which the Hamiltonian can be written in an unfrustrated
manner, i.e., such that locally preferred structures can tile the
whole space. At this scale, the locally preferred structures
are typically degenerate, which can result in a degeneracy of
the ground state of the system. Geometrical constraints are
localized at scales z � z∗, and can be eliminated by an exact
coarse-graining step.

(ii) Systems with long-range frustration have a nonzero fz

at all scales: there is no way to write them in terms of finite-
range unfrustrated LEL. Such systems would thus have truly
nonlocal geometrical constraints. Stability of the ground state
implies that the frustration function still decreases with scale,
with an upper bound fz < A/z1/d where d is the dimension of
space.4

On the triangular lattice, we have seen that the antiferro-
magnetic Ising model has finite-range frustration with z∗ =
3 [Eq. (2)], while 9 of the 12 frustrated FLS models have
z∗ = 7 (Table II). Interestingly, we find that the remaining
three choices of FLS have finite-range frustration too, with
z∗ = 10 for FLSs 6 and 11, and z∗ = 13 for FLS 9. Note
that these structures correspond to most of those for which
the crystalline ground state has the largest elementary cell
(respectively 9, 27, and 12). Thus, none of the systems defined
by a FLS on the triangular lattice coordination shell have
long-range frustration. Extending this study to the case of a
chiral Hamiltonian (i.e., favoring only structure 12, but not
its enantiomer) and to the case of structures defined on the
empty shell (with a cluster including the six neighbors of a
site, but not the site itself, as studied in Refs. [19,22,23]) does
not change this conclusion: all two-dimensional binary spin
systems studied by the authors have z∗ � 13, and thus have
finite-range frustration only. At the time of this writing, it
remains unclear whether there exist discrete spin systems with
long-range frustration.

A practical constraint to the investigation of more complex
structures (e.g., with more than two spin values, or on three-
dimensional lattices) is that the number n of structures grows
exponentially with z. The energy displacements are obtained
as the null space of the n × n matrix C; we conjecture that
their number grows exponentially too (Table I). This puts
sharp constraints on the size at which it is possible to study
frustration with our method; in particular, any type of scaling
analysis is impossible for now. This might not be hopeless,
though: in this article, our search through the energy dis-
placement space is blind. Identifying in advance what energy
displacement will matter could allow to estimate fz without
having to perform the high-dimensional optimization. We
leave this possibility open for future work.

F. Provability of ground states

To finish on a brighter note, we present a practical ap-
plication of our framework in the identification of ground

4One type of energy displacement δ is to average the energy over
clusters in a ball of radius R (with z ∼ Rd sites). The resulting LEL
ε + δ on the ball cannot admit a configuration with energy less than
E0 − O(1/R), otherwise replacing the region of the ground state by
that configuration would lower the energy E0Rd more than the energy
cost ARd−1 of the boundary.

state energies. Computing the ground state energy of a many-
body spin Hamiltonian such as the FLS models (Table II)
is a challenging problem, even if their interactions are short
ranged. In practice, we have found that constructive, enumer-
ative techniques permit to investigate all possible crystalline
structures up to a given cell size, using an adaptation of the
algorithm developed by Hart and Forcade [20,24]. This algo-
rithm typically provides a “good candidate” for the ground
state structure. However, it is difficult to know for sure that this
candidate is, indeed, the ground state: how to be sure that no
structure with a larger, more complex unit cell and a slightly
lower energy exists?

Our framework provides lower bounds to this ground state
energy: the LPS energy of any LEL representation of the
Hamiltonian [Eq. (8)]. In particular, for a given cluster size
z on which we define the LEL, the most restrictive bound is

E∗
z (ε) = max

δ∈�

[
min

s=1...n
(εs + δs)

]
, (13)

i.e., the maximal LPS energy in Eq. (12). When this energy
E∗

z (ε) coincides with the energy of a crystalline state that
could be constructed with, e.g., our enumerative algorithm,
it means that the system has finite-range frustration. Further-
more, it provides a rigorous proof that this state is, indeed,
the ground state of the system. As all FLS systems presented
in Table II have finite-range frustration, we thus have proven
that the crystalline structures depicted in this table are, indeed,
ground state configurations. This also applies to the variant of
the model studied in Refs. [19,22,23].

Interestingly, this method of “proving ground state ener-
gies” would not work for systems with long-range frustration
(if such systems exist). This could mean that these systems
effectively belong to a different class of complexity for the
provability of their ground states.

III. DISCUSSION

In this article, we have examined the notion of geometrical
frustration in the context of lattice spin models with short-
range interactions and translation invariance. This notion is
understood here as the impossibility for the locally preferred
order to tile space. To sharpen this idea of locally preferred
order, we introduce the framework of local energy landscapes,
which associates an energy to each spin depending on its local
spin environment, i.e., its local structure. There is, however,
an ambiguity in this choice: for a given Hamiltonian, we
have seen that there are typically many equivalent ways to
define a local energy landscape, related by unphysical gauge
changes that we term energy displacements. We have shown
how to characterize the gauge group, and construct it in
practical cases, using a high-temperature expansion of the
entropy. This allows us to define a gauge-invariant measure
for frustration, which depends only on the Hamiltonian and
the scale considered. The scale dependence of this frustration
function defines two classes of frustrated systems. When
frustration vanishes above a certain scale, we say that the
system has finite-range frustration: it can be eliminated by a
local “blurring” of the local energy. All systems studied in
this article fall in this class; in such cases, our framework
provides a rigorous proof that our estimate of the minimum
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energy is indeed the ground state of these systems. We
speculate that a second class of systems, that we term long-
range frustrated, exists. For such systems, the geometrical
constraints in their organization are nonlocal, which might
lead to interesting physical properties; however, an example
of spin system with long-range frustration remains to be
discovered.

The key difficulty in this assessment of geometrical frus-
tration is that it requires a notion of local energy, which
is typically ambiguous: only the global Hamiltonian has a
true physical meaning. The gauge of energy displacements,
that we have characterized here in the case of spin systems,
reflects this ambiguity: two local energy landscapes related
by an energy displacement are virtually indistinguishable.
This has practical consequences: any attempt to infer the
LEL from experimental measurements of the statistics of
structures would be unable to resolve such difference, and
would thus yield ambiguous results. Our framework resolves
this ambiguity. Other approaches attempting to attribute en-
ergies to local structures, for instance in particle systems in
the study of icosahedral structures [4,14,16] or other clusters
[25], might be subject to such ambiguity too. Our framework
could be adapted to such systems, and provide a route toward

a quantitative measure of frustration. This is, we argue, a
necessary step toward connecting geometrical frustration to
its alleged consequences, such as the extensive degeneracy of
ground states or slow dynamics in the supercooled liquid.

Finally, we note that we have only considered bulk sys-
tems here, for which there is no need to specify boundary
conditions. This is the relevant case for the thermodynamic
properties of liquids, crystals, and glasses. However, there has
been recently an emergent interest in the physical properties of
geometrically frustrated systems with free boundaries, such as
assembling proteins or filaments in a dilute solution [26,27].
In this “geometrically frustrated assembly” paradigm, frus-
tration in the bulk competes with surface tension at the free
surface. In order to apply our framework to these systems,
one would thus need to consider the influence of energy
displacements on the surface tension.
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