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Locating fixed points in the phase plane
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The critical point is a fixed point in finite-size scaling. To quantify the behavior of such a fixed point, we
define, at a given temperature and scaling exponent ratio, the width of scaled observables for different sizes. The
minimum of the width reveals the position of the fixed point, its corresponding phase transition temperature, and
scaling exponent ratio. The value of this ratio tells the nature of the fixed point, which can be a critical point, a
point of the first-order phase transition line, or a point of the crossover region. To demonstrate the effectiveness
of this method, we apply it to three typical samples produced by the three-dimensional three-state Potts model.
Results show the method to be more precise and effective than conventional methods. Finally, we discuss a
possible application at the Beam Energy Scan program of the Relativistic Heavy Ion Collider.
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I. INTRODUCTION

The phase diagram in statistical physics labels the bound-
ary where a phase transition (PT) happens. In order to draw
this boundary with precision, some key points of the boundary
line should be located first. The critical point (CP) of the
second-order PT is one of these points. Its temperature, the so-
called critical temperature (TC), is one of the most interesting
parameters [1–8].

As we know, if the volume of the system is large enough,
TC can be approximately determined by the peak position
of the distribution of susceptibility [9–11], whereas for the
system with finite volume, TC has to be determined by the
finite-size scaling (FSS) [1,2,12–15].

The FSS of observable Q(T, L) has usually the form
[12,13]

Q(T, L) = L−λ/ν fQ(tL1/ν ), (1)

where t = (T − TC )/TC is the reduced temperature, fQ is a
scaling function, tL1/ν is a scaled variable, and λ and ν are
respectively the scaling exponents of the observable and the
correlation length ξ ∝ |τ |−ν . These exponents characterize
the universal class of PTs. Here the scaling exponent ratio
(SER) a = λ/ν is a fraction between the spatial dimension
d and zero.

The FSS means that the observables for different system
sizes and temperatures can be scaled to a universal scaling
function, as shown in Fig. 1(a). There are three parameters,
TC, ν, and λ (or a), in this scaling function. To determine
TC and scaling exponents, it is usually assumed that the
observables fall in a certain universal class. TC is obtained by
the Binder cumulant ratio, and scaling exponents are obtained
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by the best scaling plot of the observables of different sizes
[16–18]. Selection of the best scaling is done through visual
observation. The method, therefore, often lacks precision [19].

On the other hand, the FSS also implies a fixed point (FP).
If we plot the scaled observable versus T , instead of the scaled
variable tL1/ν , the curves of different sizes will intersect
at the FP, where T = TC and the scaling function fQ(0) is
independent of system size [i.e., Fig. 1(b)]. The parameter ν

is therefore omitted in this plot.
The FP is obtained from the scale transformation of the

renormalization group [13,20,21]. In a phase diagram, not
only is the CP a FP, but also the point of the first-order PT
line [13,22–24] [cf. Figs. 1(c) and 1(d)]. The SER a of the
first-order PT line is an integer, in contrast to that of the
second-order PT, where a is a fraction.

It is clear that the scaling holds in a limited range of system
size or temperature, as shown in Figs. 1(a) and 1(c). The valid
range of size or temperature varies with the system studied, its
spatial dimension, and the order of PT. For a relatively small
size or a substantial deviation from the critical temperature,
the scaling is violated. So with the change of size or tempera-
ture, there should be a correction for the scaling. However, as
the scaled variable is the product of reduced temperature and
size, the temperature and size are tied together in the scaling
plot. The influence of size or temperature is therefore difficult
to quantify.

In contrast to the scaling plots in Figs. 1(a) and 1(c), the
plots of FP in Fig. 1(b) and 1(d) show clearly how scaled
observables for different sizes vary with temperature. Any
deviation from the critical (or transitional) temperature, and
the curves for different sizes are separate from each other.
They converge, or intersect only at the critical (or transitional)
temperature. This feature allows us to quantify the deviation
for different sizes at a given temperature, and to accurately
locate the critical temperature.

2470-0045/2019/100(5)/052146(8) 052146-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.100.052146&domain=pdf&date_stamp=2019-11-27
https://doi.org/10.1103/PhysRevE.100.052146


YANHUA ZHANG et al. PHYSICAL REVIEW E 100, 052146 (2019)

20− 10− 0 10 20

m
L

0

0.5

1

2D-Ising

2nd PT

λ/ν = 0.125

 1/ν = 1.0

h= 0

(a)

2.2 2.25 2.3 2.35
0.2

0.4

0.6

0.8

1

1.2

1.4

 30*30
      50*50
      70*70
      90*90

TC= 2.269185

fixed point

(b)

40− 20− 0 20 40

0

0.1

0.2

0.3

0.4 3D 3-state Potts

1st PT
     30*30*30

     40*40*40

     50*50*50

λ/ν= -0.0541

 60*60*60

1/ ν = 3

(c)

h= 0.0005

1.818 1.8185 1.819 1.8195
0

0.1

0.2

3.0       30*30*30

     40*40*40

     50*50*50

     60*60*60

Ttr= 1.8188763

fixed point

(d)

1.5 30*30
      50*50
      70*70
      90*90

m
L m
L

tL1/ν T

tL1/ν T

L3 L3

L2L2

m
Lλ/

ν λ/
ν

λ/
ν λ/

ν

FIG. 1. The scaled order parameter (mLλ/ν) versus (a, c) the scaled variable (tL1/ν) and (b, d) T for the (a, b) second-order (2D Ising model
with external field h = 0) and (c, d) first-order PTs (3D three-state Potts model with h = 0.0005), respectively.

At a given T and a, all points of curves for different sizes
can be regarded as a set. The width of the set can be defined as
the square root of the variance of scaled observables. Usually,
the defined width depends on T and a. When T and a both
approach transition values, all points in the set overlap within
error, i.e., the FP, and the defined width reaches its minimum.
So defined width well quantifies the behavior of the FP. TFP

and aFP can be determined by the minimization of the width.
For the crossover region, the observable is independent

of system size in the region of transition temperature [25].
This character can be generalized to SER a = 0 in scaling
form Eq. (1). It implies that curves for different sizes, as
those shown in Figs. 1(b) and 1(d), overlap within errors at
the region of transition temperature. The defined width is
therefore also minimized, the same as in the case of the FP.

Therefore, in general, the value of aFP reveals the nature of
the FP, which is either a CP, a point of the first-order PT line,
or a point of the crossover region.

In this paper, we first quantify the behavior of the FP in
Sec. II. Then, in Sec. III, three samples of order parameter are
produced by the 3D three-state Potts model, where the CP, the
point of the first-order PT line, and the point of the crossover
region are all well defined. In Sec. IV, we demonstrate that
in the plane of T and a, the contour plot of defined width
precisely locates the position of the FP in three given samples,

respectively. In Sec. V, a possible application of the method
at the Relativistic Heavy Ion Collider (RHIC) Beam Energy
Scan (BES) is discussed. Finally, a summary is given in
Sec. VI.

II. DESCRIPTION OF FIXED POINT

In Figs. 1(b) and 1(d), at a given T , when T approaches
TC (or Ttr) in value, the points of curves for different sizes
approach each other, allowing the formation of an intersection
point. When T deviates from TC (or Ttr), all points separate
from each other. In order to quantify the relative distance
between the points, we define, at a given a, the width of all
size scaled observables (Q(T, L)La) to be the square root of
their variance, i.e.,

D(T, a) =
√

�SQ(T,L)La

NL − 1
. (2)

Here, D(T, a) varies with T and a, and NL is the number of
sizes. �SQ(T,L)La is the error weighted variance of all scaled
observables to their mean position, i.e.,

�SQ(T,L)La =
NL∑
i=1

[
Q(T, Li )La

i − 〈Q(T, L)La〉]2

ω2
i

. (3)
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FIG. 2. D(T, a) nearby the temperatures of the (I) first-order PT,
(II) second-order PT, and (III) the crossover region.

ωi = δ[Q(T, Li )La
i ] is the error of Q(T, Li )La

i . 〈Q(T, L)La〉 is
the weighted mean, i.e.,

〈Q(T, L)La〉 =
∑NL

i=1 Q(T, Li )La
i /ω

2
i∑NL

i=1 1/ω2
i

. (4)

D(T, a) describes the relative distance of all points to their
mean position. When T and a deviate from critical (transi-
tional) values, the points of curves for different sizes move
away from each other, and the value of D(T, a) increases.
When T and a are both the critical (transitional) values, all
points overlap within error. D(T, a) reaches its minimum
around unity.

Such defined width is analogous to the χ2 of curve fitting,
where the variance is the measured points of a given curve.
The minimum of χ2 corresponds to the best curve fitting.

In a real experiment, due to the error of observable and
other uncertainties, the FP may not be an ideal point, and the
minimum of D(T, a) may be larger than unity. Nevertheless,
if there is a FP in the T -a plane, the D(T, a) will change with
T and a and converge to a minimum. This converging trend of
D(T, a) is essential for forming a FP.

At three different regions of phase plane, D(T, a), T and a
are expected to be cases I, II, and III, respectively, as shown
in Fig. 2.

In case I, T is low. D(T, a) has a minimum at the transi-
tional T , where the SER a is an integer. It characterizes the
FP of the first-order PT.

In case II, T is in the middle. D(T, a) has also a minimum
at the TC, and the SER a is a fraction, in contrast to case I. It
characterizes the FP of the second-order PT, i.e., the CP.

In case III, T is high. D(T, a) is a constant, independent of
T , and the SER a is zero. The observable is independent of
system size. It characterizes the FP of the crossover region.

In the following, we show in practice how to locate the FP
and determine its TFP and aFP.

III. THREE SAMPLES OF THE POTTS MODEL

The same as QCD with finite temperature and infi-
nite quark mass, the 3D three-state Potts model has Z(3)
global symmetry [26–29]. The external magnetic field in
the Potts model plays the role of the quark mass in
the finite-temperature QCD. At vanishing external field,
the temperature-driven PT has been proven to be of the

first order [30,31]. As the external field increases, the
first-order PT weakens and ends at the CP, (1/TC, hC) =
(0.54938(2), 0.000775(10)) [18,27], which belongs to a 3D
Ising universality class, the same as deconfining and chiral
CPs in QCD. Above the critical temperature, the transition is
a crossover [25].

The 3D three-state Potts model is described in terms of spin
variable si ∈ 1, 2, 3, which is located at sites i of a cubic lattice
with size V = L3. The Hamiltonian of the model is defined by
[18,32]

H = βE − hM. (5)

The partition function is

Z (β, h) =
∑
{si}

e−(βE−hM ), (6)

where β = 1/T is the reciprocal of temperature, and h = βH
is a normalized external magnetic field. E and M denote the
energy and magnetization respectively, i.e.,

E = −J
∑
〈i, j〉

δ(si, s j ) and M =
∑

i

δ(si, sg). (7)

Here J is an interaction energy between nearest-neighbor
spins 〈i, j〉 and set to unity in our calculations. sg is the
direction of ghost spin for the magnetization of nonvanishing
external field (h > 0). For vanishing external field the model
is known to have a first-order PT. With increase of the external
field, the first-order PT line ends at a CP.

The order parameter of system is defined as

m(T, L) = 3〈M〉
2V

− 1

2
. (8)

However, at the CP, the original operators E and M lose their
meaning as T -like and H-like, i.e., symmetry breaking cou-
plings, as those in the Ising model. The order parameter and
energylike observable have to be redefined as the combination
of the original E and M [18], i.e.,

M̃ = M + sE and Ẽ = E + rM. (9)

The Hamiltonian in terms of M̃ and Ẽ is

H = τ Ẽ − ζ M̃, (10)

where new couplings are given by

ζ = 1

1 − rs
(h − rβ ) and τ = 1

1 − rs
(β − sh). (11)

Here r and s are mixing parameters and were determined in
Ref. [18] by

r−1 =
(

dβC(h)

dh

)
h=hC

and 〈δM̃ · δẼ〉 = 0, (12)

with δX̃ = X̃ − 〈X̃ 〉 for X = M or E .
The order parameter in terms of τ and ζ is

m(τ, ζ ) = 1

L3
[M̃(τ, ζ ) − 〈M̃(τC, ζC)〉]. (13)

It is the most sensitive observable to the PT. According to
Eqs. (12) and (13), it can be written in terms of T and
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TABLE I. Parameters of T and a at Dmin(T, a) for three samples (corresponding ones from conventional methods are shown in parentheses).

Sample Dmin(T, a) T a

Second-order PT 1.0291 ± 0.2946 1.82023(1.82023372) 0.583(0.564)
First-order PT 1.5287 ± 0.5591 1.81887(1.8188763) −0.047(−0.0541)
Crossover ∼1 for all T 1.8256–1.8261 −0.05 ∼ 0.05

h as

m(T, h) = 1

L3
[M̃(T, h) − 〈M̃(Tc, hc)〉], (14)

where M̃(T, h) = M(T, h) + sE (T, h), and M(T, h) is ob-
tained by Eq. (7) from generated spins at the lattice. The
mixing parameter s is estimated from Table 2 of Ref. [18] and
Eq. (12).

In the following, we take the observable as the average
absolute order parameter over all configurations, i.e.,

m(T, h) =
〈∣∣∣∣ 1

L3

[
M̃(T, h) − 〈M̃(Tc, hc)〉]∣∣∣∣

〉
. (15)

For fixed external field h, it is the function of temperature and
system size, i.e., m(T, L).

Three samples of order parameter are generated at three
external fields, i.e., the first-order PT line (h = 0.0005 [32]),
the CP (h = 0.000775 [18,33]), and the crossover region (h =
0.002 [32]), respectively. At each of external field, 18 T values
are chosen starting from T0 = 1.8180 with �T = 0.0001.
For a pair of couplings (β = 1/T, h), 1 × 105 independent
configurations are generated.

The simulation is performed by the Wolff cluster algorithm
[34], and the helical boundary conditions are used, where
a Ferrenberg-Swendsen reweighting analysis [35] is used to
calculate observables at intermediate parameter values. For
each case, the simulation is carried out for four different lattice
sizes L = 30, 40, 50, and 60.

The transitions T and a for the above three samples are
listed in parentheses in Table I [18,32]. They are obtained
by conventional methods as mentioned in the Introduction
[10,16,17].

IV. LOCATING FIXED POINTS

Now, we have three samples, where observables (mean of
order parameters) for different T and L are presented. For each
sample, we calculate its corresponding width D(T, a) and plot
it in the T -a plane.

According to the definition in Eq. (2), the width of the order
parameter is

D(T, a) =
√

�Sm(T,L)La

NL − 1
, (16)

where

�Sm(T,L)La =
NL∑
i=1

1

ω2
i

[
m(T, Li )L

a
i − 〈m(T, L)La〉]2

. (17)

ωi is the error of m(T, Li )La
i . For a given lattice size L, ωi

mainly comes from m(T, Li ) and is estimated by the square
root of the variance of m(T, Li ).

〈m(T, L)La〉 =
∑NL

i=1 m(T, Li )La
i /ω

2
i∑NL

i=1 1/ω2
i

(18)

is error weighted average. The summation number NL is equal
to 4 for four system sizes L = 30, 40, 50, and 60.

The contour plots of D(T, a) in the plane of T and a
for three samples are presented in Figs. 3(a)–3(c), where
the color bars on the right-hand sides of subfigures indicate
the values of D(T, a). The range of a is from −1.2 to 1.15
with interval 0.05. The red and blue zones are minimum and
maximum, respectively. The dash-dotted lines indicate the
coordinates of T and a corresponding to the minimum of
D(T, a).

For the sample with external field h = 0.000775, the con-
tour lines in Fig. 3(a) show that D(T, a) gradually converges

FIG. 3. D(T, a) for three samples with external fields (a) h = 0.000775, (b) 0.0005, and (c) 0.002. Dash-dotted lines label the coordinates
of Dmin(T, a) and dashed lines are isolines.
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FIG. 4. Projections of D(T, a) on (a, b) exponent ratio and (c, d) temperature axes near (a, c) the critical point and (b, d) the point of the
first-order phase transition line.

to a minimum, the red area. This means that the width
converges to a minimum at a specified T and a. These are
typical features of a FP.

To amplify the fine structure and minimum near the red
area, we project D(T, a) to a and T axes, respectively, as
shown in Figs. 4(a) and 4(c). In Fig. 4(a), for a given T , there
is an a which makes D(T, a) minimum. Among these lines,
the minimum of the red line is the smallest one, where Dmin =
1.0291 ± 0.2946, and corresponding T = 1.82023 and a =
0.583. They are very close to 1.82023372 and 0.564, as listed
in the parentheses in the second row of Table I.

From the projection along the direction of temperature as
shown in Fig. 4(c), for a given ratio a, there is also a minimum
D(T, a). The minimum of the red line is the smallest one
among them. Its corresponding T and a are the same as those
from Fig. 4(a).

These features of D(T, a) and value of a are consistent with
the FP of the second-order PT, i.e., the CP, as shown in case II
in Fig. 2.

Turning to the sample with external field h = 0.0005, the
contour lines in Fig. 3(b) also show that D(T, a) gradually
converges to a minimum, the red area. This means that all
curves of the scaled observable for different sizes are more

and more close to each other with the change of T and a, as
expected for a FP.

The projection plots of D(T, a) versus a for different T
are shown in Fig. 4(b). The curve which has the smallest
minimum is the red one with Dmin(T, a) = 1.5287 ± 0.5591,
T = 1.81887, and a = −0.047. They are very close to the
T = 1.8188763, and a = −0.0541, as listed in the parenthe-
ses in the third row of Table I. Here the order parameter can
be considered the first order of susceptibility, i.e., n = 1. So
a = (n − 1)d = 0.

The projection along the direction of T is shown in
Fig. 4(d); for a given ratio a, there is also a minimum D(T, a).
The smallest minimum gives the same T and a as those from
Fig. 4(b). Those are the features of the FP of the first-order PT
line, as shown in case I in Fig. 2.

For the sample with external field h = 0.002, the contour
lines of D(T, a) in Fig. 3(c) are bands parallel to the T axis,
in contrast to Figs. 3(a) and 3(b). This implies that D(T, a)
is independent of T . Its value is determined by a only. The
minimum, the red band, is close to zero. These are the features
of the FP of the crossover region, as shown in case III in Fig. 2.

These three examples show that the defined width is very
sensitive to T and a. The minimum of D(T, a) precisely
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determines the T and a of the FP. Therefore, as long as the
FP exists in the T -a plane, the minimum of the defined width
can clearly locate it.

The contour area of defined width D(T, a) as shown in
Fig. 3 in fact indicates critical or transitional ranges of tem-
perature T and critical exponent ratio a, where all curves for
different sizes start to converge toward each other. Out of the
area, D(T, a) is big and uniformly blue, i.e., all curves are
apart from each other. This contour area for the second-order
PT as shown in Fig. 3(a) is obviously larger than that of the
first-order PT as shown in Fig. 3(b), where the temperature
range is much narrower. Therefore, the PT of the first order is
very sensitive to the change of T .

In the critical or transitional range, for a given temperature
T (a), there is an a (T ) that makes the D(T, a) a minimum,
as shown in Fig. 4. This minimum implies that all curves for
different sizes are closest to each other at given T (a). Usually
this minimum is larger than unity; i.e., all curves are still not
overlapped within error. Only for the critical or transitional T
(a), the minimum of D(T, a) is the smallest and around unity;
i.e., all curves converge to a FP within errors. So defined width
well quantifies the behavior of the FP, the ranges of critical or
transitional T and a, and the deviation of T and a from the
ranges.

On the other hand, if some system sizes are too small for
the FSS, their corresponding curves in the plots like Figs. 1(b)
and 1(d) will not converge exactly to the FP within error. In
that case, the smallest minimum of D(T, a) will be larger than
unity. Therefore, D(T, a) is around unity if and only if various
system sizes are all properly large and all parameters in the
FSS in Eq. (1) are critical or transitional values.

Certainly, a real sample may not be so well represented
by the above three samples. It depends on the observable, the
covered area of the phase plane, and experimental settings.

First, as we know, some observables, such as energy den-
sity and specific heat, may not exactly follow the FSS in
the vicinity of TC [36]. For this kind of observable, addi-
tional terms of scaling violation are not negligible [37,38].
The scaling function usually varies with the system size and
temperature. There is no FP [37,38].

Second, the suggested contour plot depends on its covered
area of the phase plane. If it is far away from the phase
boundary, the observable is independent either of temperature
or system size [32], and the plot is largely blue, as shown in
Fig. 3. If it approaches the phase boundary, or the transition
temperature, the plot may show some contour areas which are
similar to a part of Figs. 3(a), 3(b), or 3(c). Therefore, the
contour plot of defined width is helpful in exploring FPs of
the phase boundary.

It should also be noticed that due to the error of observables
and uncertainties of related parameters in real experimental
settings, the minimum of D(T, a) may be larger than unity and
vary with experiments. What is more important for the forma-
tion of a FP is the trend of D(T, a) converging to a minimum.

V. A POSSIBLE APPLICATION

One of the main goals of contemporary BES at RHIC
and future Compressed Baryonic Matter (CBM)/Facility of
Antiproton and Ion Research (FAIR) and Nuclotron-based

Ion Collider fAcility (NICA) experiments is to study the
critical end point (CEP) in the QCD phase diagram in terms
of existence and location [5–8,39–41]. As incident energy
of the collision (

√
sNN ) changes, temperature T and baryon

chemical potential μB of the formed system in the phase
plane change accordingly. How they change is directed by the
simplification of thermal model descriptions of the freeze-out
region [15,42,43]. Therefore, the purpose of the BES program
is to scan the observable in the T and μB plane.

Due to the small volume and the short lifetime of the quark-
gluon plasma (QGP) formed in heavy-ion collisions, the CEP,
if appears, will be blurred. Critical fluctuations are severely
influenced by finite volume, as well as finite time. Due to
finite evolution time and critical slowing down, the system
may not reach thermal equilibrium or pass the CEP [44,45].
The nonequilibrium evolution depends on the given dynamics
which are currently unclear, and should be examined with
caution.

For a restricted volume which is not very small, the
singularity of generalized susceptibility χi is limited into a
finite peak with modified position and width [46,47]. With
the decrease of volume size, the peak position shifts towards
lower temperature and larger chemical potential [48–50]. It
is the so called pseudocritical point. The precise position of
the CEP has to be determined by the FSS of the observable
[15,51,52].

The FSS of several observables in relativistic heavy-ion
collisions has been studied [14,15,53–55]. In this paper, we
suggest locating the FP by the newly defined width of all
points of scaled observables for different sizes at a given
T and a. The minimum of the width in the T -a plane is
the location of the FP. Graphing with the width allows us
to easily locate the FP (should it exist in the phase plane)
without selecting the best scaling plot of the observables, thus
eliminating inaccuracies introduced by human observation.
The value of aFP indicates that the FP is a CP, a point of
the first-order PT line, or a point in the crossover region. So
classifying the observed FP becomes possible.

As we know, there are still numbers of uncertainties in
applying the FSS in relativistic heavy-ion collisions [14,15]:
whether the observable is properly chosen, whether the phase
boundary is covered by the BES, and whether the system size
can be correctly estimated.

The system size is related to the given centrality of heavy-
ion collisions. It may be influenced by the incident energy
as well. The relations between them have not been set up
quantitatively, and should be studied carefully in the future.
Currently, the radii of Hanbury Brown–Twiss (HBT) interfer-
ometry only provides a rough estimation [14,56–58].

In particular, it is difficult to define an appropriate observ-
able in heavy-ion collisions. Although the order parameter of
chiral and deconfining PT is well defined from the theoretical
side [7], its corresponding observable is still not known.
Certainly, it is better to measure observables, like the order pa-
rameter in the Potts model, or the susceptibility, as discussed
at the end of the above section. However, it is impossible to
know beforehand if the observable is analogous with the order
parameter, the susceptibility, or the specific heat.

Nevertheless, it should be helpful and worthwhile to try
the method by suggested observables, such as event-by-event
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fluctuations of the net baryon number, the electric charge,
or the strangeness of the heavy-ion system [59–61], and
explore the possible FP at the RHIC BES as was delineated
in Refs. [14,15].

VI. SUMMARY AND CONCLUSIONS

In the finite-size scaling, the critical point is a fixed point,
where all scaled observables of different system sizes inter-
sect. A fixed point also exists on the first-order PT line and can
be generalized to the crossover region. Their corresponding
scaling exponent ratios are fraction, integer, and zero, respec-
tively.

To quantify the features of the FP, we define, at a given
T and a, the width of scaled observables for different sizes.
When T = TFP and a = aFP, the defined width reaches its
minimum.

Then, using the 3D three-state Potts model, we produce
three samples at three external fields. These three samples
contain, respectively, the CP, the point of the first-order PT
line, and the point of the crossover region. The temperature
covers the whole possible range. We calculate the widths of

order parameters in all three samples, and plot them in the
T -a plane.

The contour plot of defined width clearly shows the critical
or transitional ranges of temperature and critical exponent
ratio. The minimum of defined width locates precisely the
position of the FP in three samples, respectively. These
demonstrate the method is effective and precise in locating
all three categories of FP. The defined width well quantifies
the behavior of the FP.

Therefore, from simply scanning the observable in the
phase plane, the FP can be well located by defined width.
Finally, a possible application at the RHIC BES is discussed.
It should be helpful in locating the FP of QCD PT from the
experimental side.
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