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Critical charge and density coupling in ionic spherical models
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We investigate ionic criticality on the basis of a specially devised spherical model that accounts both for
Coulomb and nonionic forces in binary systems. We show in detail here the consequences of the entanglement of
density and charge correlation functions GNN and GZZ on criticality and screening. We also show on this soluble
model how, because of electroneutrality, the long-range Coulomb interactions do not change the universality
class of criticality in the model driven primarily by sufficiently attractive nonionic interactions. Near criticality,
GNN and GZZ are fully decoupled in charge symmetric systems. However, in more realistic nonsymmetric
models, charge and density fluctuations couple in leading order so that the charge and density correlation
lengths diverge asymptotically in a similar way. Similarly, the Stillinger-Lovett sum rule, which characterizes a
conducting fluid, is violated at criticality in nonsymmetric models when the critical-point density-decay exponent
η vanishes. In addition, if quantum effects are accounted for semiclassically by incorporating algebraically
decaying interactions, GZZ decays only as a power law in the whole phase space, contrary to the usually expected
exponential Debye screening. We expect these results on this soluble toy model to be general and to reveal
general mechanisms ruling ionic criticality.
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I. INTRODUCTION

What happens when long-range Coulomb interactions are
combined with long-range critical fluctuations? One knows
that the universality class of a critical point depends on the
range of the interactions: For instance, gas-liquid phase sepa-
ration belongs to the Ising class when only short-range inter-
actions drive the phenomena [1], while a distinct universality
class arises in systems with 1/rd+σ interactions (with spatial
dimension d and a given σ >0) [2]. However, when charge-
charge 1/rd−2 interactions are present, e.g., when one con-
siders gas-liquid phase separation in ionic fluids, no current
theoretical results establish with full conviction the universal-
ity class to be expected [3–6]. Indeed, even though systems
with integrable forces are treatable via the renormalization
group yielding critical properties that compare successfully
with experiments, charged systems characterized by the 1/k2

singularity of Coulomb interactions have proved intractable.
Might the long range of ionic coupling enforce mean-field
behavior, or does the screening effect result in effective short-
range interactions, leading again to the Ising class?

To answer these questions, experiments were performed
in the early 1990’s on electrolyte solutions which allowed
exploration of the critical behavior close to the critical point
[7,8]. At first, both mean-field and Ising-type behavior seemed
to arise! Even though the former results were later shown
to be unreliable [9], this controversy engendered the need
for a better understanding of the phenomena. More recently,
Monte Carlo simulations have unequivocally pointed toward
the Ising behavior [10]. But, one must still recognize that no
generally accepted theoretical description is available espe-
cially as regards the various charge and density correlation
functions at and close to criticality [3–6,11–15]. Yet, some

progress has been made as regards the crossover Ginzburg
temperature [16–21]. In this situation, exactly soluble models
can prove valuable as they can reveal some basic laws. The
goal of this article is therefore to describe a model designed
to reveal general mechanisms that can rule fluid-fluid crit-
icality in charged systems [22–25]. Even though criticality
is ruled here by nonionic interactions, we argue that the
structure underlying this exactly soluble model (entanglement
between charge and density correlations, cancellation due to
electroneutrality, etc.) are general and we intend to describe
here the structure of the mechanics of this model.

At first glance, one could expect that the screening effect
present in charged fluids might effectively rein in the long
range of the Coulomb interactions: In a fluid with Coulomb
and short-range interactions, consisting of various species τ

of density ρτ and carrying charges qτ , Brydges and Federbush
[26] proved that, in the low-density limit, the effective interac-
tions are exponentially screened with a screening length ξZ,∞
that approaches the Debye-Hückel length defined by

ξD ≡
(

4πβ
∑

τ

q2
τ ρτ

)−1/2

, (1)

where β =1/kBT is the inverse temperature. But, is this prop-
erty still valid near criticality? And if not, can the Coulomb
interactions change the universality class of a system? How
does the screening length behave when, near a critical point,
the density correlation length ξN,∞ diverges?

To rephrase some of these questions, one can consider the
sum rules characterizing conducting fluids: The Stillinger-
Lovett (SL) sum rule [27] requires that the charge structure
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factor SZZ in Fourier space behaves at small k as

SZZ (k) = 0 + ξ 2
Z,1k2 + · · · with ξZ,1 = ξD, (2)

provided the fluid is conducting. Note that the vanishing at
k=0 describes the internal screening. Is this sum rule satisfied
near a critical point? Finally, one can also consider semiclassi-
cal quantum effects described as, e.g., in Lennard-Jones (6,12)
pair interactions, by dispersion forces decaying as 1/rd+σ

(with σ >0); these are of long range but are integrable. What
kind of screening can be expected away from the critical point
when dispersion and Coulomb interactions interfere? Are the
effective interactions still exponentially screened [28] as in the
Debye theory? And what happens when long-range critical
fluctuations also come into play?

In the family of the exactly solvable models, the spheri-
cal model [29], which corresponds to the n → ∞ limit of
an n-dimensional spin model [30], proves to be sufficiently
adaptable to encompass many physical situations [24]. It is
therefore tempting to use it to study some basic properties
of critical charged fluids even though special caution must be
exercised before applying the model to a first-order transition
[25]. A pioneering approach was made by Smith [31,32]
who studied an ionic spherical model in which, however, the
Coulomb interactions destroyed the usual gas-liquid phase
separation (leading, instead, to a freezing transition to an ionic
crystal). As explained below, this feature originated in the use
of only a single density variable, namely, the charge density,
while density fluctuations were not separately represented.

In order to address this problem, we have devised a mul-
ticomponent spherical model (see [25] which article will be
denoted I in the following) that can be solved for an arbitrary
number of species. When one considers a binary lattice fluid
with labels + and − (or 1 and 2 in the notation of I),
relatively simple expressions can be derived which show that
the behavior is driven by the two eigenvalues 	N and 	Z of
an interaction matrix (see I and [22]): In particular, a crucial
result we will use below is that all the structure factors can be
decomposed according to

SXY (k; λ)

kBT/4ρv0
= BN

XY (k; λ)

	N (k; λ)
+ BZ

XY (k; λ)

	Z (k; λ)
. (3)

Here ρ =∑τ ρτ , while v0 is the volume of the reference lattice
unit cell, and X and Y stand for N or Z which, in turn, label
neutral number density and charge density, respectively: see
Eqs. I(49). The amplitudes B satisfy the relations

BN
NN =BZ

ZZ =1 − BZ
NN =1 − BN

ZZ ≡ B(k; λ) (4)

as given in I(50); furthermore, in a charge-symmetric system
(defined in terms of the nonionic interactions by J++ =J−−),
one has B(k; λ)=1. It is noticeable that a similar decom-
position was found in Ref. [11] thanks to a random phase
approximation of the restricted primitive model.

In this article, we use this model to study systems with
symmetric ionic coupling, i.e., q+ =−q−, but with general
short-range nonionic potentials J++, J+− =J−+, and J−−.
When the nonionic interactions are of short range, we find (see
also [22]) that, provided the Coulomb interactions are not too
strong [as measured by a dimensionless ionicity parameter,
see [5] and Eq. (20) below], a fluid-fluid phase separation

is driven by the nonionic interactions and the same critical
universality class is realized as when no charges are present.
Indeed, the slow decay of the Coulomb interactions (char-
acterized by a 1/k2 divergence in Fourier space) is exactly
canceled from 	N (k) in Eq. (3) owing to electroneutrality,
and hence has no effect on the critical behavior of the density
fluctuations.

However, as regards the charge fluctuations, symmetry
turns out to be crucial. When the system is fully charge
symmetric, with J++(r)=J−−(r), one has BN

ZZ =BZ
NN =0 in

Eq. (3), so that the charge and density correlations GZZ (r)
and GNN (r) become completely decoupled being governed
separately by 	Z and 	N , respectively. This ensures that
the charge screening length ξZ,∞ remains finite near and at
criticality. By the same token the SL sum rule is satisfied
even at criticality. Conversely, as soon as some asymmetry
appears (so that J++ �= J−−), as must be the case in a realistic
description of most fluids, the charge correlations become
infected by the density fluctuations. As a consequence, the
charge screening length ξZ,∞ grows on approach to criticality
and diverges at criticality. Thus, the usual picture of charge
screening being fully effective on a microscopic or nanoscopic
length scale is destroyed by this charge-density coupling.
Moreover, at the critical point, the SL sum rule is now
violated, indicating, in point of fact, that the fluid is no longer
acting as a standard conductor.

This ionic spherical model can be generalized easily to
consider also 1/rd+σ nonionic interactions which may in fact
mimic quantum effects semiclassically [23]. Away from any
critical point, we find that the charge correlations GZZ (r)
decay only algebraically as 1/rd+σ+4. Hence, the 1/rd−2

Coulomb interactions are still screened, but only by the al-
gebraic factor 1/rσ+6. Once again, the classical picture of
the exponential Debye screening is destroyed, but this time
because of the coupling between Coulomb interactions and
power-law forces. In such long-range spherical models, the
critical behavior of the density fluctuations matches that found
for the short-range models: (i) The critical universality class
is not affected by the Coulomb interactions; and (ii) when
the system is charge symmetric, the charge and density fluc-
tuations are decoupled; conversely, (iii) they are coupled, so
that ξZ,∞ diverges, in an asymmetric system. However, (iv) in
asymmetric fluids, the validity of the SL sum rule at criticality
is now controlled by the long-range decay of the density
correlation function as 1/rd−2+η: specifically, when η=0,
which corresponds to longer-ranged critical fluctuations, the
SL rule is violated, while η>0 ensures its satisfaction.

In the following, we first define the binary ionic spherical
model, with due attention to important details, in Sec. II.
Coulomb interactions are computed in the lattice geometry
of concern and significant general properties are stated. In
Sec. III, we analyze the charge symmetric models with only
short-range and Coulomb interactions. To ensure normal criti-
cal behavior we impose some general conditions on the ionic-
ity. The critical singularities are then given by the vanishing of
	N which, as explained, is independent of the 1/k2 Coulomb
divergence since electroneutrality is required. The charge cor-
relations are computed and shown to remain free of the crit-
ical singularity because of their decoupling from the density
fluctuations. A particular model devised to simplify numerical
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estimates is also presented. Charge asymmetry, introduced by
supposing J++(r) �= J−−(r), is introduced in Sec. IV. The
universality class of criticality is still not affected by ionic
forces since 	N (k) is still free of the 1/k2 Coulomb singular-
ity; however, charge and density correlations are coupled to
both eigenmodes via the factors 1/	N and 1/	Z . The conse-
quences for the charge and charge-density structure functions,
etc., are analyzed. A particular asymmetric model convenient
for numerics is also introduced. Section V is devoted to
both symmetric and asymmetric fluids but with power-law
interactions in addition to the ionic coupling. The structure
of the charge correlations resulting from both 1/	N and
1/	Z enforces weak, i.e., algebraic screening over the whole
phase diagram. Near criticality, the coupling between charge
and density correlations depends on the nature of the decay
of the density fluctuations. Finally, in Appendix A, the SL
sum rule is generalized for long-range systems while various
correlation lengths are derived rigorously in Appendix B. The
algebraic decay of GZZ (r) in ionic-plus-power-law systems is
supported by a diagrammatic expansion in Appendix C.

II. BINARY CHARGED SPHERICAL MODELS

A. Coulomb interactions

In order to consider an ionic lattice gas, we first need to ap-
propriately define Coulomb interactions in the corresponding
geometry. Thanks to the work of Lieb and Lebowitz [33], one
knows that the thermodynamic limit of a Coulomb fluid in the
grand-canonical ensemble exists for all chemical potentials
μτ for species τ . The fluid then satisfies bulk electroneutrality
while any excess charge, linked to the chemical potentials
[34], is repelled to the vicinity of the system boundaries. If we
wished to consider surface effects, we would need to specify
the nature of the boundary conditions, Dirichlet vs Neumann,
etc.; but, because they are not relevant for bulk properties, we
eliminate such effects by considering a uniform background
which neutralizes the system. At equilibrium, this affects the
properties of a Coulomb fluid only near its boundaries. (One
may refer to [31,35] for some insights regarding the surface
properties of an ionic spherical model.)

We consider the geometry of a d-dimensional binary lattice
gas (as described generally in I) where the two species labeled
σ =+ and − lie on two sublattices which are images of a
hypercubic reference sublattice with lattice spacing a, after
translation with the vectors δ+ =0 and δ− = (a/2, . . . , a/2).
For simplicity here, we specialize to “body centered” inter-
lacing of the two sublattices based on a hypercubic reference
lattice of spacing a. We define Coulomb interactions as so-
lutions of the Laplace equation but discretized on the lattice
geometry with periodic boundary conditions and including
a neutralizing background. Explicitly, the Coulomb potential
ϕC (r) is thus the solution of

Drϕ
C (r − r′) = −Sd

[
δr,r′

(a/2)d
− 1

Ld

]
, (5)

with periodic boundary conditions in the Cartesian directions
of the sublattices (before the thermodynamic limit L → ∞ is
taken). The term −1/Ld describes the uniform neutralizing
background, while δr,r′ is the discrete Kroenecker symbol and
Sd =2πd/2/�(d/2) (with S3 =4π ) is the surface of a sphere

of radius unity. The factor (a/2)d is introduced to preserve
dimensions but also ensures that the limit a → 0 leads to
the standard continuum Coulomb potential. Finally, (a/2)2Dr
is the appropriate lattice Laplacian defined as follows: We
need the electrostatic potential to “live” on both the inter-
laced sublattices; thus, for simplicity, we define ϕC (r) at all
lattice sites R= (Rα ) with Rα/a=1, 1 1

2 , 2, . . . , L/a + 1
2 (α=

1, . . . , d ), i.e., on a lattice of spacing 1
2 a that hence includes

the two + and − sublattices. Hence, the operator Dr is defined
by

DrF = 1

(a/2)2

d∑
α=1

[
F

(
r + 1

2
aeα

)
−2F (r)+F

(
r− 1

2
aeα

)]
,

(6)

where eα is the unit vector in the direction α of the reference
sublattice. The solution of (5) with appropriate boundary
conditions is

ϕC (r − r′) = Sd a2

4Ld

∑
k′=(2π/L)p′

∗
eik′ ·(r−r′ ) 1

K2(k′)
, (7)

where p′
α = 0,±1,±2, . . . , [2L/a], and the summation

∑∗

is performed over nonzero vectors, and

K2(k′) = 2
d∑

α=1

[
1 − cos

(
1

2
k′

αa

)]
. (8)

[Note that the spacing 1
2 a used in the discrete Laplacian

means that the summation in Eq. (7) runs over vectors which
belong to a Brillouin zone larger by a factor 2d than that
associated with the reference sublattice, namely, B; see I.)
The Fourier transforms of the Coulomb potential over the
reference sublattice, as defined in I, are, with τ =+,−, then

ϕ̂ C
ττ (k) = Sd

4ad−2

∑
bα=0,1

† 1

K2(k − 2πb/a)
, (9)

ϕ̂ C
+−(k) = Sd

4ad−2

∑
bα=0,1

† (−1)
∑

α bα

K2(k − 2πb/a)
, (10)

where the sum
∑† includes nonzero b if and only if k=0.

Naturally, the small-k expansions of the Coulomb potential,
which reveal its crucial long range, display the usual 1/k2

divergence; specifically, for k �=0, we find

ϕ̂ C
τυ (k) = vd

{
1

k2
+ a2

[
�4(k̂) + ϕ̂ C

τυ (0)

Sd a2−d
+ O(k2a2)

]}
,

(11)

where vd =Sd/ad . Depending only on the unit vector k̂=
k/|k|, the anisotropy factor satisfies

0 � �4(k̂) = 1

48

d∑
α=1

k4
α/k4 � 1

48
. (12)

In spite of the 1/k2 divergence of ϕ̂ C
τυ at small k, the

neutralizing background ensures that the values of ϕ̂ C
τυ pre-

cisely at k=0 are finite; their values for d =3 are ϕ̂ C
ττ (0)=

29π/24a and ϕ̂ C
+−(0)=−11π/24a. These values, together

with (9) and (10), are independent of the lattice size Ld and
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remain valid in the thermodynamic limit. The finiteness of
ϕ̂ C

τυ (0) ensures that, in the correspondence between lattice
gas and Ising spins developed in I, the sums in I(7) and I(8)
remain finite in the thermodynamic limit even when long-
range Coulomb interactions are present. Hence, the thermo-
dynamic limit of the system remains well defined whatever
the total charge of the fluid: i.e., there is no need to impose
electroneutrality. However, the fluid-plus-background system
is always electroneutral by our construction. Nevertheless,
we will require electroneutrality in the following. (Without
the neutralizing background, an ambiguity in the chemical
potential differences would arise at this stage, related to the
bulk electroneutrality condition [34].)

Finally, at order k2, the difference between the two Fourier
transforms when d =3 reduces to

a
{
ϕ̂ C

+−(0) − ϕ̂ C
ττ (0) − [̂ϕ C

+−(k) − ϕ̂ C
ττ (k)

]}
= − 1

36πk2a2 + O(k4a4). (13)

Notice that ϕ̂ C
+−(k)>0 when |kα|<π/a whereas ϕ̂ C

+−(k)=
0 when one coordinate satisfies |kα|=π/a. Note also that
ϕC (R) as defined via (7) is a decreasing function of |Rα|.

B. Total interactions

We consider a system where both nonionic and Coulomb
interactions are present so that

Jτυ = J 0
τυ + JC

τυ (τ, ν = +,−), (14)

where JC
τυ describes the Coulomb interaction JC

τυ (Rτ
i , Rυ

j )=
−qτ qυϕC (Rτ

i − Rυ
j )/4, while the nonionic interactions

J 0
τυ (Rτ

i − Rυ
j ) are supposed to be integrable, either short or

long range decaying as 1/rd+σ with σ >0, so that Ĵ 0
τυ (k=

0) is well defined. We suppose the interaction J0
+−(R) is

sufficiently attractive so that

j0 ≡ 1
2 kBT0 ≡ 1

2 Ĵ 0
+−(0) > 0, (15)

where Ĵ 0
+−(0) is the only maximum of |Ĵ 0

+−(k)| over the
Brillouin zone. Moreover, we also impose a global condition
of attraction

2Ĵ 0
+−(0) + Ĵ 0

++(0) + Ĵ 0
−−(0)

> 2|Ĵ 0
+−(k)| + Ĵ 0

++(k) + Ĵ 0
−−(k), (16)

for all k �=0. A sufficient condition for the validity of this
inequality is that the mean interaction is globally positive in
the sense that

�J̄ 0(k) � 0 in B, (17)

where, following I, for any function ĝ(k) we write

�g(k) = 1
2 [̂g(0) − ĝ(k)], (18)

while we also adopt the notation of I for averages and differ-
ences, namely,

ḡ = 1
2 (g+ + g−), g† = 1

2 (g+ − g−) (19)

for any gσ . The condition (17) is fulfilled, e.g., when both J0
++

and J0
−− are attractive interactions. We consider in this article

only charge-symmetric systems where the species bear the
charges q+ =−q− =q with q the elementary charge. However,

we will allow asymmetry in the sense that J† ∝ (J++ − J−−)
need not vanish. The relative importance of the Coulomb
forces vs the nonionic interactions is conveniently measured
by the ionicity [5]

I0 = q2

ad−2

1

kBT0
, (20)

where, via (15), T0 is defined in terms of the short-range
(+,−) attractions.

As observed above, the presence of neutralizing back-
grounds means that the Coulomb interactions alone will not
enforce bulk electroneutrality whatever the chemical poten-
tials may be. On the other hand, one knows [33] that a grand-
canonical Coulomb fluid will realize bulk electroneutrality in
the absence of any background potentials. In order to repro-
duce this situation, we impose electroneutrality “by hand,”
which means that we consider only systems where the ionic
densities

ρσ = 1
2 (1 + mσ )/ad (σ = +,−) (21)

satisfy

ρ+ = ρ− or m† = 1
2 (m+ − m−) = 0. (22)

Consequently, in contrast to general nonionic spherical model
fluids, our ionic lattice model is defined by the set of only two
variables, e.g., (T, m̄) where the overall ion density is set by

ρ = ρ+ + ρ− = (1 + m̄)/ad . (23)

This greatly simplifies the further analysis.

III. SYMMETRIC IONIC FLUIDS

A. General properties

In this section, we consider symmetric ionic fluids with
Coulomb and nonionic interactions which are of short range
as is conveniently stated via the analyticity of their Fourier
transforms at small k and is usefully embodied in the expan-
sions

Ĵ 0
τυ (k) = Ĵ 0

τυ (0)
[
1 − k2R2

τυ + O(k4)
]
, (24)

where Rτυ is the range of J0
τυ (r). Moreover, we assume “per-

fect charge symmetry” in the sense J0
++ =J0

−− so that J++ =
J−−; this common simplification (as in the restricted primitive
model [3–6]) has dramatic and special consequences for the
physical properties of the model as explained below; one must
be aware of these features when trying to comprehend more
realistic models of ionic fluids.

As explained in I, a general binary spherical model requires
two spherical fields, here λ+ and λ−, one for each sublattice.
However, the electroneutrality condition (22), requiring m† =
0, ensures as in I that λ† ≡ 1

2 (λ+ − λ−) must also vanish so
that only the mean spherical field λ̄= 1

2 (λ+ + λ−) plays a
role. It is convenient then to define the net spherical field by

λ ≡ λ̄ − j′0 with j′0 ≡ 1
2 Ĵ+−(0), (25)

where j′0 differs only slightly from the short-range parameter
defined in Eq. (15). Specifically, for d =3 we have

j′0 = j0
(
1 − 11

96πI0
)
. (26)
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To present the spherical condition, which then determines
λ as a function of T and the overall ionic density ρ∝ (1 +
m̄), we require the eigenvalues of the basic interaction matrix.
These, as seen in I, are given by

	±(k; λ) = λ̄ + �J̄ (k) ± D(k; λ), (27)

where

D(k; λ) ≡
√

[λ† + �J†(k)]2 + 1
4 [Ĵ+−(k)]2 . (28)

In terms of them we may define the basic integral

Jd (λ) = 1

4

∫
k
[	−1

+ (k; λ) + 	−1
− (k; λ)], (29)

where for brevity we have written
∫

k ≡∫k∈B ad dd k/(2π )d the
integral running over the reference lattice Brillouin zone B.
This form follows directly from I(42) and I(52) (but is simpler
than the integrals G and Lσ that we had to consider in detail
in I in order to handle the general case with ρ+ �=ρ−).

In this symmetric system and thanks to the electroneutral-
ity condition (22), the most convenient variables are defined
with the usual average and difference values [see (19)], and
one can check that the spherical condition (50b) of I enforces
the equivalence

m† = 0 ⇔ λ† = 0, (30)

as 	+ and 	− are non-negative. Hence, the system is uniquely
characterized by only one Lagrange multiplier λ, implicitly
defined by the spherical condition

1 = kBTJd (λ) + h̄2

4λ2
. (31)

The field h̄, related to the species chemical potential and
defined in I(7), is merely given here by

h̄ = 2m̄λ, (32)

as the conditions (22) and (30), together with Eqs. (54) of I
ensure that h† ≡ 0 in this symmetric system. The spherical
condition (31) involves the functions

Jd ≡ (J+ + J−)(λ) with J±(λ) ≡ 1

4

∫
k

1/	±(k; λ),

(33)

which depend here on only one variable λ (as λ† =0). When
(30) is met, the interaction matrix eigenvalues (see I ) are
given merely by

	±(k; λ) = λ̄ + �J̄ (k) ± 1
2 |Ĵ+−(k)|. (34)

For small (but nonzero) vectors k, 	N ≈	− behaves as

	N (k; λ) = λ + j0R2
N k2 + O(k4), (35)

where we define the new characteristic length

R2
N = R2

0 − 1
576 Sd a2I0, (36)

with the nonionic global range

j0R2
0 = 1

4

∑
τ

R2
ττ Ĵ 0

ττ (0) + 1

2
R2

+− Ĵ 0
+−(0), (37)

which is positive thanks to (16). The crucial point of the
expansion (35) is that even if 	N a priori involves Coulomb

interactions with their 1/k2 divergence [see (34)], its behav-
ior at small k is free of this singularity, due to the exact
cancellation of the divergence of 2�J̄ (k) ≈ −vd q2/k2 and
of Ĵ+−(k) ≈ vd q2/k2; in fact, this cancellation can be seen
as a consequence of electroneutrality and will ensure that
Coulomb interactions do not change the universality class of
the model as seen in the following. On the other hand, the
behavior of 	Z =	+ near the origin is drastically different,
as the divergences of �J̄ (k) and Ĵ+− sum up and lead to

	Z (k; λ) = Sd q2

4ad

1

k2

[
1 + R2

Z (λ, k̂) k2 + O(k4)
]
, (38)

where

R2
Z (λ; k̂) = 2a2

SdI0

λ + 2 j′0
j0

+ a2�4(k̂). (39)

B. Criticality

The free energy per site is given by Eq. (26) of I, and
involves ln[	−	+(k; λ)] in a binary system, so that its sin-
gularities, which signal criticality, happen when 	−(k; λ)
vanishes (recall that 	− � 	+). In fact, we can show that
these singularities occur (a) when λ=0 and (b) for k →
0, provided the conditions (15) and (16) are met, and for
bounded ionicities. To establish this result, we first need to
ensure the positiveness of j′0, which can be done by imposing

I0 < Ii(d ) where Ii(3) = 96/11π � 2.78 (40)

[see (26)]. The second condition ensures that the small-k
expansion (35) of 	−(k; λ) is convex, which, thanks to (36),
is fulfilled when

I0 < Iii(d ) where Iii(3) = 144

π

R2
0

a2
. (41)

When this condition is met, the limit k → 0 is the strict
minimum of 	− in the zone where (35) is valid, i.e., typically
for vectors k such as |kα| � k− with some given k−. The
last condition ensures that no other minimum of 	−(k; λ)
can compete with k→0 in the rest of the Brillouin zone.
Let us define B′ the close subdomain of the Brillouin zone
made of vectors with at least one component such as |kα| �
k−. We compare 	−(k; λ) to its value when q=0 (which
case is referred to with superscripts 0). The minimum of the
continuous function 	0

−(k; λ) is reached on the close domain
B′ and is so strictly positive thanks to (16),

δ	0
− ≡ min

k∈B′
{	0

−(k; λ) − (λ̄ − j0)} > 0, (42)

with some given constant δ	0
−, independent of q. Moreover,

as ϕ̂ C
τυ is continuous and bounded on the close interval B′, one

can check that ĴC
τυ (k)=O(I0), j′0 = j0 + O(I0), and

	−(k; λ) = 	0
−(k; λ) + O(I0). (43)

Hence, in B′,

	−(k; λ) − λ > δ	0
− + O(I0), (44)

so that for ionicities not too strong, let us say I0 � Iiii,
	−(k; λ) − λ>0 in the domain B′. As a conclusion, as soon
as I0 < Imax = inf (Ii, Iii, Iiii ), the minimum of 	−(k; λ) is
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λ and is reached only when k → 0 so that λ=0 signals the
singularities of the model.

In fact, these conclusions mean that criticality is mainly
governed by the nonionic attractive interactions. Indeed, first
note that the conditions (a) and (b) are similar to the ones de-
scribing criticality in purely short-range spherical models (see
I ). Moreover, the critical condition λ̄= j′0 = j0 + O(I0) shows
that Coulomb interactions enter only via a perturbation in the
critical localization. In fact, the origin of this mechanism lies
in the properties of 	N : As the 1/k2 Coulomb divergence
is exactly canceled in 	N , and as criticality is governed by
the vanishing of this eigenvalue, the long range of Coulomb
interactions is ruled out of the critical behavior. This result
is very different from the conclusions of the ionic spherical
model recently proposed by Smith [32]. The main difference
is that in the latter analysis, only one variable, the charge
density, is considered at each lattice site: The interactions
between every site are both short range and ionic, but the
latter destroy the gas-liquid phase separation as the 1/k2

divergence dominates the calculation and breaks the usual
spherical model singularities. On the other hand, thanks to
the consideration of a binary fluid, we can consider in the
present analysis two local densities (both local charge and
total density), described by a two-dimensional interaction ma-
trix with one of its eigenvalues 	N , which does not contain the
long-range Coulomb behavior, and which describes mainly
the density fluctuations as explained in the following. (Note
that, similarly to [32], the other eigenvalue 	Z is dominated
by the 1/k2 divergence and would not drive criticality alone.)

When I0 <Imax, the function Jd (λ) ≡ Jd (λ, λ† =0) is
well defined for λ � 0, and decreasing with λ. The spherical
condition (31) may then be rewritten in the compact form

1 = kBTJd (λ) + m̄2 where m̄2 = h̄2/4λ2. (45)

When h̄ �= 0, the right-hand side of (45) is a continuous,
decreasing function of λ, diverging at λ=0 and going to zero
when λ → ∞; hence, for every T � 0, there exists one (and
only one) non-negative solution of (45) and the system is free
of singularity. On the other hand, when h̄=0, the situation
depends on dimensionality. Indeed, concerning the behavior
of J−, as dd k/	−(k; λ) behaves as kd−1dk/(λ + j0R2

N k2), we
find the following: (i) when d <2, Jd (λ) diverges when λ goes
to zero, Eq. (45) can always be satisfied by some non-negative
λ and no critical point occurs; (ii) in the case which matters to
us, i.e., for d > 2, Jd (λ=0) is finite and, as Jd (λ) � Jd (0),
the spherical condition (45) can be fulfilled only when T � Tc

where

kBTc = 1/Jd (0). (46)

When T =Tc, the solution of (45) is λ=0, while for T < Tc,
λ sticks to zero but (45) has to be modified. Hence, the critical
point is defined as (Tc, h̄=0) or, equivalently as (Tc, m̄=0),
while in the fluid language, the critical densities are merely

adρ±,c = 1/2 and adρc = 1. (47)

Note that the critical temperature defined in Eq. (46) is
given mainly by the contribution of the nonionic interactions,
as

Tc = T 0
c [1 + O(I0)], (48)

where T 0
c =1/kBJ 0

d (0) is the critical temperature when q=0.
In the general case, j0J 0

−(0) is of order unity, and one can
give some specific values in some particular cases: following
Joyce’s notation [36], we consider nonionic interactions such
as

�J̄ 0(k) + �J0
+−(k) = j0[1 − λJ (k)], (49)

where the characteristic functions λJ (k), of the simple-cubic
(sc), body-centered-cubic (bcc), or face-centered-cubic (fcc)
lattices with nearest-neighbor interactions are

λJ (k) = 1

3

∑
α

cos(kαa) (sc) (50)

=
∏
α

cos(kαa) (bcc) (51)

= 1

3

∑
α

cos(kαa) cos(kα+1a) (fcc), (52)

with the convention kd+1 =k1. In these case, one gets the
estimates [36]

j0J−(0) = 1
2 Kc + O(I0), (53)

where Kc(sc)�1.52, Kc(bcc)�1.39, and Kc(fcc)�1.34.

C. Critical vicinity

The vicinity of the critical point is characterized by two
small parameters (t, h̄) [or (t, m̄)] with the reduced tempera-
ture

t ≡ (T − Tc)/Tc. (54)

In this vicinity, λ is also a small parameter and one can get
the physical properties of the system as perturbations in terms
of this Lagrange multiplier. Indeed, when λ � 0, because the
eigenvalue 	+(k; λ) is strictly positive and 1/	+(k; λ), as
well as its derivative with respect to λ are integrable functions
of k, J+ can be expanded according to a Taylor expansion

J+(λ) = J+(0) + O(λ). (55)

Concerning J−, the behavior of dk/	− near the origin as
kd−1dk/(λ + j0R2

N k2) leads to the usual spherical model ex-
pansion (see [36])

J−(λ) = J−(0)[1 − p̃λ1/γ + O(λ)], (56)

where γ is the critical exponent

γ = max{2/(d − 2); 1} when d > 2, (57)

while the positive constant p̃ is given by the universal relation
[37]

p̃J−(0)

[
j0

R2
N

a2

]1+1/γ

= 1

2dπd/2−1�(d/2) sin(π/γ )
, (58)

where � is the gamma function. As a whole, Jd (λ) is charac-
terized by the expansion

Jd (λ) = Jd (0)[1 − pλ1/γ + O(λ)], (59)

with some given positive constant p, which leads to the
usual spherical model universality class as explained in the
following.
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The equation of state of the system is implicitly defined
by the spherical condition (45) together with the link (32).
Moreover, explicit expressions can be obtained when treating
perturbatively these equations in the vicinity of a critical
point which is defined by the two small parameters t and m̄.
Considering the difference between (45) and its expression at
criticality, together with the expansion (59), we find, at leading
order in λ,

λ = 1
2A(t + m̄2)γ {1 + O[(t + m̄2)γ−1]}, (60)

where we define the slow varying function

A = 2p−γ (1 + t )−γ . (61)

Combined with (32), this expansion leads to the equation of
state

h̄ = A m̄ (t + m̄2)γ {1 + O[(t + m̄2)γ−1]}, (62)

which is the same as in short-range spherical models [36]!
Hence, the same universality class compared to nonionic
models is realized: the long range of Coulomb interactions do
not break the usual critical fluctuations. This conclusion was
also derived for a symmetric system in Stell’s work [4] and is
robust to asymmetry as seen in the following.

Naturally, the physical behavior contained in Eq. (62) is
similar to that found in nonionic models: For instance, the
divergence near criticality of the susceptibility (or, in fluid
language, compressibility) is

∂m̄

∂ h̄

∣∣∣∣
T

(T, h̄=0) ∼ 1

tγ
when t → 0+, (63)

where γ , defined in Eq. (57), is the usual spherical model
critical exponent [36]. Similarly, for T below Tc and for small
k, the system exhibits the discontinuity

lim
h̄→0±

m̄(h̄, T ) = m± = ±t1/2, (64)

so that we retrieve the critical exponent β = 1
2 . Finally, we

note that, contrarily to what happens in binary short-range
spherical models I, no demagnetization effect is at stake in
the present ionic spherical model [compare (62) to (84) of
I]. This is due to the consideration here of systems with
the partial symmetry m† =0, as enforced by electroneutrality,
which happily destroys this unrealistic effect for a fluid model.

D. Density correlations

We now turn to the calculation of the species and density
correlation functions, while the analysis of charge correlations
is done in the next section. In the present symmetric model,
the correlations given in Eq. (3) reduce to

Gτυ (k; λ) = kBT

16a2d

[
1

	N (k; λ)
+ (−1)ϑτυ

	Z (k; λ)

]
, (65a)

GXX (k; λ) = kBT

16a2d

1

	X (k; λ)
, (65b)

where ϑτυ =0 if τ =υ and 1 otherwise. Similarly to the binary
spherical model (see I), these correlations are linear combi-
nations of the two eigenmodes 1/	N and 1/	Z . However,
in this special symmetric case (where �J† =m† =0), GNN

and GZZ involve, respectively, only 1/	N and 1/	Z . This

accidental decoupling is full of consequences as seen in the
next section concerning charge correlations and as opposed to
realistic asymmetric systems. As seen in Eq. (38), the term
1/	Z describes a short-range function with the typical length
scale RZ and with a vanishing integral over the whole system.
On the other hand, the term 1/	N ≈ 1/(λ + j0R2

N k2) [see
(35)], which exhibits a singularity when k and λ vanish, is
responsible for the critical behavior: Indeed, at the critical
point, characterized by λ=0,

GNN (k; Tc, ρc) ∼ 1

k2
, (66)

which means in the r space, GNN (r)c ∼ 1/rd−2 when |r| →
∞ [the same property holds for Gτυ , which also involve
1/	N , see (65a)]. Hence, the species and density correlations
exhibit the usual long-range critical fluctuations characterized
by a critical exponent η=0 as in short-range spherical models
[36]. Away from criticality, for λ �=0, we also find that the
density structure factor can be written at small k as

SNN (k; T, ρ)

SNN (0; T, ρ)
= 1

1 + k2ξ 2
N (T, ρ) + O(k4)

, (67)

with the total fluctuations SNN (0; T, ρ) = kBT/4adρλ and the
density correlation length

ξN (T, ρ) = RN

√
j0/λ(T, ρ). (68)

On approach of the critical point, as T → T +
c on the axis h̄=0

(i.e., when ρ=ρc), these quantities diverge as

SNN (0; T, ρc) ∼ 1

tγ
and ξN (T, ρc) ∼ 1

tν
, (69)

with ν =γ /2, which are indeed the expected behavior.
In order to characterize the spatial dependence of corre-

lations, one can also study various characteristic lengths. A
choice, relevant for the comparison with simulations, is to
consider the moments of the small-k expansion of SNN ,

SNN (k; T, ρ)

SNN (0; T, ρ)
= 1 − ξ 2

N,1(T, ρ)k2 +
∞∑

p=2

(−1)pξ
2p
N,p(T, ρ)k2p.

(70)

(We notice that the different coefficient ξ
2p
N,p does not need

to be positive.) In the present model, we find that the first
moment is merely ξN,1(T, ρ)=ξN (T, ρ) while the higher mo-
ments are given in the limit (T, ρ) → (Tc, ρc) by

ξN,p(T, ρ) ≈ lim
p→∞ξN,p(T, ρ) ≈ ξN (T, ρ). (71)

One can also consider ξN,∞, the true decay length of the
density correlation, given in the complex k plane by the
singularity nearest to the real axis: We also find ξN,∞ ≈ξN near
criticality [see Appendix (B)].

E. Charge correlations

When one examines ionic fluids, electrostatic properties
are revealed in part by the charge correlations which, in
the present symmetric model, are solely determined by the
eigenvalue 	Z as explicit in Eq. (65b). The latter being free
of the singularities of 	N , charge correlations display smooth
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behavior and, especially, remain short range even near and at
criticality. Indeed, the small-k behavior of the charge structure
factor can be written as

SZZ (k; T, ρ) = kBT

Sd q2ρ

k2

1 + k2R2
Z (T, ρ, k̂) + O(k4)

, (72)

where O(k4) contains only even powers of k2. Consequently,
one can check that the system satisfies the electroneutrality
sum rule [38] characteristic of internal screening,

SZZ (k = 0; T, ρ) = 0, (73)

over the entire phase space. Moreover, the structure of (72)
implies that SZZ (r) is a short-range function over the screen-
ing length RZ given in Eq. (39). In fact, RZ is always of order
of the Debye length (1), and accordingly stays finite near
and at the critical point. Indeed, neglecting the anisotropic
contribution �4(k̂)/a2 thanks to (12), one has, near criticality,

R2
Z

ξ 2
D

(Tc, ρc; k̂) ≈ 8 j0Jd (0), (74)

which leads to RZ,c =O(ξD,c) as j0Jd (0) is of order unity
[see Sec. (III B)]. Note also that, in the low-density limit, the
spherical constraint (45) implies Jd ≈ 1/2λ, so that

λ ≈ kBT

4ρad
when ρad → 0. (75)

Consequently, the charge characteristic length RZ approaches
exactly the Debye length at low coupling,

RZ (T, ρ, k̂) ≈ ξD(T, ρ), (76)

which is in accord with Brydges and Federbush’s result of
[26]. (This result also implies that in the low-density limit,
the charge structure factor reduces to

SDH
ZZ = k2

ξ−2
D + k2

, (77)

which coincides with the Debye-Hückel result.) As a con-
sequence, the true decay length of the charge correlations,
which characterizes the large-r behavior of SZZ (r) and which
is given by

ξZ,∞(T, ρ, k̂) = RZ (T, ρ, k̂)
[
1 + O

(
I2

0

)]
(78)

[see Appendix (B)], remains of the order of the screening
length ξD, and therefore stays finite in the critical region. We
note that the anisotropy present here via �4(k̂) in RZ is an
artifact of the anisotropy introduced by the Fourier transforms
of the Coulomb potential [see (11)].

We can also analyze SZZ via its small-k behavior

SZZ (k; T, ρ) =
∞∑

p=1

(−1)p−1ξ
2p
Z,p(T, ρ, k̂)k2p. (79)

We first find

ξZ,1(T, ρ) = ξD(T, ρ), (80)

which shows that the system always satisfies the Stillinger-
Lovett second moment sum rule (2), even near and at crit-
icality (a specialization of this sum rule for the present ge-
ometry and definitions of the Fourier transforms is presented

FIG. 1. Two interwoven lattices + and − modeling a binary
Coulomb fluid.

in Appendix A). In fact, this sum rule characterizes the
screening by a charged fluid of any external charge and is
the condition for a system to be conducting [38]. However,
as seen in the following, its satisfaction at criticality is not
automatic and is a consequence here of the special symmetry
and universality class of the model. The higher moments of
the charge structure factor are given by

ξZ,2(T, ρ, k̂) = ξ
1/2
D R1/2

Z (T, ρ, k̂), (81a)

ξ
2p
Z,p(T, ρ, k̂) = ξ 2

DR2(p−1)
Z (T, ρ, k̂)[1 + O(I0)] (81b)

(see Appendix B) so that limp→∞ξZ,p is merely RZ (T, ρ, k̂)
[1 + O(I0)].

F. Simplest model for numerics

In this section, we define a model with precise nonionic in-
teractions in order to get quantitative estimates of the different
characteristic lengths and conditions of validity. We consider
the basic ionic spherical model (BISM), a particular case of the
previous model in dimension 3. The nonionic interactions are
taken as the nearest-neighbor interactions

J0
+−(R) = J > 0 if R =

(
±a

2
,±a

2
,±a

2

)
(82)

= 0 otherwise, (83)

so that

Ĵ 0
+−(k) = 8J

∏
α

cos(kαa/2), (84)

while J0
++ and J0

−− are set equal to zero (the system is indeed
symmetric). If the two species were equal, this model would
mimic a one component fluid on a bcc lattice, with step
a0 =a

√
3/2 (see Fig. 1). In the nonionic case where q=0,

the critical temperature corresponds to the one component
nearest-neighbor bcc spherical model, i.e.,

kBT 0
c = 8J/Kc(bcc), (85)

where Kc(bcc) was introduced in Eq. (53). The nonionic
interactions are characterized by

j0 = 4J and R2
0 = 1

8 a2. (86)
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When Coulomb interactions are present (q �=0), the condi-
tions of validity can be made explicit. First, the positiveness
of j′0 requires the condition I0 < Ii [see (40)]. Second, the
amplitude of the k2 term in the small-k expansion of 	N [see
(35)] is merely

j0R2
N = 1

2 a2J[1 − I0/Iii], (87)

with Iii = 18/π � 5.72, so that I0 < Iii is required to ensure
the convexity of 	−(k) near the origin. Finally, we check
numerically that k=0 is the absolute minimum of 	−(k; λ)
over the entire Brillouin zone as long as

I0 < 12/π � 3.8. (88)

In fact, this condition is a necessary condition as can be
shown analytically considering the corner of the Brillouin
zone k= (π/a, π/a, π/a). As a whole, as soon as I0 < Ii,
the hypothesis made in Sec. III B is satisfied and the resulting
properties apply.

We can then give some estimates of the characteristic
lengths of density and charge correlations. As regards density
correlations, the true decay length ξN involves the parameter
p introduced in Eq. (56). Its value can be given in the low-
ionicity limit, noting that, when q=0,

J 0
d (λ) = 1

2λ
P

(
4J

λ

)
, (89)

where P is the Green function associated with the bcc lattice
with nearest-neighbor interaction, which expansion is given in
(3.19) of [36]. The latter expansion leads to

p =
√

2

πKc(bcc)
√

J
[1 + O(I0)]. (90)

Hence, the density correlation length diverges near criticality
as

ξN ≈ a
1

πKc(bcc)

1

tν
[1 + O(I0)], (91)

where 1/πKc(bcc) � 0.229. Normalized by the step
of the bcc lattice a0, this divergence is ξN/(a0/tν ) ≈
2/

√
3πKc(bcc) � 0.264 which is close to its value in the

Ising model [39].
Finally, concerning charge correlations, the characteristic

length RZ behaves near criticality as

R2
Z ≈ a2

πI0
(1 − I0/Ii ). (92)

Its ratio to the Debye length approaches near the critical point

RZ

ξD
≈
[

32J (1 − I0/Ii )

kBTc

]1/2

, (93)

which is well of order unity and equals 2
√

Kc(bcc)�2.4 in
the low-ionicity limit. Similarly, in the low-density limit, this
ratio is well of order unity and tends again toward 2

√
Kc(bcc).

IV. ASYMMETRIC CLASSICAL SYSTEMS

A. General properties

In the previous section, the symmetry of the system had
crucial consequences concerning, e.g., the finiteness of the

charge correlation lengths or the validity of the SL sum
rule. However, even if convenient for theory, symmetry is
a charming lure which has to be treated with care in any
realistic description of Coulomb fluids. Hence, we deal in
this section with asymmetric systems. As the present model
is built so as to satisfy charge symmetry (q+ =−q− =q), we
consider the asymmetry which originates from the short-range
interactions, describing, e.g., hard-core mismatch or different
nonionic attractions. Hence, we deal with the model defined in
Sec. II where we suppose J0

++ �=J0
−−. Even if electroneutrality

still requires m† =0, λ† does not vanish in the general case
and satisfies the spherical condition (50b) of I, which reduces
here to

λ† = −
∫

k

�J†(k)

	−	+(k; λ)

/∫
k

1

	−	+(k; λ)
. (94)

In addition to this equation, any state of the system is defined
by the spherical condition (45) and the link between external
and internal fields

h̄ = 2m̄λ and h† = 2m̄λ†. (95)

In fact, the eigenvalues 	± display similar behavior at small
k compared to the symmetric case. Indeed, we find for small
(but nonzero) vectors

	N (k; λ) = λ + j0R2
N (λ)k2 + O(k4), (96)

where the length RN now depends on λ via

R2
N (λ) = R2

0 − 1

576
Sd a2I0 − 2a2

SdI0

λ†2

j2
0

, (97)

with R2
0 defined in Eq. (37). (We note that the notation R2

N does
not presuppose the a priori positiveness of this coefficient.)
Similarly, 	Z (k; λ) has the same expression (38) at order 1/k2

and 1 as in the symmetric case.

B. Singularities

To quantify the asymmetry introduced by the difference
J0
++ − J0

−− �=0, we define the asymmetry parameter δJ ,

δJ = maxk∈B |�J†(k)|
j0

, (98)

which also measures the asymmetric Lagrange multiplier λ†.
Indeed, as 	−	+(k; λ) is always positive, the constraint (94)
leads to the bond

|λ†| � j0δJ . (99)

We can then show that for ionicities I0 and asymmetries δJ

not too large, the singularities of the system occur similarly
to in the symmetric systems. In fact, they occur when 	−
vanishes as it signals a singular behavior of Jd (λ) involved in
the spherical constraint (45). However, in the thermodynamic
limit where Jd is given by an integration over k, an isolated
annulation of 	−(k; λ) does not enforce a thermodynamic
singularity; hence, in this asymmetric case where 	−(k; λ)
might be discontinuous at k=0, we do not consider the
contribution from the isolated point k=0.

Thanks to these considerations, one can check that the
singularity of the model happens when k → 0 and λ=0. To
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prove this result, we impose three conditions similar to those
in symmetric systems. First, we suppose that the total interac-
tions are globally attractive so that j′0 >0, which requires the
condition (40). Second, we enforce the small-k expansion (96)
to be convex, i.e., R2

N >0, which is fulfilled in the interior of
an ellipsoid, which in d =3 reduces to[

1

72
πI0 − R2

0

a2

]2

+ 1

72
δ2

J <
R4

0

a4
. (100)

This condition concerns the interval of validity of (96) made
of vectors of the Brillouin zone such as |kα| � k− for all α.
Finally, in the close complementary part B′ of the Brillouin
zone (made of vectors with one |kα| � k−), 	−(k; λ) − λ can
be proved to be strictly positive by comparing its value to
the associated symmetric system (referred to with superscripts
SYM) defined as having the same J+− and �J̄ interactions but
with �J† =0. Indeed, we suppose the associated symmetric
system to fulfill the conditions of Sec. III B, which requires
I0 < Imax and implies that the minimum of 	SYM

− (k; λ) − λ

is zero and is reached only when k vanishes. Accordingly, the
minimum

δ	SYM
− ≡ min

k∈B′
{	SYM

− (k; λ) − λ}, (101)

which is attained for some k in B′ [because of the continuity of
	SYM

− (k; λ)] is strictly positive and independent of asymmetry
by construction. Then, performing the decomposition

	−(k; λ)−λ = 	SYM
− (k; λ)−λ−[D(k; λ)− 1

2 |Ĵ+−(k)|],
(102)

and noticing that thanks to the bound
√

x2 + y2 � |x| + |y|,
the second brackets of (102) are smaller than 2 j0δJ , we find
that for asymmetries not too large, δJ < δmax

J , with, e.g.,

δmax
J = δ	SYM

− /2 j0, (103)

	−(k; λ) − λ is larger than some strictly positive value. As a
conclusion, for I0 < Imax, (I0, δJ ) in the ellipsoid (100) and
δJ < δmax

J , the minimum of 	−(k; λ) is λ and is reached only
when k → 0.

As regards the behavior of λ† near criticality, we first note
that, as the integrand of

∫
k 1/	−	+(k; λ) in Eq. (94) behaves

as dd k k2/[λ + O(k2)], this integral is well defined when λ

vanishes, as well as its derivatives with respect to λ and λ†.
[The same argument is true for

∫
k �J†(k)/	−	+(k; λ).] Let

us note λ†
c the critical value of λ† and J

†
d (λ, λ†) the right-hand

side of (94). The derivatives of J†
d with respect to λ and λ† are

continuous for every λ � 0 and λ†, and, for δJ not too large,
∂ (λ† − J

†
d )/∂λ†|λ �= 0 when λ=0 and λ† =λ†

c . Thanks to the
implicit functions theorem, one concludes that when δJ is not
too large, λ† solution of (94) is a C1 function of λ,

λ† = λ†
c + O(λ). (104)

Moreover, we are interested in truly asymmetric system where
λ†

c �=0. This condition is achieved in many examples: for
instance, it is met in systems where symmetric nonionic inter-
actions are supplemented with nearest-neighbor interactions
with different amplitudes. The condition that �J†(k) has
a constant sign over the Brillouin zone is also a sufficient
condition for λ†

c not to vanish. Finally, one can expect that the

vanishing of the integral
∫

k �J†(k)/	−	+(k; λ) at criticality
is only accidental for some very particular interactions, with
no robustness with respect to the addition of small asymmetric
perturbations. If the interactions are such as λ†

c =0, the system
would recover some special accidental symmetry at the criti-
cal point.

Finally, the singularities of the system appear to be linked
to the function Jd (λ) defined in Eq. (33) and involved in the
spherical constraint (45). First, let us define the shorthand
notation Jd (λ)=Jd [λ, λ†(λ)]. Because the small-k behavior
of 	±(k; λ) is similar to its counterparts in the symmetric
case, Jd (λ) displays a small-λ expansion similar to (59).
Moreover, Jd (λ) is continuous for λ � 0, finite at λ=0, and
its monotonicity requires an extra bound on δJ . Indeed, let us
call λm the domain of validity of (59) in the asymmetric case,
meaning that the latter equation is valid in the interval 0 �
λ � λm where Jd (λ) is decreasing. For λ � λm, we consider
	m the minimum of 	−(k; λ) for all k, i.e., 	±(k; λ) � 	m >

0. As there is no singularity in the link between λ† and λ, as
dλ†/dλ is bounded for λ � λm >0, and as

dJd (λ)

dλ
= 1

4

∫
k

{
− 1

	+(k; λ)2
− 1

	−(k; λ)2

+ 4[λ̄ + �J̄ (k)][λ† + �J†(k)] dλ†/dλ

[	−	+(k; λ)]2

}
,

(105)

one can show that for low enough asymmetry, i.e., for

δJ � 	m

8 j0 maxλ�λm{|dλ†/dλ|} , (106)

the function Jd (λ) is also decreasing for λ � λm.

C. Phase diagram

We are now in a position to show that criticality in this
asymmetric ionic model is mainly driven by the nonionic
interactions in the usual universality class of spherical models.
Thanks to the spherical condition (45) and to the monotonicity
of Jd (λ), one realizes that, when d< <d <d> with d< =
1
2 d> =2, (i) for h̄ �=0 and T > 0, the model is free of singular-
ity; (ii) for h̄=0, the system is singular for T � Tc where the
critical temperature is given by (46) while h†

c = m̄c =0, so that
(47) still applies. [Note that for T < Tc, λ sticks to 0 but (45)
has to be modified.] At this point, it is worth analyzing the
influence of asymmetry on the critical temperature. To do so,
we compare an asymmetric system with its associated sym-
metric system defined above. We first notice that Tc � T SYM

c .
More precisely, in the case where �J†(k; δJ )=δJ�J̃†(k), we
find that Tc is a decreasing function of δJ , with the small-δJ

behavior

Tc = T SYM
c

[
1 − sδ2

J + o
(
δ2

J

)]
, (107)

defined with some positive constant s. We note that the
decreasing trend of Tc with asymmetry is in accord with recent
simulations of hard-core continuum electrolyte models [40],
but it contradicts with various approximate theories [41,42].

In the general case, the state of the system is given by
the two spherical conditions (45) and (94), and by the link
(95). As stated above, the implicit relation (94) may be solved
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implicitly, giving λ† as a function of λ and the resulting equa-
tion (45) displays the same structure as in symmetric models
provided one considers Jd (λ)=Jd [λ, λ†(λ)]. Moreover, as
the latter function displays the typical small-λ expansion (59),
the expansion (60) still applies so that the equation of state is
similar to the symmetric one [see Eq. (62)], but with now in
addition

h† = 2m̄λ†
c{1 + O[(t + m2)γ ]}. (108)

The equation of state (62) enforces the system to display
the same critical exponents β, γ , etc. (see next section for
the correlation length exponents) as in the symmetric ionic
model, which coincide with the nonionic spherical model
exponents. Hence, even in asymmetric systems, the long range
of Coulomb interactions does not change the universality
class which is driven mainly by the strong enough nonionic
interactions. The origin of this property lies again in the
eigenvalue 	N , in which the 1/k2 Coulomb divergence is
exactly canceled thanks to electroneutrality and which there-
fore displays the usual singularities of nonionic systems. Note
finally that the singularities for T < Tc occur when m̄2 =−t ,
and are localized on the parabola (h̄=0, h†2 =4λ†

c
2|t |, t ) for

T � Tc.

D. Infection of correlations

As regards the different correlation functions, on the one
side, the species and density correlations display the same
singularities as in symmetric systems, so that their character-
istic lengths diverge with the same exponents; on the other
side, charge correlations display drastically different behavior
as they become infected by the density divergences. The
origin of these properties lies in the decomposition of all
the correlations on the two eigenmodes 1/	N and 1/	Z , as
explicit in Eq. (3), where the mixing amplitude B behaves here
at small k as

B(k; λ) = 1 − 16

v2
d

λ†2

q4
k4 + O(k6), (109)

so that 1 − B �=0 a priori.
Concerning the density correlations, the term B/	N be-

haves as [1 + O(k4)]/[λ + j0R2
N k2 + O(k4)] [see (96)], while

the term (1 − B)/	Z describes a short-range function [see
(38)]. Hence, at the critical point, SNN behaves as 1/k2 and
the critical exponent η is zero. Away from the critical point,
when λ �=0,

SNN (k; T, ρ)

SNN (0; T, ρ)
= 1

1 + k2ξ 2
N (T, ρ) + O(k4)

+ O(k4), (110)

where SNN (0; T, ρ)=kBT/4ρadλ diverges near criticality
with the usual 1/tγ form at ρc while the density correlation
length

ξN (T, ρ) = RN [λ(T, ρ)]
√

j0/λ(T, ρ) (111)

diverges as 1/tν with ν =γ /2, the usual spherical model
exponent. Because the structure of the calculation is similar
to Sec. III D, we also find ξN,1 =ξN and the property that
the moments ξN,p, limp→∞ ξN,p, and the true decay length
ξN,∞ all approach ξN in the vicinity of the critical point
(see Appendix B). (Note that we need to impose some extra

conditions on the nonionic interactions in order to compute
ξN,∞ in this case.) The critical behavior of density correlations
is therefore the same as in symmetric system.

Concerning charge correlations, we find that SZZ has an
analytic small-k behavior similar to (79). Its first moment ξZ,1

coincides with the Debye length ξD when the system is not
critical, indicating that the fluid satisfies the Stillinger-Lovett
sum rule and is therefore in a conducting state. However,
contrarily to in the symmetric systems, the singularities of
1/	N (k; λ) appear to infect GZZ because the amplitude 1 −
B(k; λ) in Eq. (3) does not vanish in the general case for
asymmetric systems [see (109)]. Hence, at the critical point,
we find

ξZ,1(Tc, ρc) = ξD,c
[
1 + w2

cλ
†
c

2]1/2
,

with

w2 = 2a2/SdI0 j2
0 R2

N , (112)

so that ξZ,1,c �=ξD,c when λ†
c �=0 which is indeed supposed

in the general case. Hence, the Stillinger-Lovett sum rule is
violated at criticality in this asymmetric model, showing that
the system can no longer be conducting because asymmetry,
which couples charge and density correlations, leads to singu-
lar charge fluctuations.

Singularities also appear in the second-moment length ξZ,2.
Indeed, when λ �=0, it satisfies

ξ 4
Z,2(T, ρ) = −ξ 2

D(T, ρ)
[
w2λ†2

ξ 2
N − R2

Z

]
(T, ρ, k̂), (113)

and, on approach of the critical point on the axis h̄=h† =0, it
diverges as

ξZ,2(T, ρc) ∼ 1/tν/2 when t → 0+, (114)

introducing a new length which diverges less rapidly than the
1/tν density correlation length. We also note the change of
sign of ξ 4

Z,2 which tends to −∞ near criticality, whereas in the
low-density limit it remains positive (as is always the case in
symmetric systems). However, using (11), a Taylor expansion
of (̂ϕ C

ττ − ϕ̂ C
+−)(k) near the origin, and the expansion

Ĵ 0
τυ (k) = Ĵ 0

τυ (0)
[
1 − k2R2

τυ + k4R4
τυ,4 + O(k6)

]
, (115)

with some given coefficients Rτυ,4, one can perform an expan-
sion of 	N (k; λ) at the order k4 included and a straightforward
calculation shows that ξZ,2 is well defined at the critical point.
Concerning the other correlation lengths, using a decomposi-
tion similar to (B2), we isolate the more divergent contribution
to ξZ,p with the result

ξ
2p
Z,p(T, ρ) ≈ −w2λ†2

ξ 2
Dξ

2(p−1)
N (T, ρ), (116)

when (T, ρ) → (Tc, ρc). If we redefine ξ̂
2p

Z,p =−ξ
2p
Z,p in the

expansion (79), we find

lim
p→∞ξ̂Z,p(T, ρ) ≈ ξN (T, ρ), (117)

when (T, ρ) → (Tc, ρc). Finally, thanks to the decomposition
(3) one realizes that the singularities of GNN and GZZ in
the complex k plane are the same, and are given by the
vanishing of either 	N (k; λ), 	Z (k; λ), or of the square root
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TABLE I. Charge correlation lengths near criticality [the symbol
≈ stands for the limit (T, ρ) → (Tc, ρc )]. The density correlation
length ξN diverges as 1/t ν , whereas RZ , of order of the Debye length
ξD, stays finite.

SZZ Symmetric fluids Asymmetric fluids

ξZ,1 ξD

{
ξD if λ �= 0

>ξD,c at (Tc, ρc )

ξ 4
Z,2 ξ 2

DR2
Z −ξ 2

D[w2λ†2
ξ 2

N − R2
Z ]

ξ
2p
Z,p ξ 2

DR2(p−1)
Z [1 + O(I0 )] ≈ −w2λ†2

ξ 2
Dξ

2(p−1)
N

ξZ,∞ RZ [1 + O(I2
0 )] ≈ ξN

D [see (28)]. As shown in Appendix B, thanks to some extra
hypothesis on the nonionic interactions, we get

ξZ,∞(T, ρ) ≈ ξN (T, ρ) when (T, ρ) → (Tc, ρc). (118)

This is a singular consequence of asymmetry: it enforces
charge correlations to display similar singularities and the
same divergent characteristic length as density correlations
near criticality! The critical density fluctuations have therefore
infected charge fluctuations and screening clouds fluctuate in
part on the critical density length scale. (A glossary of the
previous results is displayed in Table I.)

Note, however, that, at the critical point, charge correla-
tions still display an exponential decay at large separations
so that exponential screening is still at stake (even if the
Stillinger-Lovett sum rule is not fulfilled). Indeed, at large
separations in d =3, we find near but not at criticality

GZZ (r) ≈ 2
δ2

J cδT0

j2
0 Tc

ξ 4
D

R2
N

e−r/ξN

ξ 4
N r

− ξ 4
D

R4
Z

e−r/ξZ

r
(119)

(where cδ =λ†
c/δJ is a priori of order unity) while only the

second term survives at criticality. The first term in Eq. (119),
which spatially depends on the density correlation length, van-
ishes as 1/ξ 4

N ∝ t4ν which is in fact the maximum amplitude
allowed by the satisfaction of the Stillinger-Lovett sum rule
for T >Tc.

At this point, it is worth having a comparison with the
results of the theory developed by Stell [4]. Indeed, some a
priori similar structure of charge correlations was found in
asymmetric systems, typically as

SS
ZZ ≈ �4e−�r/Ir, (120)

where � is the inverse of a length diverging near criticality.
However, one must first note that, contrarily to the result
(119), the form (120) does not vanish when asymmetry goes to
zero which is certainly an undesired feature. Moreover, (120)
does predict ξZ,∞ �=ξN,∞ when η �=0 which is also a difference
with our analysis. We first believe that in the analysis of
[4], the large-r behavior (120) should not be derived by the
small-k expansion of SZZ (k) when the latter is analytic. On
the contrary, in our study, we did perform a rigorous analysis
looking for the pole of SZZ (k) in the complex k plane which
leads to the exact form of SZZ (r). With this correction, the
second remark could then be corrected by assuming that X (k)
as defined in Ref. [4] could be given by the scaling form
a0(κ2 + k2)t/2x(k).

E. Charge-density correlations

In an asymmetric system, we can also study the charge-
density correlations which, as seen in Eq. (3), are given by
combinations of the two eigenmodes 1/	N and 1/	Z and are
therefore infected by the singularities of density fluctuations.
Their small-k expansion is always analytic, with the form

SNZ (k; T, ρ)

= SNZ (0; T, ρ) +
∞∑

p=1

(−1)p−1ξ
2p
NZ,p(T, ρ, k̂)k2p, (121)

and they remain short range even at criticality. Their spatial
integral SNZ (0; T, ρ) is always zero except at the critical point
where it reduces to

SNZ (0; Tc, ρc) = λ†
c

j0

ξ 2
D,c

R2
N,c

�= 0, (122)

as λ†
c is nonzero in the general case. The first moment of (121)

is also singular: it is given when λ �=0 by

ξNZ,1(T, ρ) = ξDλ†ξ 2
N/ j0R2

N , (123)

which diverges as 1/t2ν near criticality. At the critical point,
however, it has a well-defined expression

ξ 2
NZ,1(Tc, ρc) = − 4 j′0

q2vd
− a2�4(k̂) − R4

N,2

R2
N

+ j0
λ

†
c

R†2
, (124)

where

j0R†2 ≡ 1
4 (Ĵ++(0)R2

++ − Ĵ−−(0)R2
−−), (125)

while R4
N,2 is the amplitude of the k4 term in

the expansion (96). Finally, noticing that [λ† +
�J†]/Ĵ+−

√
1 + 4(λ† + �J†)/Ĵ 2+− has an expansion in

powers of k2 with no singularity when λ→0, and using the
same analysis as in Eq. (B1), we find that the higher moments
diverge near criticality as

ξ
2p
NZ,p(T, ρ) ≈ (λ†ξ 2

D/ j0R2
N

)
ξ

2p
N , (126)

so that

lim
p→∞ξNZ,p(T, ρ) ≈ ξN (T, ρ) when (T, ρ) → (Tc, ρc).

(127)

Hence, the true decay length of density fluctuations character-
izes also the charge-density fluctuations as a consequence of
asymmetry which couples all the different correlations.

F. Simplest model for numerics

In order to get some quantitative predictions, we consider
again the model described in Sec. III F where we intro-
duce asymmetry by adding different next-nearest-neighbor
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interactions

J++(R) = −J−−(R) = 2
3δJJ if R= (±a, 0, 0) and permutations (128)

= 0 otherwise. (129)

The asymmetry function �J† is then merely

�J†(k; δJ ) = 2

3
δJJ

[
3 −

∑
α

cos(kαa)

]
. (130)

For convenience, we suppose δJ >0 which means that λ† is
nonpositive [see (94)]. The positiveness of j′0 and R2

N still
requires, respectively, the conditions (40) and (100), which in-
volve the definitions of (86). Moreover, we check numerically
that the absolute minimum of 	−(k; λ) occurs when k → 0,
as long as

δJ < 1 − πI0/12, (131)

which is in fact a necessary condition to avoid the competition
with the corner of the Brillouin zone, k= (π/a, π/a, π/a), as
can be proved analytically.

When these conditions are met, the critical temperature is
given by (46) where Jd (0) ∝

∫
k[1/	N + 1/	Z ]c. We find nu-

merically that Tc is a decreasing function of asymmetry, while
its dependence on ionicity is subtle: For δJ small enough,
Tc is a decreasing function of I0, while for δJ large enough,
Tc is first increasing at small ionicities and then decreasing
for larger ionicities. To understand this behavior, we note
that because 	N behaves as j0R2

N k2 at criticality, where R2
N

is given by (97), the critical temperature can be expected
to behave as 1 + O(δ2

J /I0) + O(I0), while additional O(δ2
J )

terms might be present because of higher-order contributions.
Hence, we fitted the results for the critical temperatures as

Tc(I0, δJ ) = Tc(0, 0)

[
1 −

(
ς0 + ς1

I0

)
δ2

J

+ ς2I0 + O
(
δ4

J , I
3/2
0

)]
. (132)

We find good comparisons with numerical calculations with
the choices ς0 =0.095, ς1 =0.047, and ς2 =−0.082, while
Tc(0, 0) is 1.44 × (4J/kB). The nonmonotonic dependence of
Tc on ionicity is therefore a consequence of the competition
between the two terms δ2

J /I0 and I0.
Concerning the different correlation lengths, we find es-

timates of RZ and ξN similar to their values in symmetric
systems with corrections of order [1 + O(δJ )] [see (92) and
(91)]. Moreover, the length RN can be bounded as

0 � 1

16
a2

[
1 − 1

18
πI0 − 4

π

δ2
J

I0

]
� R2

N � 1

8
a2

[
1 − 1

18
πI0

]
.

(133)

Finally, concerning the length ξZ,2, we define tX the crossover
temperature at which ξ 4

Z,2 [see (113)] changes its sign, which
is given by

tX = 2

πKc(bcc)

|λ†
c |

j0
. (134)

At leading order in asymmetry, one can neglect the δJ depen-
dance of the integrands in the right-hand side of (94), leading
to the estimate

λ†
c

4J
� −0.579 δJ , (135)

so that the crossover temperature is approximately

tX � 0.265 δJ . (136)

V. SEMICLASSICAL IONIC SPHERICAL MODELS

In the present section, we consider a model of charged
fluids where quantum effects are dealt with semiclassically by
taking into account algebraic 1/rd+σ interactions, with σ >0,
which encompass induced, permanent dipole-dipole or van
der Waals forces. Hence, the typical small-k behavior of the
nonionic interactions now contains nonanalytical terms that
we note

Ĵ 0
τυ (k) = Ĵ 0

τυ (0)
[
1 − kσ

(
R0
L,τυ

)σ − k2R2
τυ + Oσ,4

]
, (137)

for either σ < 2 or σ > 2, but σ/2 not an integer and with the
new length scale R0

L,τυ . The subscript L will be used to label
quantities deriving from the long-range nonionic interactions
and for brevity here and below, we let Ox,n denote a function
which is the combination of nonanalytic terms negligible
compared to kx, and analytic terms of order kn. These nonionic
interactions are supposed to be attractive enough for the
conditions (15) and (16) to be met, so that they suffice to
drive criticality in absence of Coulomb forces. We define the
characteristic ranges R0

L,N , R0
L,Z , R0

N , and R0
Z with the small-k

expansions

�J̄ 0(k) + (−)ϑX �J0
+−(k)

= j0kσ
(
R0
L,X

)σ + j0k2
(
R0

X

)2 + Oσ,4, (138)

where ϑN =0=1 − ϑZ . We note that the coefficients of these
expansions are not necessarily positive but, thanks to (16),
(R0

L,N )σ > 0 when σ < 2, while (R0
N )2

> 0 when σ > 2. Fi-

nally, the leading nonanalytic term of �J† is measured by R†
L

defined via

�J†(k) = j0kσ R†
L

σ + Oσ,2, when k → 0. (139)

A. Criticality

In the absence of charge (q=I0 =0) and asymmetry (δJ =
0), the nonionic interactions generate the usual criticality
of spherical models with power-law forces [36]. Indeed, in
this symmetric case where λ† =0 (in order to enforce elec-
troneutrality), criticality occurs when λ=0 and the small-λ
expansion of Jd displays the usual structure [see (59)]

Jd (λ) = Jd (0)[1 − pλ1/γ + O(λ)], (140)
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with now

γ = max{σm/(d − σm); 1} where σm = min{σ, 2},
(141)

and with some positive constant p. Again, we consider only
nonclassical regimes where d< < d < d> with d< =d>/2=
σm.

When charges and possibly asymmetry are present, the
same criticality prevails provided I0 and δJ are not too large.
Indeed, the eigenvalues 	N and 	Z behave when k → 0 as

	N (k; λ) = λ + j0kσ
(
RL

N

)σ + j0k2R2
N (λ) + Oσ,4, (142)

	Z (k; λ) = Sd q2

4ad

1

k2

[
1 + k2R2

Z (λ; k̂)

+ k2+σ
(
RL

Z

)2+σ + O2+σ,4
]
, (143)

where the ranges RN and RZ are still defined with (97) and
(39), respectively, while RL

N =R0
L,N , and(

RL
Z

)2+σ = 2a2
(
R0
L,Z

)σ
/I0Sd . (144)

Once again, the structure of 	N leads to the exact cancellation
of the 1/k2 Coulomb divergence in Eq. (142), so that the
same criticality as when I0 =δJ =0 is at stake provided some
conditions which ensure that k → 0 is the absolute minimum
of 	−(k; λ). When σ > 2, these conditions are the same as in
Sec. IV B. However, when σ < 2, the condition (100) can be
released because the leading behavior of 	N , which is now of
order kσ , has a positive coefficient thanks to (16).

When these conditions are fulfilled, criticality occurs in
symmetric or asymmetric systems similarly to the previous
Coulomb+short-range spherical model (with, however, a dif-
ferent universality class), when kBTc =1/Jd (0) and h̄=0 so
that the critical density is merely ρcad =1. Near criticality, the
equation of state displays the usual structure

h̄ = Am̄(t + m̄2)γ {1 + O[(t + m̄2)γ−1]} = 2m̄λ, (145)

where γ is defined in Eq. (140) and A in Eq. (61). Moreover,
we also check that the next corrections to scaling in the
brackets of the right-hand side of (145) are merely of order
O[(t + m̄2)θσ ] where θσ =|2 − σ |γ /σm. The phase separation
singularities occur when t + m̄2 =0, and the critical exponent
β is still 1

2 . As regards density correlations, except at the
critical point, we find the small-k expansion

SNN (k; T, ρ)

SNN (0; T, ρ)
= 1

1 + kσ ξσ
N,σ + k2ξ 2

N,1 + Oσ,4
+ Oσ+4,4.

(146)

The spatial integral SNN (0; T, ρ), proportional to the isother-
mal compressibility, is kBT/4ρadλ(T, ρ), and, thanks to
(145), diverges as 1/tγ near criticality when ρ=ρc. The two
characteristic lengths in Eq. (146) are

ξN,σ (T, ρ) = RL
N [λ(T, ρ)][ j0/λ(T, ρ)]1/σ , (147a)

ξN,1(T, ρ) = R0
N [λ(T, ρ)] [ j0/λ(T, ρ)]1/2. (147b)

When ρ=ρc, ξN,σ diverges as 1/tγ /σ while ξN,1, as 1/tγ /2,
with ξσ

N,σ /(RL
N )σ =ξ 2

N,1/R2
N . We identify ξN the density cor-

relation length, as the most divergent characteristic length,
i.e., ξN =ξN,σ when σ <2 and ξN =ξN,1 when σ >2, which

diverges near criticality as 1/tν with the critical exponent ν =
γ /σm. With this definition, one may write the density correla-
tions in the scaling form SNN (k)= (1/tγ )D<(>)(ξN k; t θσ , . . .),
where < (>) refers to σ <2 (σ >2), and where the exponent
θσ describes corrections to scaling defined above. In real
space, it is well known [43] that the first nonanalyticity in k
of the small-k expansion of SNN (k) rules the large-r behavior
of GNN (r). Hence, when r goes to infinity, we find the scaling
expressions

GNN (r; T, ρ) ≈ D<
N

rd−2+η

(
ξN

r

)2σ

when σ < 2, (148)

while

GNN (r; T, ρ) ≈ D>
N

rd−2+η

(
ξN

r

)2(
ξN,σ

r

)σ

when σ > 2,

(149)
with the critical exponent η=2 − σm which satisfies the usual
scaling relation γ = (2 − η)ν. The amplitudes in Eqs. (148)
and (149) are D<

N =�∗(σ )Sd T/2ad T0(RL
N )σ=D>

N R2
N/(RL

N )σ

where we define

�∗(x) = −2d−1�(d/2)�[(d + x)/2]/πd�(−x/2). (150)

We notice that Eq. (149) involves both ξN and ξN,σ because,
in the case σ > 2, the t θσ corrections to scaling in SNN (k)
are linked to the asymptotic behavior of GNN (r). Finally, we
check that at criticality GNN (r)c ∼ 1/rd−2+η as must be.

B. Charge correlations

As regards charge correlations, the question we address
is what kind of interplay occurs with (i) Coulomb 1/rd−2

interactions, (ii) nonionic 1/rd+σ quantum effects, and, pos-
sibly (iii) near critical 1/rd−2+η density fluctuations. This
information is in fact included in the small-k expansion of
SZZ . We first find that when (T, ρ) �= (Tc, ρc), SZZ (k) can be
expanded according to

SZZ (k; T, ρ) = k2ξ 2
D

(
1 − k2ξ̃ 2

Z,2 − k2+σ ξ 2+σ
Z,2+σ + O2+σ,4

)
.

(151)

The first correction in Eq. (151) is defined by

ξ̃ 2
Z,2(k̂; T, ρ)=[R2

Z − ξσ
N,σw2λ†2](k̂; T, ρ), (152)

with

w2(T, ρ)=2a2/SdI0 j0
2
(
RL

N

)σ
(T, ρ), (153)

while the nonanalytic correction of order k4+σ involves

ξ 2+σ
Z,2+σ (T, ρ) = (RL

Z

)2+σ − 2w2 j0λ
†R†

L
σ
ξσ

N,σ + w2λ†2
ξ 2σ

N,σ .

(154)

The structure of (151) is in fact drastically different from what
is found in Coulomb+short-range binary spherical model.
Indeed, in the entire phase space, the term k4+σ is nonanalytic
(recall that σ/2 is not an integer) so that GZZ is always
algebraic at large distances. More precisely, we find that the
large-r behavior of charge correlations is

GZZ (r; T, ρ) ≈ 1

rd+4+σ
kBT ξ 2+σ

Z,4+σ �∗(4 + σ ), (155)
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except at criticality. [We note that the sign of (155) is not
determined and depends on the interactions.] Hence, inde-
pendently of any criticality, we find that long-range quantum
effects added to Coulomb forces destroy the usual picture of
the exponential Debye screening, even in the low-density limit
and lead to algebraic screening. By way of comparison, we
recall that for classical fluids with only 1/rd+σ interactions
where −d < σ < 0, only the Coulomb fluids with σ =−2
exhibit perfect exponential screening (as a consequence of
Poisson’s equation), whereas other potentials lead to algebraic
decays of GZZ (r) [44]. Moreover, we note that the algebraic
decay (155) is not in contradiction with Brydges and Feder-
bush’s article [26] where exponential screening in Coulomb
fluids is rigorously proven in the low-density limit: Indeed,
only Coulomb in addition to short-range interactions were
taken into account in Ref. [26], whereas the quantum effects
enforce here long-range 1/rd+σ nonionic interactions. In ad-
dition, it is satisfactory to note that, when one considers d =3
systems with σ =3 (i.e., with typically van der Waals 1/r6

interactions) our analysis reproduces the exact 1/r10 decay
proven in point-charge fluids with fully quantum dynamics
[45,46]. Finally, we signal that such an algebraic decay was
also found in a recent study of Coulomb fluids with dispersion
interactions, based on an Ornstein-Zernicke analysis [28].

Nevertheless, charge correlations in the present model do
still exhibit a kind of screening, but which is only algebraic:
namely, the 1/rd−2 Coulomb potential is multiplied by an
algebraic factor 1/rσ+6 in the resulting charge correlations
(155). Moreover, whether symmetric or asymmetric but not
critical, the system satisfies the Stillinger-Lovett sum rule,
as clear in Eq. (151), even though the screening is only
algebraic. In fact, this algebraic screening arises from two
different mechanisms: In a symmetric system, according to
the decomposition (65b), SZZ is governed by 1/	Z , which
behaves typically as (1/k2)[1 + O(k2) + O(k2+σ )], after the
factorization of the long-range 1/k2 Coulomb potential [cf.
(143)], giving a first nonanalytic term of order k4+σ . More-
over, in an asymmetric system, because of the expansion

BN
ZZ = k4

(
4a4/S2

dI2
0 j′0

2)(
λ†2 + 2λ† j′0R†

L
σ

kσ + Oσ,2
)
,

(156)
the contribution of BN

ZZ/	N [see (3)] also leads to a k4+σ

term in GZZ . These two mechanisms reveal how long-range
integrable forces can destroy exponential screening thanks
(i) to the decomposition of every correlation on only two
eigenmodes, and (ii) to the structure of these eigenmodes
which involve the two kinds of interactions (algebraic and
Coulombic). This property appears in fact to be a consequence
of the external screening as explained in the diagrammatic
analysis of Appendix C.

Back to criticality, one may now ask the following: “How
is this algebraic screening modified when long-range criti-
cal density fluctuations occur?” The answer depends in fact
crucially on symmetry. Indeed, in a symmetric system, the
amplitudes ξ̃ 2

Z,2 in Eq. (152) and ξ 2+σ
Z,2+σ in Eq. (154) are always

finite because the contributions involving the diverging length
ξN,σ exactly vanish with λ† ∝ δJ ; charge correlations then
display a regular behavior near criticality. Similarly, at crit-
icality, (151) is valid and well defined so that the system still
satisfies the Stillinger-Lovett sum rule (2). Hence, as enforced

TABLE II. Large-distance behavior of charge correlations in
semiclassical ionic spherical symmetric or asymmetric models. The
density correlation length ξN diverges as 1/t ν . By way of compar-
ison, the density correlations GNN (r) behave as 1/rd+σ away from
criticality, and as 1/rd−2+η at criticality.

GZZ (r) Symmetric Asymmetric

(Tc, ρc ), ∼1/rd+4+σ ∼1/rd+σ+2η

(T, ρ) �= (Tc, ρc ) ∼1/rd+4+σ ∼(ξN/r)4−2η/rd+σ+2η

by the decomposition (3), charge and density correlations are
disentangled and characterized by two different eigenmodes,
as in models with Coulomb+short-range interactions.

On the other hand, for asymmetric systems, the amplitudes
ξ̃ 2

Z,2 and ξ 2+σ
Z,2+σ diverge respectively as 1/tγ and 1/t2γ , so that

the large-r behavior (155) of GZZ becomes divergent near
criticality, and can be written in the scaling form

GZZ (r; T, ρ) ≈ D<
Z

rd+4−σ

(
ξN

r

)2σ

when σ < 2 (157)

≈ D>
Z

rd+σ

(
ξN

r

)4

when σ > 2, (158)

where D<
Z =kBT w2λ†2

�∗(4+σ )=D>
Z R4

N/(RL
N )2σ . Naturally,

as enforced by (3), the density singularities infect the charge
correlations. Moreover, at criticality, the consequences of the
charge-density mixing depends on the long-range behavior of
density fluctuations, i.e., on η. Indeed, we find

SZZ (k)c = k2ξ 2
D,c

[
1 + k2−σ ξ 2−σ

Z,2−σ + O2−σ,2
]
, (159)

for η = 2 − σ > 0, while

SZZ (k)c = k2ξ 2
D,c

[
Ec − kσ−2ξσ−2

Z,σ,c + Oσ−2,2
]

(160)

for η = 0 < σ − 2, with ξ 2−σ
Z,2−σ =(w2λ†2)c=ξσ−2

Z,σ [R4
N/(RL

N )2σ ]

and Ec =1 + [w2λ†2(RL
N )σ /R2

N ]c. At large separations, the
scaling behavior (157) reduces to

GZZ (r)c ≈ 1

rd+4−σ
(−)kBTc ξ 2−σ

Z,2−σ,c �∗(4 − σ ) (161)

for η = 2 − σ > 0, while

GZZ (r)c ≈ 1

rd+σ
kBTc ξσ−2

Z,σ,c �∗(σ ) (162)

for η = 0 < σ − 2. The critical density fluctuations therefore
infect charge fluctuations and weaken the algebraic screening
of the system by a factor r4−2η compared to the noncritical
state (157) (see also Table II). This effect is stronger when
σ > 2 since η=0 characterizes a longer range of the 1/rd−2+η

critical density fluctuations compared to the case η > 0 when
σ < 2. Similarly, the validity of the Stillinger-Lovett sum rule
(2) at the critical point also depends on η: When η > 0, and
according to (159), the system still satisfies the Stillinger-
Lovett sum rule at criticality, and may well be regarded as
conductor even though with a weak algebraic screening. On
the contrary, when η=0, the Stillinger-Lovett sum rule is
violated at criticality as Ec �= 1 in Eq. (160) and the system is
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nonconducting. This result is similar to the Coulomb+short-
range ionic spherical model (see previous sections), where the
value η=0 is always at stake. Moreover, we note that this
interplay between critical density fluctuations and screening,
enforced by asymmetry and ruled by the value of η, can in
fact be also derived from the analysis of [4].

Finally, similar conclusions can be drawn about charge-
density fluctuations in asymmetric fluids. Except at criticality,
their behavior at small k is

SNZ (k; T, ρ) = k2ξ 2
NZ,1 − k2+σ ξ 2+σ

NZ,2+σ + Oσ+2;4, (163)

where ξ 2
NZ,1(T, ρ)=ξ 2

Dλ†ξσ
N,σ / j0(RL

N )σ and ξ 2+σ
NZ,2+σ (T, ρ)=

ξ 2
D [ξσ

N,σ /(RL
N )σ ][λ†ξσ

N,σ / j0 − R†
L

σ
], so that

GNZ (r; T, ρ) ≈ DNZ

rd+2+σ

with

DNZ = Sdρq�∗(2 + σ )ξ 2+σ
NZ,2+σ (T, ρ). (164)

Near criticality, these correlations are singular as ξ 2
NZ,1 and

ξ 2+σ
NZ,2+σ diverge, respectively, as 1/tγ /σ and 1/t2γ /σ , and, in

the r space, their algebraic behavior is

GNZ (r; T, ρ) ≈ D<(>)
NZ

rd+|2−σ |

(
ξN

r

)4−2η

when σ < (>) 2,

(165)
where D<

NZ=Sdρqξ 2
Dλ†�∗(σ+2)/ j0(RL

N )σ =D>
NZR4

N/(RL
N )2σ .

Hence, these correlations are also infected by the density
correlations as a consequence of the general decomposition
(3). However, compared to the 1/rd−2 Coulomb interactions,
some algebraic screening is still at stake as GNZ is
multiplied by a decay 1/r4+σ . At the critical point,
differences arise depending on η: When η > 0, SNZ (0)c =0,
whereas, when η=0, SNZ (0)c = (ξ 2

Dλ†/ j0R2
N )c �= 0 as in the

short-range case. Moreover, at criticality and for large
r, we find GNZ (r)c ≈ D<(>)

NZ,c /rd+|2−σ |, where D<
NZ,c =

D>
NZ,c(RL

N )2σ /R4
N =−Sdρcqξ 2

Dλ†�∗(|2 − σ |)/ j0(RL
N )σ when

σ < (>)2. Hence, compared to the scaling form (165),
the screening of the cross charge-density correlations is
weakened by a factor r4−2η, i.e., all the more effectively as
η=0 (compared to η > 0), as a consequence of the coupling
with the critical density fluctuations.

VI. CONCLUSION

Our aim has been to shed some light on ionic criticality.
Indeed, many debates and speculations left the universality
class of Coulomb fluids unsettled theoretically: For instance,
it has been both proposed via approximate approaches that
the long-range Coulomb interactions could or could not lead
to a mean-field behavior [3,4]. In order to exhibit some basic
mechanisms at stake in critical ionic fluids, we devised an
exactly solvable spherical model which accounts for both
charge and density fluctuations.

We first find that the universality class of the model is
left unchanged when nonionic forces are implemented with
Coulomb interactions provided the latter are not too strong.
This result is not contradicting recent Monte Carlo simu-
lations which establish an Ising behavior in the restricted

primitive model. Its origin lies in our model in the fact that
the system is characterized by two eigenmodes 	N and 	Z

of the matrix describing the interactions in a binary fluid:
in the mode 	N , the long-range 1/k2 Coulomb singularity
is exactly canceled thanks to electroneutrality so that its
vanishing, which rules criticality, drives the usual spherical
model universality class.

We also find that charge and density correlations are decou-
pled in fully symmetric systems, and characterized, respec-
tively, by the eigenmodes 	Z and 	N . As a consequence, they
exhibit different behavior: while GNN displays usual critical
divergence, GZZ varies smoothly and stays short range over
a screening length ξZ,∞ which remains finite near criticality.
However, in the realistic case where some asymmetry is
present (e.g., in hard core diameters or in short-range fea-
tures), we find that both charge and density correlations are
coupled via similar decompositions on both 1/	N and 1/	Z

[see (3)]. Accordingly, the charge correlation length ξZ,∞ di-
verges near criticality exactly as the density correlation length
ξN,∞. Similarly, the validity of the Stillinger-Lovett sum rule,
which discriminates between conducting and nonconducting
fluids, depends on symmetry: satisfied in symmetric systems,
this sum rule is violated in asymmetric fluids if and only if
η = 0, which describes longer-range 1/rd−2+η density fluctua-
tions compared to the case η>0. This conclusion is consistent
with what can be deduced in part from the formulation of [4].
Hence, even if sensible only in short-range characteristics, the
asymmetry of a fluid can have dramatic consequences on the
overall screening effect, as a consequence of its coupling with
the Coulomb interactions.

As a by-product, we also investigate the influence on the
previous model of 1/rd+σ interactions (with σ >0), mimick-
ing quantum effects in a semiclassical way. We find that, con-
trarily to the usual picture of the exponential Debye screening,
charge correlations decay only algebraically as 1/rd+σ+4.
Compared to the 1/rd−2 Coulomb interactions, one concludes
that some screening is still at stake, but only algebraic. This
result is consistent with some exact results in quantum plas-
mas [45,46] and with Ornstein-Zernicke approaches [28].

APPENDIX A: STILLINGER-LOVETT SECOND
MOMENT SUM RULE

The Stillinger-Lovett second moment sum rule distin-
guishes between conducting and nonconducting media. It
describes in fact the screening of an external charge by a
conducting system and can be derived by the linear response
theory (one can refer to [38] for a general review of sum rules
in charged fluids and their demonstrations based on the Born-
Green-Yvon (BGY) hierarchy). We present in this Appendix
its generalization to the geometry of the model. Hence, we
consider an external charge spread on one sublattice, e.g., the
lattice +, with a charge density δρext such as

δρext (R+) =
∫

k
eik· R+δρext (k), (A1)

where the Fourier transform is associated with the reference
sublattice. We define δφext

τ (Rτ ) the electrostatic potential cre-
ated on the sublattice τ by the external charge. It is given by
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the Poisson equation as

δφext
τ (k) = δρext (k) ϕ̂ C

+τ (k), (A2)

where the Coulomb potential is given by (9) and (10). In the
linear response theory, this external potential induces a change
in density given by

δρτ (k) = −β
∑

υ

qυδφext
υ (k)Gτυ (k; λ), (A3)

so that the induced charge density is merely

δρZ (k) = −β
∑
τ,υ

qτ qυδφext
υ (k) Gτυ (k; λ). (A4)

Then, one characterizes a conducting system such as it shields
every external charge, which can be written as

lim
k→0

{δρZ (k) + δρext (k)} = 0. (A5)

The combination of (A2), (A4), and (A5) leads to the sum rule

lim
k→0

β
∑
τ,υ

qτ qυGτυ (k; λ)
vd

k2
= 1, (A6)

where vd/k2 is the singularity of the Coulomb potential at the
origin, which is equivalent to the equality ξZ,1 =ξD in Eq. (2).

APPENDIX B: DIFFERENT CORRELATION LENGTHS

In this Appendix we exhibit some values of the characteris-
tic lengths involved in the Coulomb+short-range interaction
models.

1. Density moments ξN,p

First, we write the small-k expansion of 	N as

	N (k; λ) = λ

⎡⎣1 +
∞∑

p=1

j0
λ

R2p
N,pk2p

⎤⎦, (B1)

where the coefficients RN,p remain bounded when λ goes to
zero, leading to

1

	N (k)

= 1

λ

⎧⎨⎩1+
∞∑

p=1

(
− j0

λ
R2

N

)p

k2p

⎡⎣ ∞∑
q=0

(
RN,q+1

RN

)2q

k2q

⎤⎦p⎫⎬⎭.

(B2)

The ratios RN,q+1/RN are bounded when λ vanishes so that the
brackets in Eq. (B2) can be expanded in powers of k2 with
bounded coefficients. Hence, when λ→0, the coefficients
of k2p in Eq. (B2) behave as (− j0R2

N/λ)p[1 + O(λ)]. On
the other hand, we know that 	Z (k; λ) and B(k; λ) can be
expanded in powers of k2:

	Z (k; λ) = vd q2

4k2

⎡⎣1 +
∞∑

p=1

R2p
Z,pk2p

⎤⎦, (B3)

B(k; λ) = 1 −
∞∑

p=2

B2pk2p, (B4)

with RZ,1 =RZ and where the coefficients RZ,p and B2p remain
bounded when λ→0. As a conclusion, one can see that in
symmetric and asymmetric models,

ξ
2p
N,p ≈

(
j0
λ

R2
N

)p

. (B5)

2. True length ξN,∞ in the symmetric case

The large-r behavior of GNN is given by the singularity of
GNN (k) nearest to the real axis. In the symmetric case, one
has

4βa2d GNN (k) = 1/[λ + �J� (k)], (B6)

where �J� (k)≡ 1
2 (Ĵ+− + Ĵττ )(0) − 1

2 (Ĵ+− + Ĵττ )(k) is inde-
pendent of λ. In the complex k plane, �J� does not have
any singularity and the singularity of GNN arises from the
vanishing of the denominator of (B6). We define k� such
as for k with both |Re(k)| and |Im(k)| smaller than k� , the
small-k expansion of �J� is valid. When |Re(k)| � k� and
0 � Im(k) � k� , the vanishing of 	N given in Eq. (B1) has a
unique solution k = iκ where κ →0 as κRN = (λ/ j0)1/2[1 +
O(λ)]. As seen in Sec. III B, when some conditions on I0

are imposed, k=0 is the only solution of �J� (k)=0 so that
�J� (k) > 0 for k �=0 in the Brillouin zone.

Proposition 1. For a function f continuous on a compact K
of the C plane, such as f [Re(k)] �= 0 in K, then

∃ η, ∃ k f / ∀ k ∈ B, |Im(k)| � k f ⇒ | f (k)| > η.

(B7)

Indeed, if not true, for all η, there would exist a suite kn such
as |Im(kn)|<1/n and | f (kn)|<η. In the compact K, we could
then extract a convergent partial suite of Re(kn) converging
toward k∞ such as | f (k∞)| < η which is in contradiction with
f [Re(k)] �= 0 on the compact K.

Then, if we consider the compact B� made of the com-
plex numbers such as |Re(k)|�k� and 0 � Im(k) � k� , one
knows that there exist some η and k′

� such as |�J� (k)|>
η when 0 � Im(k) � k′

� , independently of λ so that λ +
�J� (k) �=0 for λ<η. As a conclusion, when λ→0, iκ is
the only singularity of GNN (k) nearest to the real axis and it
therefore rules ξN,∞ as ξN,∞ ≈ RN ( j0/λ)1/2.

3. Charge correlation lengths in symmetric systems

In order to compute the small-k expansion of SZZ in a
symmetric model, we first notice that 	Z can be expanded
according to

	Z (k; λ) = vd q2

4k2

⎡⎣1 +
∞∑

p=1

R̃2p
Z,p

q2
k2p

⎤⎦, (B8)

with some given R̃Z,p which remain bounded when λ→0
and/or when q→0. Thanks to the decomposition (65b), this
expansion leads to

SZZ (k) = k2ξ 2
D

∞∑
p=0

(−R2
Zk2
)p

⎛⎝1 +
∞∑

q=2

R̃2q
Z,q

R̃2
Z,1

k2(q−1)

⎞⎠p

.

(B9)
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Considering that the ratios R̃2q
Z,q/R̃2

Z,1 are bounded when q→0,

one gets at leading order in q2, ξ
2p
Z,p ≈ ξ 2

DR2(p−1)
Z in a symmet-

ric system.
When q is small enough, we can compute the large-

distance characteristic length ξZ,∞ more precisely. Let us write

	Z (k; λ) = λ + 2 j′0 + q2vd

4k2
[1 + k2�4(k̂)] + �JZ (k; q),

(B10)
where we isolate the leading 1/k2 and O(1) terms of the
Coulomb potential with

2�JZ (k; q) ≡
{

Ĵ+−(k) − q2vd

4k2
[1 + k2�4(k̂)]

}
−
{

Ĵττ (k) + q2vd

4k2
[1 + k2�4(k̂)]

}
+ (Ĵττ − Ĵ+−)(0). (B11)

When q=0, �J0
Z (k) is an analytic function of the short-

range interactions without singularity, and, as |�JZ (k; q) −
�J0

Z (k)|=q2O(k2) when k → 0,∣∣�JZ (k; q) − �J0
Z (k)

∣∣ � Mq2, (B12)

for some given M. If the conditions of validity of the model are
satisfied, we know that 	0

Z (k,λ) − λ, which is independent
of λ, never vanishes in B. Hence, thanks to Proposition 1, we
know that there exists η and kZ such as

|Re(k)| � π/a and 0 � Im(k) � kZ ⇒ ∣∣2 j′0 + �J0
Z (k)

∣∣ > η.

(B13)

When q is nonzero, 	Z vanishes when

−q2vd

4k2
= [2 j′0 + �J0

Z (k)
]+ λ + 1

4
q2vd�4(k̂)

+ �JZ (k; q) − �J0
Z (k). (B14)

Using (B12) and (B13), one can show that for q small enough,
the modulus of the right-hand side of (B14) is greater than η/2
for k satisfying (B14). Hence, the vanishing of 	Z occurs for
|k2| < q2vd/2η, so that �JZ (k; q) − �J0

Z (k)=O(q4). Hence,
in the region |Re(k)| � π/a and 0 � Im(k) � kZ , (B14) has
a unique solution, which is k = (i/RZ )[1 + O(I2

0 )], leading to
(78).

4. True correlation lengths in asymmetric systems

For this analysis we need to make an extra hypothesis on
the interactions in order to ensure that D(k; λ) defined in
Eq. (28) does not have spurious singularity in the complex
k plane. We suppose

(i) Ĵ+−(k) �= 0 in B − δB, (B15)

where δB is the frontier of the Brillouin zone which is
fulfilled for example when J0

+− describes a nearest-neighbor
interaction [see (84)]. We also suppose

(ii) �J†(k) = 0 on δB. (B16)

With these conditions, one can check that D(k; λ) �=0 in the
Brillouin zone when λ† �=0, which is indeed an hypothesis of

the model. Thanks to (3), one knows that the singularity in
the complex k plane of GNN and GZZ arises either from the
vanishing of 	± or of D.

a. Vanishing of �−(k)

With the notation of Sec. IV B, we write

	−(k,λ; δJ ) − λ = [	SYM
− (k; λ) − λ]

+ 1
2 |Ĵ+−(k)| − D(k; λ), (B17)

where the first brackets in the right-hand side of (B17) are
merely �J̄ (k) + j′0 − 1

2 |Ĵ+−(k)|. As seen in Sec. IV B, for
I0 < Imax, there exists some positive bound δ	SYM

− such as
for k in B with one |kα| � k−,

	SYM
− (k; λ) − λ � δ	SYM

− > 0. (B18)

Thanks to Proposition 1, one can check that there exist δ	′
−

and k′
−, such as

|Re(k)| � k− and 0 � Im(k) � k′
− (B19)

so that

|	SYM
− (k,λ) − λ| � δ	′

− > 0, (B20)

independently of λ. In order to bound D(k; λ) − 1
2 |Ĵ+−(k)|,

we first establish the following property.
Proposition 2. For a continuous function f on a compact K

such as | f [Re(k)]| < j, there exists k f such as

k in K and |Im(k)| � k f ⇒ | f (k)| � 2 j. (B21)

Indeed, if the proposition was not true, we could build a con-
verging suite of complex kn such as | f (kn)| � 2 j, Im(kn)→0
and Re(kn)→k∞, where k∞ is in K, and such as | f (k∞)| � 2 j
which is not possible.

Hence, as |�J†(k)| < j0δJ , one knows that there exists k†

such as, for |Re(k)| � π/a and |Im(k)| � k†, �J† is bounded
as |�J†(k)| � 2 j0δJ , so that

|D(k; λ) − 1
2 |Ĵ+−(k)|| � |λ†| + |�J†(k)| � 3 j0δJ . (B22)

Combining (B17), (B20), and (B22), and defining k′′
− ≡

inf (k−, k′
−, k†), one finds that for low-enough asymmetries,

e.g. for δJ <δ	′
−/3 j0, 	−(k; λ) �=0 in the region |Re(k)| �

k− and 0� Im(k)�k′′
−. Finally, for k such as |Re(k)| � k− and

0 � Im(k) � k′′
−, the same analysis as in Eq. (B2) shows that

k = iξ−1
N is the unique zero of 	−, which tends to the real axis

when λ→0.

b. Nonvanishing of �+ and D

We show that 	+ can not vanish in a given strip near the
real axis. Indeed, let us write

	+(k; λ) − λ = [	SYM
+ (k; λ) − λ] + D(k; λ) − 1

2 |Ĵ+−(k)|,
(B23)

where the first brackets of the right-hand side are
merely �J̄ (k) + j′0 + 1

2 |Ĵ+−(k)|. In the Brillouin zone,
	SYM

+ (k; λ) − λ never vanishes so that, thanks to Proposition
1, there exist some η and k+ such as, for |Re(k)| � π/a
and 0 � Im(k) � k+, one has |	SYM

+ (k; λ) − λ| > η, inde-
pendently of λ. Moreover, thanks to (B22), the bound δJ <

η/3 j0 implies that |	+(k; λ) − λ| never vanishes in the strip
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0 � Im(k) � k′
+, with k′

+ = inf (k+, k†), and so is the case also
for 	+(k; λ) when λ→0.

Concerning D(k; λ) and thanks to the extra condition (B15)
and (B16), one knows that Dc(k)≡D(k; λ=0, λ†

c ) never van-
ishes in the Brillouin zone, so that thanks to Proposition 1,
there exist some η and kD such as |Dc(k)| > η when |Re(k)| �
π/a and 0 � Im(k) � kD. Writing D − Dc = (λ† − λ†

c )[λ† +
λ†

c + 2�J†(k)], one can deduce

|D(k; λ)| � η − 6 j0δJ (λ† − λ†
c ), (B24)

valid for |Re(k)| � π/a and 0 � Im(k) � k′
D with k′

D ≡
inf (kD, k†); consequently, close enough from criticality,
D(k; λ) can not vanish in this region.

c. Behavior of GNN and GZZ

As a conclusion, when λ vanishes, the only singularity of
both GNN and GZZ in the strip |Re(k)|�π/a and 0� Im(k) �
inf (k′′

−, k′
+, k′

D) is linked to the vanishing of 	− which occurs
for k = iξ−1

N . Hence, in the asymmetric case, ξZ,∞ =ξN,∞ =ξN .

APPENDIX C: ALGEBRAIC SCREENING

In this Appendix, we use a diagrammatic analysis in order
to establish the algebraic screening present in a charged fluid
when at least one species correlation Gτυ behaves as 1/rd+σ

(being supposed that it is the leading algebraic decay among
all the Gτυ correlations). According to [46], we consider the
general decomposition

Gτυ (r) = GDH
τυ (r) +

∑
τ ′,υ ′

�DH
ττ ′ (r) ∗ Gnn

τ ′υ ′ (r) ∗ �DH
υυ ′ (r), (C1)

where GDH
τυ (r)=−βqτ qυρτρυφDH(r), with φ̂DH(k) =

4π/(k2 + ξ−2
D ), and where

�DH
ττ ′ (r) = δττ ′δ(r) + GDH

ττ ′ (r)/ρτ ′ . (C2)

The relation (C1) is proven thanks to a reorganization of
diagrams in such a way that the root points are attached or
not to a GDH bond. Hence, Gnn stands for the sum of all the
diagrams where the root points are not attached to a GDH bond,
while �DH is the charge density formed in the Debye-Hückel
approximation, by an external charge and its surrounding
screening cloud. We check the relation∑

τ

qτ�
DH
ττ ′ (k) = qτ ′SDH

ZZ (k), (C3)

where SDH
ZZ is given in Eq. (77), which states that in the Debye-

Hückel approximation, the total induced charge around an
external charge exactly compensates for it, as a consequence
of the external screening. Using (C3) in Eq. (C1), we find

GZZ (k) = GDH
ZZ (k) + k4(

k2 + ξ−2
D

)2 ∑
τ,υ

qτ qυGnn
τυ (k). (C4)

We suppose that one Gτυ (k) contains a nonanalyticity of
order kσ , which is the leading singularity present in all the
correlations. This is indeed the case in the spherical model
with 1/rd+σ interactions. Considering the Ursell functions
hτυ =Gτυ/ρτρυ , one can deduce the decomposition (see [46])

hτυ = hDH
τυ + hDH

ττ ′ ρτ ′ ∗ hn−
τ ′υ + hn−

τυ , (C5)

hn−
τυ = hnn

ττ ′ ∗ �DH
τ ′υ , (C6)

thanks to which hn− can be obtained in terms of h and
hnn in terms of hn−. We can then show that one Gnn

τυ must
contain a nonanalyticity of leading order kσ . Considering
(C4) where every Gnn

τυ is multiplied by k4, one concludes that
GZZ (r) behaves as 1/rd+σ+4 if no spurious extra cancellation
happens, while it decreases even faster if such an accidental
cancellation arises. The increase of +4 in the power law
of charge correlations compared to density correlations is
therefore a consequence of the external screening at stake in
both the system and in the Debye-Hückel limit.
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