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The generalized Einstein relation (GER) for nonergodic processes is investigated within the framework
of the generalized Langevin equation. The conditions for anomalous relaxation such as long-tail decay and
non-vanishing velocity autocorrelation function (VAF) are proposed and distinguished. For the stationary
nonergodic process, if the initial preparation of the particle velocity is non-thermal, an asymptotic GER occurs
in a departure from the usual result. It is shown that the GER holding is a necessary condition rather than a full
condition for the system being close to equilibrium. For the nonergodic process of the second type due to cutoff
of high frequencies, the VAF oscillates with time, the GER holds but the equilibrium fails in the long-time limit.
Applications to some practical examples confirm the present theoretical findings.
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I. INTRODUCTION

Brownian motion, as a theory describing the random im-
pact of a resting fluid on a suspended particle, has played a
substantial role in statistical mechanics. For normal diffusion,
the diffusion constant D is related to the friction coefficient γ

experienced by the Brownian particle of mass m in the fluid
and the temperature T of the fluid by D = kBT

mγ
, where kB is

the Boltzmann constant. This is the normal Einstein relation
[1]. The generalized Einstein relation (GER) [2,3] establishes
a connection between the fluctuation of the particle position in
the absence of a potential and the average displacement of a
biased Brownian motion subjected to a constant force F , i.e.,

〈x2(t )〉0 = R(t )
2kBT

F
〈x(t )〉F , (1)

where 〈x2(t )〉 and 〈x(t )〉 are the time-dependent mean square
displacement (MSD) and average displacement (AD) of the
particle, the subscripts “0” and “F” in 〈· · · 〉 denote instances
when an external driving force applied to the particle is absent
and present, respectively. Clearly, the generalization of the
original Einstein relation stems from a time-dependent pro-
cess that can be described by a generalized Langevin equation
(GLE) and creates a link with mobility and diffusion.

According to the Einstein relation, Eq. (1), R(t ) is expected
to be time independent satisfying R(t ) = 1 for diffusion and
relaxation close to thermal equilibrium [4]. This has been
proved by experimental results in polymeric systems [5,6].
This relation is significant in describing transport for both
short and long times, and can be regarded moreover as a probe
to determine the diffusive behavior of the system through
calculating the mobility of a biased particle. It is not limited
however to normal diffusion [7–10], which assumes that the
underlying process is stationary. Recently, anomalous diffu-
sion has been a topic of interest as it occurs in the process
described by a generalized or fractional Langevin equation.
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In a previous article, Barkai and Fleurov [11] reported a
departure from the GER using the Scher-Lax-Montroll model,
in which a finite constant force influences the scale index
of time for the AD of a biased particle. Therefore, R(t )
varies with time and even diverges asymptotically. Here, we
want to investigate modification of the GER, in which the
processes considered are nonergodic. Because the mobility
and diffusion should be dependent on the initial preparation,
R(t ) also depends on the initial conditions but approaches
a constant in the long-time limit. We shall show that, for
a stationary nonergodic process, the GER is modified by a
factor; however, if the resulting process is non-stationary, the
situation becomes complex. To the best of our knowledge,
the violation of the GER for nonergodic processes has not
been discussed, and only a small number of prior studies have
emerged on the long-time results of nonergodic systems.

The subject that we address in this paper is whether the
GER can be violated in systems that are driven by non-
Markovian processes, or, the GER holding implies that the
system is close to thermal equilibrium? Because decay dy-
namics are currently of central importance in nonequilibrium
statistical mechanics, and there are several grounds for doubt,
it needs to allay these doubts in some detail. To find and dis-
tinguish rigorously the conditions for non-standard relaxation
and nonergodicity is the other purpose. Furthermore, we apply
to various physical situations for which the theory should be
explicitly discussed.

The paper is organized as follows. Section II derives
the GER starting from a phenomenological GLE using the
Laplace transform and the velocity autocorrelation function
(VAF) approach. In Sec. III, the types and conditions for
ergodicity breaking are distinguished. In Sec. IV, we calculate
numerically R(t ) of either band-passing noise or Debye-type
noise driven system using the VAF approach. A summary is
given in Sec. V.

II. GER AND GENERAL REMARK

One of the fundamental approaches to stochastic dynamics
is provided by the phenomenological GLE with a frictional
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memory kernel γ (t ), reading

mv̇ + m
∫ t

0
γ (t − t ′)v(t ′)dt ′ + U ′(x) = ε(t ), (2)

where v(t ) and x(t ) denote the velocity and position of a
particle of mass m, respectively, U (x) the potential. Here, the
initial particle velocity-independent ε(t ) is a Gaussian zero-
mean random force that is related to the memory kernel by the
second fluctuation-dissipation theorem (FDT) 〈ε(t )ε(t ′)〉 =
mkBT γ (|t − t ′|).

Remarkably, this model (GLE plus FDT) can be derived
from a Hamiltonian dynamics of a particle that bilinearly
couples to a thermal bath of harmonic oscillators. This is
general and leads to a non-Markovian process of the particle
dynamics with linear memory friction and Gaussian random
force. In the absence of any potential, the variance of the
particle’s position will grow with time limiting to the ballistic
diffusion [12]. Moreover, due to the FDT it is compatible with
thermal equilibrium in confining, time-dependent bounded
potential. This happens if the precess obeys: (i) the second
FDT, (ii) the stationary form of GLE, (iii) the VAF Cv (t ) of
the particle decays asymptotically to zero. Nevertheless, the
presence of the memory kernel allows us to study a large
number of correlated processes. It is also stressed that further
investigations have to be made on the issue [13].

In what follows, we shall consider that the driving noise
meets all the requirements as necessary conditions so that the
phenomenological GLE (2) becomes physical [2,14,15]. The
conditions are: (i) the memory function should vanishing in
the long time limit, limt→∞ γ (t ) = 0, (ii) the noise spectral
density (NSD) must be non-negative, (iii) the magnitude of
the memory function is smaller than the initial value, γ (t ) <

γ (0), and (iv) the Laplace transform of the memory function
becomes finite in the large-s limit, where s is the Laplace
variable.

The connection to ergodic properties is given by
Khinchin’s theorem [16], which states that the stationary
variable v(t ) is an ergodic one if the VAF factorizes to zero
in the long-time limit. Although in Mori-Zwanzig’s GLE
[17,18] the random force ε(t ) and therefore the velocity
variable in the absence of a potential, are not necessary
stationary and zero centered [19], we shall assume that these
properties do hold. The finial-value theorem limt→∞ Cv (t ) =
lims→0[sĈv (s)] gives the condition of ergodicity breaking
[see Eq. (22)], where the symbol “ˆ” denotes the Laplace
transform. It is possible to construct the memory function γ (t )
that vanishes as long times, but the corresponding VAF of the
particle does not have a long time limit. The condition for
nonergodicity of this type will be reported in Eq. (23).

A. Derivation of GER

When the external potential is linear, U (x) = −Fx, we
deal with a biased Brownian motion. The solution of Eq. (2)
with arbitrary memory kernel through the Laplace transform
has a long history starting from the well-known paper by
Adelman [20]. Here, the formal solution of the linear GLE

can be expressed in the form

x(t ) = x(0) + v(0)H (t )

+ 1

m

∫ t

0
H (t − t ′)[ε(t ′) + F ]dt ′, (3)

v(t ) = v(0)h(t ) + 1

m

∫ t

0
h(t − t ′)[ε(t ′) + F ]dt ′ (4)

with x(0) and v(0) being the initial position and velocity
of the particle, h(t ) is the velocity relaxation function. The
Laplace transforms of h(t ) and H (t ) are given by ĥ(s) =
[s + γ̂ (s)]−1 and Ĥ (s) = s−1ĥ(s), respectively, where γ̂ (s)
is the Laplace transform of the memory kernel, i.e., γ̂ (s) =∫ ∞

0 γ (t ) exp(−st )dt . The relation between H (t ) and h(t )
reads H (t ) = ∫ t

0 h(t ′)dt ′.
The AD of the particle subjected to an external bias F

emerges as

{〈x(t )〉}F = {x(0)} + {v(0)}H (t ) + F

m

∫ t

0
H (t ′)dt ′. (5)

In unbiased situations, we derive the MSD of the force-free
particle in a generic form

{〈x2(t )〉}0 = {x2(0)} +
(

{v2(0)} − kBT

m

)
H2(t )

+ 2{x(0)v(0)}H (t )

+ 2

m

∫ t

0
dt ′H (t − t ′){〈x(0)ε(t ′)〉}

+ 2kBT

m

∫ t

0
H (t ′)dt ′. (6)

The probability density function of the particle position
x(t ) in Eq. (3) is also Gaussian, i.e.,

P(x, {x(0)}, t ) = 1√
2πσ 2

x

exp

(
− [x − {〈x(t )〉}]2

2σ 2
x (t )

)
, (7)

where σ 2
x (t ) is the position variance. Herein, we indicate by

{· · · } the average with respect to the initial preparation of
the state variables, i.e., an average over their initial values,
and 〈· · · 〉 the noise average. It has been observed by Ferrari
[21] that, sometimes, the two types of averages are usually
confused. Hence, we shall take the two averages separately.

Starting from Eq. (1) and assuming that x(0) = 0, {v(0)} =
0, {x(0)v(0)} = 0 as well as {〈x(0)ε(t )〉} = 0, we present the
ratio of Eq. (6) to Eq. (5) and thus obtain an expression for the
initial velocity preparation-dependent R(t ) as

R(t ) = 1 + m

2kBT

(
{v2(0)} − kBT

m

)
H2(t )∫ t

0 H (t ′)dt ′ . (8)

It is observed that R(0) = {v2(0)}(kBT/m)−1, because
limt→0[H2(t )/

∫ t
0 H (t ′)dt ′] = 2h(0) = 2. In further, while the

initial velocity preparation of the particle is set to a special
case, i.e., the particle is initially not at rest but undergoes
thermalization as {v2(0)}th = kBT/m, R(t ) = 1 holds for all
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times. Therefore,

{R(t )}th ≡ 1; (9)

lim
t→∞ R(t ) = 1 + b

(
m

kBT
v2(0) − 1

)
(10)

with b = h(t → ∞) = (1 + γ̂ ′(0))−1.
It is worth noting, Eq. (10) is evidence that, if the asymp-

totic result of h(t ) exists and does not decay to vanishing and
the initial preparation of the particle velocity is non-thermal,
an asymptotic GER occurs in a departure from the usual result.
This expression is obtained under the precondition of VAF
being assumed to be stationary, so that the Tauberian theorem
is valid. By the way, the present results can be applied to deal
with the fractional Langevin equation [7].

The usual expectation would be that R(t ) = 1 implies the
system being close to equilibrium [11]. However, surprisingly
we find the contrary to be true. It will be demonstrated in
Sec. IV B that if the velocity of a force-free particle is not
ergodic, namely, its VAF does not freeze but keeps oscillating
at long times, the asymptotic value of R(t ) can become unity,
however, in the velocity space the system does not arrive at
equilibrium.

B. Evaluating velocity relaxation function

Presuming that the characteristic equation s + γ̂ (s) = 0
has no pure imaginary roots, the forever time-oscillation term
in h(t ) does not arise. The resulting process is treated as
stationary. In this situation, h(t ) as a key quantity can be
obtained by the inverse Laplace transform of ĥ(s),

h(t ) = 1

2π i

∫ c+i∞

c−i∞
ĥ(s) exp(st )ds. (11)

The contour for evaluating the above integral can be found
in Ref. [15], however, the position of the pole point at the
coordinate origin was not considered. If ĥ(s) is a signal-
value and continuous analytical function in the region inside
the curve CR except at isolated singular points, the residue
theorem [22] may be used to calculate this contour fully, i.e.,∫ c+iR

c−iR
+

∫
C+

R

+
∫

C−
R

+
∫

L1

+
∫

L2

+
∫

C+
r

+
∫

C−
r

+
∫

C0

= 2π i
2K∑

k=1

res[ĥ(sk )] exp(skt ), (12)

where c is a positive constant and R denotes the contour ra-
dius. In addition, the upper limit of the summation in Eq. (12)
is written as an even number because h(t ) is a real-valued
function of time.

To understand the contour integral of Eq. (12), we plot
here a figure, i.e., Fig. 1, as a guide to evaluating the inverse
Laplace transform of ĥ(s). The contributions from C+

R and C−
R

vanish when R goes to infinity. In principle, the characteristic
equation s + γ̂ (s) = 0 could have simple poles on the left
complex plane and the imaginary axis as well as at the origin.
However, we do not consider instances of poles situated on
the imaginary axis arising from a high-frequency cutoff of the
spectral density for noise. With the contributions from C+

R and

FIG. 1. Contour to evaluate Eq. (11) to obtain the relaxation
function h(t ) in the time domain.

C−
R vanishing in the limit as R goes to infinity, we arrive at the

expression for h(t ),

h(t ) = − 1

2π i
lim
r→0

(∫
C+

r

+
∫

C−
r

)
ĥ(s) exp(st )ds

+
2K∑

k=1

res[ĥ(sk )] exp(skt )

− 1

2π i
lim
ε→0

∫
Cε

ĥ(s) exp(st )ds

− 1

2π i

(∫
L1

+
∫

L2

)
ĥ(s) exp(st )ds. (13)

Here, the four terms in Eq. (13) indicate in turn the
exponential relaxation, the exponential with oscillating
convergence, the nonergodic process, and the long-time tail
decay. Moreover, the initial value theorem [h(0) ≡ 1] must
hold. Then, from the relation sĥ(s) = ∫ ∞

0 h(t ) exp(−st )sdt =
h(0) + ∫ ∞

0 ḣ(t ) exp(−st )dt , we have lims→∞ sĥ(s) =
lims→∞ s/(s + γ̂ (s)) = 1 and thus lims→∞ γ̂ (s) = finite
is required.

In addition, one might meet difficulty when one performs
the Laplace transform and its inverse [10], for which we have
to find an alternative approach to express the resolvent h(t ).
To determine the VAF at time t related to the initial velocity
obeying a Gaussian distribution with the second moment
{v2(0)}, we multiply Eq. (4) by v(0) and take into account
the double averages for the equation; we then have

{〈v(t )v(0)〉} = {v2(0)}h(t ) + 1

m

∫ t

0
h(t − t ′)[F {v(0)}

+ {〈ε(t ′)v(0)〉}]dt ′. (14)

Assuming that {v(0)} = 0 and {〈ε(t )v(0)〉} = 0, we write the
relaxation function h(t ) using the VAF as

h(t ) = 1

{v2(0)} {〈v(t )v(0)〉}. (15)

In this situation, knowing {〈v(t )v(0)〉} from numerical calcu-
lation, one obtain h(t ) and then H (t ) = ∫ t

0 h(t ′)dt ′, so that all
average quantities of linear GLE will be evaluated fully.
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III. ANOMALOUS RELAXATION

A. Condition for long-tail decay

In common practice, the nonexponential decay of VAF
is often taken as explicit evidence for disorder. However,
there are no studies detailing how nonexponential decay and
long-time tail arise. Here, we show that even without disorder,
nonexponential relaxation might arise from the long-time
decaying memory function. Expressing the last two integrals
in Eq. (13) along the contours L1 and L2 (Fig. 1), we obtain

− 1

2π i

(∫
L1

+
∫

L2

)
ĥ(s) exp(st )ds

= 1

2π i

∫ ∞

0

[
exp(−rt )

−r + γ̂ (re−π i )
− exp(−rt )

−r + γ̂ (reπ i )

]
dr, (16)

where r is a real quantity. We now propose that the necessary
condition for nonexponential decay of the VAF is

γ̂ (reπ i ) − γ̂ (re−π i ) �= 0. (17)

This condition for the long-time tail appearing in the VAF is
more generic than the previous results, i.e., either γ̂ (s) has a
pole at s = 0 [23] or small-s behavior [24]. In this situation,
however, we find that b = 0, therefore, the GER is valid.

As an application, in classical hydrodynamic theory, the
Stokes-Boussinesq formula [25] provides time-dependent cor-
rections to the simpler Stokes formula for viscous drag on
a sphere in uniform motion. The Fourier transform of the
memory function reads

γ̃ (ω) = 6πηR0
[
1 + R0(−iω/ν)1/2 − iωR2

0/(9ν)
]
, (18)

in which η is the viscosity of the fluid, R0 the radius
of the sphere, and ν the kinematic viscosity of the fluid.
Then γ̂ (−iω = s) = 6πηR0[1 + R0(s/ν)1/2 + sR2

0/(9ν)] and
γ̂ (reπ i ) − γ̂ (re−π i ) = 6πην−1/2R2

0r1/2(2i) �= 0, so that con-
dition (17) is obeyed. Using Eq. (18), we determine the
maximum contribution coming from r around zero; hence,
h(t ) ∼ 2

3η
√

ν
(4πt )−3/2, as t → ∞. This is in agreement with

Fox’s result [25]. The existence of a tail indicates that a
random force varies slowly and persists driving the particle
in the same direction.

B. Conditions for ergodicity breakdown

Two-time correlated dynamics such the VAF of a force-free
particle, as a probe of estimating ergodicity of the system, is
given by

{〈v(t )v(t ′)〉}0 = kBT

m
h(|t − t ′|)

+
(

{v2(0)} − kBT

m

)
h(t )h(t ′). (19)

According to the Khinchin theorem [16], if lim|t−t ′|→∞
〈v(t )v(t ′)〉 �= 0, ergodicity is broken.

This plays a unique role in nonequilibrium statistical and
chemical physics [15,26,27]. Let us now try to find alternative
conditions for ergodicity breaking using spectral analysis. The
memory function and its Laplace transform are determined

from the noise spectral density (NSD) ρ(ω), i.e.,

γ (t ) = 2

π

∫ ∞

0
ρ(ω) cos(ωt )dω (20)

and

γ̂ (s) = 2

π

∫ ∞

0

ρ(ω)s

s2 + ω2
dω. (21)

First, we assume that s + γ̂ (s) = 0, finding the poles of
ĥ(s) to possess a zero root s = 0, the residue at this point being
equal to a non-vanishing constant. This requires that

γ̂ (0) = 0 and γ̂ ′(0) = 2

π

∫ ∞

0

ρ(ω)

ω2
dω < ∞. (22)

It follows from Eq. (19) that the VAF decays to a finite value:
{v2(0)}h(t → ∞) = {v2(0)}/(1 + γ̂ ′(0)), which behaves as
the first type of nonergodicity [28]. If the two conditions
in Eq. (22) are fulfilled, diffusion of a force-free particle
is classified as ballistic [12]. Naturally, the motion of a
self-propelled artificial micro-swimmer is often modeled as
ballistic Brownian motion [29].

Second, if s + γ̂ (s) = 0 have a pair of pure imaginary roots
s± = ±ia (a real), then the VAF becomes non-stationary.
Hence, the second type of nonergodicity arises although this
situation is not included in Eq. (13). The reasoning is as
follows. We propose other condition for ergodicity breaking,

2

π

∫ ∞

0

ρ(ω)
(ω − ωd )

ω2 − a2
dω + 1 = 0, (23)

where 
(ω − ωd ) is a step function and ωd denotes the
cutoff frequency, namely, 
(ω − ωd ) = 1 when ω � ωd and

(ω − ωd ) = 0 when ω > ωd . Obviously, Eq. (23) requires
|a| > ωd , because the NSD is always non-negative. A lack of
scattering high frequencies leads yet to similar result in the
microcosmical GLE case [15,30].

The conclusion is, for a non-stationary VAF oscillating
around zero process where ergodicity is broken, R(t ) varies
with time before the transition, and then approaches unity in
the long-time limit. This is because the time-increasing term
exceeds the oscillating part in the AD and MSD of the biased
particle.

IV. APPLICATION AND COMPARISON

A. Evolution equation of VAF

One of the key features of the GLE is the fact that it
contains an aftereffect function, termed a memory function.
Although the memory function in the present study induces
modification of the GER, it satisfies all the conditions shown
in Sec. II. The inverse Laplace transformation of Eq. (11) is
not easy analytically or numerically [10,31–34]. In order to
observe the behavior of the VAF as a function of time in more
detail and confirm the validity of the present theoretical find-
ings, we employ a more simply approach. By multiplying both
sides of Eq. (2) with U (x) = 0 by v(0) and performing the
ensemble average, we obtain time evolution of the normalized
VAF [i.e., h(t ) in Eq. (15)],

Ċv (t ) = −
∫ t

0
γ (t − t ′)Cv (t ′)dt ′, (24)
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FIG. 2. The memory kernel function γ (t ) for various τ1 and τ2 at
fixed γ0 = 1.0.

where Cv (0) = 1. Numerically solving this equation is a
straightforward task. The VAF exhibits nonergodic behavior
of two kinds based on the Khinchin theorem [16]. Once
knowing the VAF, the AD and MSD of the diffusing particle
can be evaluated.

In Sec. III, based on the Khinchin theorem, we have
demonstrated that the VAF exhibits nonergodic behavior of
two types. In order to evaluate the consequences [Eqs. (9),
(10), and (19)] by using the memory kernel on the final
result, we shall consider two situations in this section. Also,
a comparison of the represent results with those obtainable
through the reasonable memory kernel should be advisable.

B. The practical examples

As a realizable case of R(t ) being not equal to unity in the
long-time limit, we employ a driven-noise from the difference
between two Ornstein-Uhlenbeck (OU) noise sources induced
by the identical white noise. The thermal noise of this type has
been used to investigate the ballistic diffusion in the previous
works [12,35–37]. It is associated with the following memory
kernel:

γ (t ) = A

[
1

τ2
exp

(
− t

τ2

)
− 1

τ1
exp

(
− t

τ1

)]
(25)

with A = γ0τ
2
1 /(τ 2

1 − τ 2
2 ), where τ1 and τ2 are two correlation

times, γ0 denotes the friction coefficient. The corresponding
noise obeys the Kubo’s requirements [2], which allows a
coverage from “red” noise (τ2 finite and τ1 → ∞) to “green”
noise (τ2 → 0 and τ1 finite). The case of τ2 = 0 and τ1 → ∞
reduces into the white noise. Observably, the memory kernel
(25) satisfies the condition (22) as long as the value τ1 is finite.

In Fig. 2, we plot the memory kernel function (25) for
various parameters τ1 and τ2. All quantities depicted therein,
and in the forthcoming, are dimensionless (i.e., kB = 1 and
m = 1). In sharp contrast to usual OU colored noise, the
present memory function corresponds to the thermal band-
passing noise, which starts out positive, crosses zero towards
negative values, and assumes in the asymptotic long time
limit zero from below. Thus the effective Markovian friction
vanishes

∫ ∞
0 γ (t ′)dt ′ = 0 when τ1 �= τ2, however, through the

FIG. 3. Time variation of the dimensionless factor R(t ) for vari-
ous τ1 and {v2(0)} at fixed τ2 = 0.2. The parameter settings used are
T = 1.0 and γ0 = 1.0.

FDT, the corresponding memory function of the OU noise
(τ1 → ∞),

∫ ∞
0 γ (t ′)dt ′ = γ0.

Figure 3 shows R(t ) calculated by using Eqs. (24) and
(25). We also compare the present result with the more usual
exponentially decaying memory kernel. If the NSD has a
zero-weight at low frequencies and rich high frequencies, for
instance, Eq. (25), the condition (22) holds with the result that
the VAF approaches a constant in the long-time limit. The
factor b in Eq. (10) is given by

b =
(

1 + γ0τ
2
1

τ1 + τ2

)−1

. (26)

Consequently, in Fig. 3, the long-time value of R(t ) is not
equal to unity but increases with increasing {v2(0)}, namely,
R(t ) > 1 when {v2(0)} > kBT/m, R(t ) < 1 when {v2(0)} <

kBT/m, and R(t ) = 1 when {v2(0)} = kBT/m. This is in
agreement with our theoretical expression [Eq. (10)].

To emerge explicitly the origin of non-stationary VAF, we
now consider the famous Debye model as the second example.
Zwanzig [18,38], Adelman [39], and Millonas [40] had put
the model into the GLE and the relaxation kinetics and they
did not restrict themselves to the lattice dynamics. Then, they
treated the frequency distribution as semicontinuous with a
frequency density of the Debye type. Here, we employ the
memory kernel function expressed by Zwanzig in Ref. [18],
i.e.,

γ (t ) = (
3γ 2

0 /ω2
d

)
sin(ωdt )/t, (27)

where ωd is a cutoff frequency and γ0 constant. As expected,
γ (t ) vanishes in the long-time limit. If the system velocity
aries sufficiently slowly over times of the order of 1/ωd , then
a δ-function approximation may be used for ε(t ), i.e., γ (t ) �
2γ̃0δ(t ); γ̃0 = 3πγ 2

0 /(2ω2
d ) [18]. This leads to the Markovian

approximation.
Figure 4 shows the time-dependence VAF of a force-free

particle calculated from Eqs. (24) and (27). It is seen that
the VAF exhibits nonergodic behavior of the second types,
namely, which continues oscillating with time if ωd is fi-
nite. Moreover, it asymptotically vanishes when ωd → ∞.
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FIG. 4. The VAF of the force-free particle driven by a Debye-
type noise for two cases of ωd at fixed γ0 = 1.0.

Notably, for the second type of nonergodicity, we observe that
the VAF exhibits non-stationary behavior that oscillates with
time.

In Fig. 5, we plot the time-dependent R(t ) for two initial
preparations. As the driving noise with zero-weight hight
frequencies obeys the condition (23), such noise induces a
non-stationary VAF result, which has been regarded as non-
ergodicity of the second-type. Nevertheless, the leading terms
in both the AD of the biased particle and the MSD of the force-
free particle are identical, and they exceed the oscillation parts
in the time domain. It is observed form Fig. 5 that the GER
fails for the transition process but R(t ) approaches unity at
long times. Based on the results of Fig. 4 in combination
with Fig. 5, we conclude that the GER holding is not a full
condition for the system being close to equilibrium.

V. SUMMARY

An integrated analysis of the mobility and diffusion pro-
cesses using the GER has provided an interesting route in un-
derstanding the influence of ergodicity breaking of two types
on transport. The first two moments are expressed using the
residue theorem of the inverse Laplace transform or the VAF
approach. They show a different dependence on the initial
preparation. The conditions for the non-vanishing forms of

FIG. 5. Time variation of the dimensionless factor R(t ) for vari-
ous initial velocity variances. The parameter settings used are: T =
1.0, γ0 = 1.0, and ωd = 2.0.

the VAF derived in this context have a clear interpretation by
means of spectral analysis, specifically, zero weights occur in
either low frequency or high frequency.

To account for the non-vanishing results of the VAF and
related quantities systematically, we considered exponential
band-passing and Debye-type Gaussian noise sources. We
revealed two types of nonergodicity: (i) the VAF decays
asymptotically to a constant; (ii) the VAF oscillates forever
with time. We have found that the GER fails for the noner-
godic process of the first type because the ratio of MSD to
AD depends on the initial velocity preparation of the particle.
Moreover, for the second type of nonergodicity, the VAF
oscillates around the zero value, the GER is asymptotically
valid, however, the system is not close to equilibrium, because
the VAF does not vanishing in the long-time limit. We believe
that the present study has relevance to anomalous transport in
which mobility and diffusion compete.
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