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The nonstationary diffusion of particles in a medium with static random traps or sinks is considered. The
question of the self-averaging of the diffusion coefficient (or, equivalently, of the mean-square displacement) is
addressed for the fluctuation regime in the long-time limit. The property of self-averaging is needed for the result
of a single measurement to be representative and reproducible. It is demonstrated that the diffusion coefficient
of the surviving particles is a strongly non-self-averaging quantity: In a d-dimensional system its reciprocal
standard deviation grows with time exponentially ≈exp[constd,1t d/(d+2)]. The same result is reproduced in the
“normalized” formulation “per one survivor on average.” The case when all the particles, both the survivors
and the trapped ones, are contributing to the diffusion coefficient and its variance is considered also. Non-self-
averaging is demonstrated for this case as well, the fluctuations of the diffusion coefficient being of the same or-
der as its average value. The critical dimension, above which the mean-field result becomes exact, is infinite—due
to the drastic difference between the classes of trajectories, upon which the corresponding results are being built.
In high dimensions the strong non-self-averaging of survivors is preserved. For the case of all the particles taken
into account, the nonstrong non-self-averaging is retained for any finite dimension. However, for d → ∞ the
limiting value of the reciprocal standard deviation, calculated for all the particles, decreases to zero. This signifies
restoration of the self-averaging in some sense. In all the cases, the time evolution of the average characteristics
and of their variances is governed by the decaying concentration of the survivors in fluctuational cavities.
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I. INTRODUCTION

Diffusion or hopping transport of particles in a system with
random traps is quite a common problem in the kinetics of
condensed media and in chemical kinetics. Some examples
are exciton migration in molecular crystals, in amorphous
solids and in biological systems, sensitized luminescence
and photochemistry, conductivity of extrinsic semiconductors,
spin diffusion, kinetics of diffusion-controlled chemical reac-
tions, etc. [1–6].

Such processes are studied in the framework of chemical
kinetics (both classical and fluctuational) and of the stochastic
transport theory of disordered systems [1–38].

Diffusion with a chemical reaction (equivalent to trapping
by mobile sinks) has been considered by Smoluchowski [7].
This classical approach is in fact an approximation of mean-
field type and is accurate at short and intermediate time.
The corresponding long-time limit is of fluctuation nature. It
has been considered first within a nonperturbative approach
in Ref. [8]. The obtained decay of the concentration of the
surviving particles in the fluctuation regime at long time is
a stretched exponential function ≈exp[−constd,2t d/(d+2)]. It
has been proven to be exact in Refs. [8–11].

In a reversible chemical reaction [13] (trapping corre-
sponds to one of the components being frozen) the approach
to equilibrium at long time is of a slow power-law type
≈ (Dt )−d/2; see also Refs. [20–22].
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A diagram technique has been developed for exciton
migration in a solution with traps or sinks [14,15] and two-
and three-site self-consistent approximations of mean-field
type have been built. Hopping on a disordered chain in one
dimension has been studied rigorously [16,17]. A diverse
evolution in a system with diffusion, annihilation, and repro-
duction of particles has been examined [18,19].

The problem of particle migration on lattices with traps
of random positions and random depths has been studied in
detail on the basis of a constructed self-consistent cluster
effective-medium approximation [20–25]. The method proved
to be accurate in most limiting cases, except for the long-
time trapping by sinks [20]. The evolution of the averaged
parameters like the diffusion coefficient, ac conductivity, and
the averaged kinetics of relaxation of the spectral population
have been studied in detail.

Apart from the average kinetic characteristics, of con-
siderable interest is the study of the fluctuations of these
characteristics in disordered systems. These fluctuations come
from the sample-to-sample fluctuations and from the fluctua-
tions within the sample due to shifted initial positions. This
question is of importance, as the stability and reproducibility
of a single measurement relies on the decay of the fluctuations,
both in real-world experiments and in computer simulations.
To characterize the reproducibility and convergence of the
results the term “self-averaging” is used. It specifies the evo-
lution of the relative fluctuations of the measured quantity—
whether its dispersion in different realizations vanishes with
time or not. Self-averaging signifies that the reciprocal fluc-
tuations of the quantity tend to zero. Then in the long-time
limit the measurement in a single experiment produces a
representative result.
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The question of the self-averaging of the diffusion coef-
ficient in random-trapping transport has been addressed in
the nonstationary formulation within the master-equation ap-
proach in Refs. [16,22–25]. The change of the self-averaging
properties has been traced with the increase of the disor-
der (of the trap depth). In the regular regime of reversible
trapping, the diffusion coefficient has been found to be self-
averaging with a power-law decrease of the sample-to-sample
fluctuations. In the stronger disordered subdispersive and
dispersive regimes, the self-averaging slows down. For lower-
dimensional systems in the first place, self-averaging becomes
weak with a slow logarithmic decay of fluctuations. With
the subsequent increase of trap depths it occasionally turns
into non-self-averaging with nonvanishing sample-to-sample
fluctuations. The most disordered case of irreversible trapping
by infinitely deep traps has been studied in the regime of
intermediate-long-time asymptotics. The reciprocal sample-
to-sample fluctuations in this case do not decay in time in all
dimensions. This signifies non-self-averaging.

The only case that has not been studied within the approach
[20–25] corresponds to the long-time asymptotics for irre-
versible trapping, as the method becomes inaccurate in this
limit. To fill the gap that is left in the nearly complete picture,
we address the problem of self-averaging of the diffusion
coefficient in the long-time regime with traps or sinks in the
present study. To do that, we use a simple nonperturbative
approach, termed the “method of an optimal fluctuation (or
method of cavities)” [8,11,12]. This method has been proven
to provide exact exponential factors for the concentration of
particles in the problem of sinks [8–11].

In general, the problem of self-averaging has attracted
considerable attention lately [16,22–38]. Initially it has been
addressed for quantum disordered systems in the steady-
state regime (see [26] and references therein). In the quan-
tum steady-state context the self-averaging of a measurable
quantity is understood as the decay of its fluctuations in the
thermodynamic limit, as the system volume tends to infinity.
However, in nonstationary stochastic systems, considered in
the present paper, self-averaging is understood somewhat
differently—as vanishing of relative fluctuations with time, as
stated above.

In the stochastic formulation, the problem of self-averaging
has been addressed in a number of studies [16,22–25,27–38].
Within the master-equation approach to disordered systems,
it has been considered in Refs. [16,22]. Processes of spin
relaxation for random walks on disordered lattices have been
demonstrated to be self-averaging [27]. The spatial distribu-
tion function of diffusing particles in the presence of traps
has been analyzed [28] with the help of the Lifshits method
[26]. Directed percolation in a random medium is non-self-
averaging [29]. Occupation-time distribution for the diffusion
on a disordered chain demonstrates loss of self-averaging and
big sample-to-sample fluctuations [30]. Population kinetics
in some cases lacks self-averaging [31]. Stochastic processes
with power-law distributions may be non-self-averaging [32].
Certain classes of percolation models are non-self-averaging
[33]. Variance of the concentration of diffusing particles,
reversibly bound to reaction centers on long macromolecules
or on cell surfaces, has been calculated [34]. Certain bounded
quantities become non-self-averaging, when the correlation

length reaches the order of the size of the system [35]. First-
passage-time distribution in a disordered medium is sample
dependent and non-self-averaging [36]. Non-self-averaging
and ergodicity breaking in subdiffusion in quenched random
media have been investigated [37]. Conditions for the self-
averaging of the impurity-limited resistance in quasi-one-
dimensional nanowires have been found [38].

The goal of this paper is the theoretical study of the
self-averaging of the diffusion coefficient in nonstationary
processes in the presence of traps or sinks. The measure-
ments in the ensemble of samples with random traps or
sinks will produce close and reproducible results—or not?
If the fluctuations of the kinetic coefficients are large, will
they decay in time, and if so—which way? To answer these
questions we calculate and analyze the variance of the mean-
square displacement of the particles—as a function of time,
of the concentration of sinks, and of the dimensionality of
the system. Another goal of this study is to fill the gap in
the classification of self-averaging properties for the long-time
fluctuation regime with irreversible trapping, which could not
be considered with the help of the previous method [22–25].

II. MODEL

Let us consider particles that diffuse in a medium with
static traps or sinks. These can be quasiparticles in a solid,
chemical reactants in a solvent, etc. In this study, we consider
the case when the traps or the sinks have infinite “depth”;
i.e. they capture the particle irreversibly. We will use the
term “trap” for the case, when the particle, captured by the
trap, is still counted in the normalization of the probability
density. By the term “sink” we denote the case when the
particle captured vanishes from the norm. Thus, the difference
between traps and sinks is in the normalization of the particle
concentration. In the case of traps, we consider all the parti-
cles, both the survivors and the captured ones, and their total
concentration is always preserved. In the case of sinks, we
deal with the concentration of the surviving particles, which
decays in time.

The traps or sinks are distributed at random with concen-
tration c. The diffusion coefficient we denote by D. Upon
contacting a trap or sink, the particle gets trapped instantly.

We consider the nonstationary problem. At short and in-
termediate time the evolution is governed by the classical
chemical kinetics of Smoluchowski [7]. However, here we are
specifically interested in the long-time limit of the evolution—
the long-time fluctuation regime [8]. In this regime the re-
actants in the regions, where the components (the particles
and the sinks) are well mixed, have already vanished. The
particles survive in rare cavities, where accidentally there
happen to be no sinks. Within such cavities, the particles
diffuse relatively slowly and vanish only while reaching their
borders with sinks [8]. These rare occasional cavities build up
the average concentration and the mean-square displacement
of the survivors at long time. The rest of the space hardly
contains surviving particles. In the present study we neglect
the very rare intercavity transfers (cf. Ref. [28]).

Based on this picture, we calculate the variance of the
mean-square displacement. The reciprocal variance, as al-
ways, provides the measure of the fluctuations of the quan-
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tity under consideration. It gives the answer to the question
we are interested in—is the mean-square displacement of the
particles in the long-time fluctuation regime in the presence
of sinks a self-averaging quantity or not? In other words:
Are the fluctuations of the mean-square displacement com-
parable to (or even greater than) its average value? In such
a case, this quantity is non-self-averaging and it cannot be
reliably measured in a single experiment. Then special care
and excessive averaging in the ensemble have to be taken for
the study of the corresponding quantity.

III. METHOD AND SOLUTION

The picture, stated above, suggests the method of solution
[8–12]. It is often called the method of an optimal fluctuation
or the method of cavities.

We consider sink-free cavities, where the particles have
chances of survival at long time. The probability of the
formation of such a d-dimensional cavity of volume V ,
free of traps or sinks, is exp(−V c). The lowest mode in
volume V , that corresponds to the slowest long-time decay,
is in a spherical cavity—therefore we limit our consideration
to d-dimensional spheres. This approach provides a lower
estimate for the exact result. It has been demonstrated also
[8–11] that the value of the exponent of the concentration
of survivors, obtained within this approach in the long-time
limit, is exact. The correct form of the leading exponent is
sufficient for the determination of self-averaging or non-self-
averaging.

In such a spherical cavity the particles diffuse,

∂ρ(r, t )/∂t = D�ρ(r, t ), (1)

with absorption on the boundaries �,

ρ(r, t )|� = 0. (2)

The initial conditions correspond to one particle in a cavity,
positioned in its center. This is in line with the formulation
of Refs. [20–25]; its extension we are considering here. Dif-
ferently distributed initial conditions within the cavity would
modify the numerical coefficient in the preexponent of the
corresponding long-time asymptotics, which is not of great
importance for the consideration of self-averaging.

The solutions for the long-time asymptotics of the proba-
bility density ρ(r, t ) of the particles in a d-dimensional cavity
of radius R are

ρ(r, t → ∞) = 1

R
cos

(πr

2R

)
exp

(
−π2Dt

4R2

)
, d = 1, (3)

ρ(r, t → ∞) = 1

πR2J2
1 ( j0,1)

J0

(
j0,1r

R

)
exp

(
− j2

0,1Dt

R2

)
,

d = 2, (4)

ρ(r, t → ∞) = 1

2R2r
sin

(πr

R

)
exp

(
−π2Dt

R2

)
, d = 3,

(5)

where J0 is the Bessel function and j0,1 is the first zero of the
Bessel function of order zero.

In the next section, we consider first the case of surviving
particles in the problem of sinks. The quantities of interest are
the mean-square displacement of the survivors,

〈R2(t )〉 =
∫

V∞
dV c exp (−V c)

∫
V

dvr2ρ(r, t ), (6)

and its variance,

Var[R2(t )] =
∫

V∞
dV c exp(−V c)

[∫
V

dvr2ρ(r, t )

]2

−
[∫

V∞
dV c exp(−V c)

∫
V

dvr2ρ(r, t )

]2

. (7)

The second integration in Eqs. (6) and (7) over the possible
sizes of the cavities extends to the entire space V∞.

As always, the mean-square displacement measures the
spreading of the particle. Its reciprocal standard deviation
(square root of the variance, divided by the average value)
measures the relative fluctuations of this spreading. As the
number of surviving particles in the present formulation is
not conserved, both the mean-square displacement (6) and its
variance (7) decay in time.

The use of a non-normalized probability density ρ(r, t ) in
Eqs. (6) and (7) poses no problem. One can consider the total
probability density in a cavity ρ� (r, t ) = ρ(r, t ) + ρtr (r, t ),
normalized to 1, where ρ(r, t ) refers to survivors, as above,
while ρtr (r, t ) is for trapped particles. The contribution of sur-
vivors to 〈R2(t )〉 is ∼r2; the contribution of trapped particles
in this case is 0. The calculation of this partial mean-square
displacement leads back to (6) and (7).

Another measure of the spreading and of the fluctuations of
the surviving particles can be adopted as well. It addresses the
problem from the point of view of the diffusion coefficient
as the characteristic of a single particle. Then the mean-
square displacement and its variance are calculated “per one
survivor” ([28] and references therein). In this case the prob-
ability density of the contributing particles is renormalized at
any given moment of time to provide the constant norm of
survivors, equal to 1. Such a “normalization” of the density
function per one survivor can be provided in two ways;
cf. [28].

In the first way the norm is calculated over all the possible
cavity sizes. It is equivalent to averaging over realizations or
to the integration over the entire volume with different starting
positions. In our case, it leads to summation over independent
cavities with a Poisson distribution. Thus, the density function
(3)–(5) is multiplied by the inversed average survival probabil-
ity of a particle in the system. This normalization coefficient
is the same for all the realizations:

ρn1(r, t ) = ρ(r, t )

[∫
V∞

dV c exp (−V c)
∫

V
dvρ(r, t )

]−1

. (8)

The norm of Eq. (8) over all the realizations is 1 at any time.
In the second way the density is normalized prior to

averaging, within one realization. As we neglect intercavity
transfers, the cavities are decoupled and the normalization
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proceeds independently within each cavity of radius R:

ρn2(r, R, t ) = ρ(r, t )

[∫
V

dvρ(r, t )

]−1

. (9)

Thus, the norm of ρn2(r, R, t ) in a cavity R is always 1 at any
time.

The two corresponding normalized results are discussed
and compared to the previous formulation in the next section.

Of interest also is the problem of irreversible trapping with
the account of all the particles, both the survivors and the
trapped ones. The corresponding mean-square displacement
we mark by a tilde to distinguish it from (6) and (7):

〈R̃2(t )〉 =
∫

V∞
dV c exp (−V c)

[
R2 −

∫
V

dvρ(r, t )(R2 − r2)

]
. (10)

The first term in the square brackets is the long-time limit, when all the particles get trapped on the surface of the cavity
at radius R. The second is the transition term at time t . The total number of particles within the cavity, both survivors and the
trapped ones, is preserved at all times, as we neglect intercavity transfer. Consequently, no normalization procedure is applicable
in this case.

The variance of the mean-square displacement, calculated for all the particles, is

Var[R̃2(t )] =
∫

V∞
dV c exp(−V c)

[
R2 −

∫
V

dvρ(r, t )(R2 − r2)

]2

−
{∫

V∞
dV c exp(−V c)

[
R2 −

∫
V

dvρ(r, t )(R2 − r2)

]}2

. (11)

In Eq. (11), the first term is the mean square of the square
displacement. The second term is the mean-square displace-
ment squared.

We note that the consideration of all the particles, (10) and
(11), is the direct extension of our study in Ref. [25] to the
present case of infinite trap depth. The true long-time asymp-
totics in this particular case could not be calculated there
because of the limitations of the effective-medium approxi-
mation. The present nonperturbative study fills the last gap in
the picture of self-averaging, presented there. With this study,
the classification of self-averaging for all the possible cases,
as the disorder strength increases from regular to irreversible
trapping, on a qualitative level becomes complete.

IV. RESULTS AND DISCUSSION

First, we consider the case when only the surviving par-
ticles contribute to the concentration and to the mean-square
displacement. The trapped particles are disregarded and van-
ish from the normalization of the probability density.

A. Survivors: Results

The calculation of the reciprocal standard deviation of the
mean-square displacement, (6) and (7), at long time c2/d Dt �
1 with the account of Eqs. (3)–(5) provides the following
result:

Var1/2[R2]

〈R2〉 = Ad

(c2/d Dt )d/(4d+8) exp
[
Bd (c2/d Dt )

d/(d+2)]
,

(12)
where the numerical coefficients are

A1 = 2−1/1231/4π−5/12, B1 = 2−4/3(22/3−1)3π2/3, d = 1,

(13)

A2 = 25/8π−3/8 j0,1
−1/4, B2 = (2 −

√
2)π1/2 j0,1, d = 2,

(14)

A3 = 2−11/2051/4π−13/20, B3 = 3−1(22/5−1)5π8/5, d = 3.

(15)

At long time the factor c2/d Dt is the big dimensionless
parameter of the problem.

The average value of the mean-square displacement (6) at
long time c2/d Dt � 1, calculated in a similar way with the
help of Eqs. (3)–(5), is

〈R2〉 = A′
d c−2/d (c2/d Dt )(d+4)/(2d+4)

× exp
[−B′

d (c2/d Dt )
d/(d+2)]

. (16)

The numerical coefficients in Eq. (16) are

A′
1 = 27/3(π2 − 8)

31/2π5/6
, B′

1 = 3π2/3

22/3
, d = 1, (17)

A′
2 = 2π1/4

j0,1
1/2J2

1 ( j0,1)
[2J2( j0,1) − j0,1J3( j0,1)],

B′
2 = 2π1/2 j0,1, d = 2, (18)

A′
3 = 214/5(π2 − 6)

51/2π3/10
, B′

3 = 22/55π8/5

3
, d = 3. (19)

In one dimension the calculation and the results (12) and
(13), and (16) and (17), are exact. In higher dimensions the
long-time asymptotics (12), (14), and (15), and (16), (18), and
(19), are calculated exactly within the approximate method of
cavities. The leading exponents Bd , B′

d in (12) and (16) for
d > 1 are believed to be exact irrespective of the approxima-
tion of cavities.

B. Survivors: Discussion

Let us analyze the obtained results (12) and (16). Clearly,
the expression (12) for the reciprocal standard deviation of
the mean-square displacement signifies non-self-averaging.
More to the point, this is strong non-self-averaging—
exponential. The fluctuations grow with respect to the average
value of the mean-square displacement up to infinity—as
exp[B1(c2Dt )1/3] in one dimension, as exp[B2(cDt )1/2] in 2D,
and as exp[B3(c2/3Dt )

3/5
] in 3D.
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In lower dimensions the relative fluctuations (12)–(15)
are smaller and grow slower than in higher dimensions. The
absolute values of the fluctuations (12) with the account of
Eq. (16),

Var1/2[R2] = Ad A′
d Dt (c2/d Dt )−3d/(4d+8)

× exp
[−(B′

d − Bd )(c2/d Dt )
d/(d+2)]

, (20)

in lower dimensions are bigger and decay slower.
As noted above, the asymptotics for the survival probabil-

ity Ps(t ), obtained with the method of cavities,

〈Ps(t )〉 = A′′
d (c2/d Dt )d/(2d+4) exp

[−B′′
d (c2/d Dt )

d/(d+2)]
,

(21)
reproduce the exact stretched exponentials [8–11]. This fact
provides good grounds for the belief that the exponents (12),
(16), and (20) should be exact as well.

The unbounded growth of the reciprocal fluctuations (12),
for sure, does not signify any divergence of any actual char-
acteristic. In fact, both the standard deviation (20) and the
average value (16) of the mean-square displacement of the
survivors are extremely small and decay further in the fast
exponential way. It is only their ratio that grows exponentially.

Both the average value (16) and the standard deviation
(20) of the mean-square displacement are governed by the
exponential terms. These originate from the concentration
of the surviving particles. The R2 factor contributes to the
preexponential term only.

A simple qualitative interpretation of these results can be
provided. The correlators 〈(R2)2〉 and 〈R2〉2 in the variance
are integrals with the local density function. In the difference
〈(R2)2〉 − 〈R2〉2, the small exponential factor of the concentra-
tion enters the first term linearly, while in the second term it is
squared. Therefore 〈R2〉2 is negligible in the long-time leading
term of the variance. Thus, in the reciprocal standard deviation
the numerator 〈(R2)2〉1/2 effectively comprises the square root
of the “stretched exponential” factor of the concentration. At
the same time, the denominator 〈R2〉 is linear in it. The result
is the positive growing exponent (12) with the coefficient Bd

that comprises the difference of the corresponding factors.

C. All particles: Results

Next, we consider the case when all the particles, both the
survivors and the trapped ones, contribute to the mean-square
displacement and to its reciprocal variance.

The calculation of the reciprocal standard deviation of the
mean-square displacement (10), (11) at long time c2/d Dt � 1
with the account of all the particles produces the following
result:

Var1/2[R̃2]/〈R̃2〉 = C̃d
{
1 − Ãd (c2/d Dt )

(d+8)/(2d+4)

× exp
[−B̃d (c2/d Dt )

d/(d+2)]}
. (22)

In Eq. (22) we made use of (3)–(5). The numerical coeffi-
cients in (22) we mark with a tilde as well to distinguish them

from (12)–(21):

Ã1 = 263−1/25−1π1/2, B̃1 = 2−2/33π2/3,

C̃1 =
√

5, d = 1, (23)

Ã2 = 4π7/4 j0,1
1/2J−2

1 ( j0,1)J2( j0,1), B̃2 = 2π1/2 j0,1,

C̃2 = 1, d = 2, (24)

Ã3 = 261/1535/3π43/30

51/2[�(1/3) − �2(2/3)]
, B̃3 = 22/55π8/5

3
,

C̃3 =
[

�(1/3)

�2(2/3)
− 1

]1/2

, d = 3. (25)

The expression of the mean-square displacement (10) at
long time c2/d Dt � 1 is calculated in a similar way with the
help of Eqs. (3)–(5):

〈R̃2〉 = C̃′
d c−2/d

{
1 − Ã′

d (c2/d Dt )
(d+4)/(2d+4)

× exp
[−B̃′

d (c2/d Dt )
d/(d+2)]}

. (26)

The numerical coefficients in Eq. (26) are

Ã′
1 = 219/33−1/2π−5/6, B̃′

1 = 3π2/32−2/3,

C̃′
1 = 1/2, d = 1, (27)

Ã′
2 = 22π5/4 j−1/2

0,1 J−2
1 ( j0,1)J2( j0,1), B̃′

2 = 2π1/2 j0,1,

C̃′
2 = 1/π, d = 2. (28)

Ã′
3 = 262/1534/3π11/30

51/2�(2/3)
, B̃′

3 = 22/55π8/5

3
,

C̃′
3 = �(2/3)

61/3π2/3
, d = 3. (29)

The one-dimensional results (22) and (23), and (26) and
(27), are exact. The long-time asymptotics in higher dimen-
sions (22), (24), and (25), and (26), (28), and (29) are calcu-
lated exactly within the approximate method of cavities. The
exponents B̃d , B̃′

d , d > 1 are supposedly exact.

D. All particles: Discussion

Let us analyze the reciprocal standard deviation (22). Its
long-time limit is a numerical constant C̃d . This fact signi-
fies non-self-averaging. However, in contrast to the case of
survivors (12), this non-self-averaging is not a strong one.
The previously considered survivors are the most fluctuating
part of the concentration—their reciprocal variance grows
exponentially. In the present case of all particles accounted
for, the major part of the concentration is the regular one—
the particles trapped. However, this regular component of
the concentration got trapped on the surface of cavities of
varying sizes. The result is the constant value of the reciprocal
standard deviation in the long-time limit due to geometrical
reasons. The magnitude of the fluctuations of the mean-square
displacement is of the same order as its average value.

We note that the long-time limiting values C̃d of the
reciprocal standard deviation decay with the increase of the
dimension: 2.23 · · · in one dimension, 1 in two dimensions,
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and 0.67 · · · in three dimensions. The fluctuations of the
mean-square displacement with respect to its average value
get smaller in higher dimensions, as expected; the absolute
fluctuations do as well. The difference with the previously
considered case of survivors comes from the different role
and different contributions of the fluctuating and of the regular
components of the concentration.

It should be noted that the limiting values C̃d of
Var1/2[R̃2]/〈R̃2〉 for dimensions higher than 1 are approxima-
tion dependent. A better account of the possible geometry of
cavities will produce a somewhat different constant for C̃d . As
before, the one-dimensional case is solved exactly.

The second term in curly braces (22) is the transition
term. The reciprocal fluctuations of the mean-square displace-
ment of all the particles at long time reach the constant
limiting value C̃d according to a stretched exponential law.
The stretched exponential transition is typical for fluctuation-
produced asymptotics.

As noted above, the fact that the method of cavities pro-
duces the exact exponent for the concentration of surviving
particles suggests that the stretched exponents in (22) and (26)
should be exact as well.

The present results, (22) and (26), complete the picture
of self-averaging of the diffusion coefficient, addressed in
[16,22–25] in the formulation of all the particles taken into
account. Different cases that correspond to the qualitative
increase of trap depths have been studied. Those started with
regular reversible trapping by traps of limited depth, through
the stronger disordered subregular, subdispersive, and dis-
persive cases, and up to irreversible trapping. Self-averaging
started correspondingly from regular power-law decay of fluc-
tuations, through the weak self-averaging with a logarithmic
decay, and up to non-self-averaging, when the fluctuations
are of the same order as the average value. The peculiarity
of the irreversible case, studied there, is that the variances
were calculated as the intermediate-long-time asymptotics.
The true long-time asymptotics could not be found there
due to the limitations of the effective-medium approximation.
For the true long-time asymptotics a suitable nonperturbative
treatment was required. The present study fills that gap.

The intermediate-long-time asymptotics [25] and the true
long-time asymptotics (22) do not overlap, but complement
each other. In doing so they agree qualitatively—in both
cases the reciprocal standard deviation of the mean-square
displacement tends to a constant. Both asymptotics reveal
fluctuations of the mean-square displacement of the same
order, as its average value. We note also that these two values
do not have to coincide—(a) because of the different time
intervals and (b) because of the approximate nature of both
methods. These solutions, in fact, are built largely on different
classes of trajectories, as discussed below.

E. Normalized survivors: Results and discussion

Next, we address the commonly considered normalized
cases (8) and (9) (see, for example, [28] and references
therein).

The first case is the normalization over all realizations—
over the cavity sizes (8). The mean-square displacement,
normalized “per one survivor in the system on average” is
calculated with the use of (6) and (8). It is a power-law

function of time [11]:

〈R2〉n1 = C′′
d (Dt/c)2/(d+2). (30)

Due to the normalization (8) it contains no exponential fac-
tor that otherwise would come from the survival probability;
cf. (16).

In the reciprocal standard deviation, the normalization
factor in the square brackets of (8) enters linearly both the
numerator and the denominator. Due to its cancellation, the
resulting expression of the normalized reciprocal standard
deviation per one survivor in the system on average coincides
exactly with the previous formulas (12)–(15). Therefore, the
discussion of the reciprocal standard deviation for survivors
remains valid in this case as well.

In short, the normalized mean-square displacement per one
survivor in the system on average (8) is a strongly non-self-
averaging quantity (12).

It should be noted, however, that this normalization is not
quite satisfactory physically, as the normalization coefficient
(the inversed survival probability) in (8) is not a self-averaging
quantity. Therefore, strictly speaking, the density function (8)
should be normalized for each realization separately with the
corresponding realization-specific normalization coefficient
and not with its average value [28].

Next we go over to the normalization of the second type.
It is the normalization within a single sample—in each cav-

ity (9). The reciprocal standard deviation of the mean-square
displacement, (6) and (7), calculated with the normalized
density function (9) “per one survivor in a single sample prior
to averaging” in the long-time limit tends to a constant:

Var1/2[R2]n2/〈R2〉n2 = Cn2,d . (31)

The long-time limit of the normalized standard deviation
(31) coincides exactly with the long-time limit for the case
of all the particles taken into account, (22)–(25), Cn2,d = C̃d .
The identical coefficients C̃d and Cn2,d are determined by
the geometry and the statistics of the cavities and not by the
kinetics.

The normalized mean-square displacement, (6) and (9), at
long time tends to a constant as well:

〈R̃2〉 = C′
n2,d c−2/d . (32)

Equations (31) and (32) would signify non-self-averaging
of the survivors, normalized per one survivor in a single
sample prior to averaging. However, no conclusions from (31)
and (32) can be derived, as this kind of normalization becomes
invalid in the present formulation (cf. Ref. [28]).

The reason for it is the following. In our approach the
intercavity transfers are neglected; the cavities are decoupled.
Therefore, the normalization procedure (9) takes place not
in the entire space of one sample, but within one cavity of
some radius. Thus, cavities of different sizes get different
normalization coefficients and this deteriorates their relative
contributions to the final result. Smaller cavities at long time
are overestimated as compared to bigger ones. Therefore,
the reciprocal fluctuations at long times are underestimated
considerably; cf. (12) and (31). The fluctuation mechanism
was built on the interplay of the bigger survival probability
in bigger cavities versus their smaller statistical weight. The
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normalization procedure (9) in the case of decoupled cavities
eliminates the first effect.

If other independent cavities are added to the normalization
within one sample, then the procedure effectively becomes
that of the previous type (8).

We note that there is no problem of such kind in the general
case [28] with intercavity transfer. With cavities connected,
the integration in (9) goes over the entire space of one sample.
Consequently, all the participating cavities get the same nor-
malization coefficient

∫
V∞

ρ(r, t )dr within one configuration
of random traps or sinks. Therefore, the relative contributions
of cavities of different radii are accounted for correctly. In the
general case, the density function ρn2 is normalized to 1 in the
entire space of connected cavities within one realization. The
cavity sizes in an infinite system cover the entire spectrum and
the normalization is provided per one survivor in one sample
prior to averaging over the random positions of the traps.

F. Higher dimensions: Average characteristics

Let us consider the higher-dimensional cases, average char-
acteristics first.

The long-time fluctuation asymptotics of the
averaged quantities for survivors are of the form
≈exp[−constd,3t d/(d+2)]. The corresponding mean-field-type
results are ≈exp[−constd,4t]. The comparison of the two
leads to the conclusion that the critical dimension, above
which the mean-field result becomes exact, in this case is
infinite.

Obviously, this is due to the difference of the classes of
trajectories, upon which the corresponding results are being
built. For the self-consistent effective-medium approxima-
tion [20–25], these are non-all-self-intersecting trajectories—
those that contain at least one site, visited only once. The
fluctuation asymptotics, on the contrary, are formed by
the trajectories, which wind densely at long time within the
cavities, and, therefore, late enough, become typically all-
self-intersecting. Thus, there is no finite dimension, where
the class of trajectories that support the mean-field result
would essentially coincide with the class of trajectories for
the fluctuation asymptotics. These classes are to a large extent
complementary. However, the increase of the dimension helps
the trajectories to avoid self-intersections at every site visited
and this somehow improves the mean-field picture of the
fluctuation regime.

In other words, the uniform medium is not a good zero-
order approximation for the long-time fluctuation regime in
the presence of sinks in any finite dimension—when the
system effectively splits into rare isolated cavities—up to d =
∞. Therefore the critical dimension of the system is infinite.

We note also that the order in which the limits (long-
time versus high dimensions) are calculated is of importance.
Obviously, it is physically relevant to choose the dimension
d and fix it, and to consider the long-time limit c2/d Dt � 1
after that. The high-d case can be studied as well with the
assumption that the parameter c2/d Dt is the biggest.

G. Higher dimensions: Self-averaging, survivors

Next, let us consider the self-averaging in higher dimen-
sions.

The spherically symmetric solution of (1) and (2) in d
dimensions at long time c2/d Dt � 1 is

ρ(r, t → ∞) = Kd R− d+2
2 r− d−2

2 J d−2
2

(
j(d−2)/2,1r

R

)

× exp

(
− j2

(d−2)/2,1Dt

R2

)
, (33)

where j(d−2)/2,1 is the first zero of the Bessel function J(d−2)/2

and the coefficient Kd is solely a function of the dimension d .
The mean-square displacement (6) of survivors in d dimen-

sions at long time is calculated as

〈R2〉 = constd,5c− 2
d
(
c

2
d Dt

) d+4
2(d+2)

× exp

[
−d + 2

d

(
1

2
�d jd

d−2
2 ,1

) 2
d+2 (

c
2
d Dt

) d
d+2

]
, (34)

where �d = 2πd/2�−1(d/2) is the d-dimensional spherical
angle and the numerical constant constd,5 is function of di-
mension only.

The expression of the mean-square displacement (34) is
valid for any d . The exponent and the prefactor are calculated
exactly up to an unspecified numeric coefficient constd,5

within the approximate method of cavities. As noted before,
the exponent in (34) is supposed to be exact without recourse
to the cavities approximation. The entire expression (34),
certainly, agrees with the previous formula (16) up to the
numeric coefficient A′

d .
The mean-square displacement (34) decays in time as a

stretched exponential in any dimension. This originates from
the decay of the survival probability.

In the limit of high dimensions d � 1 the modulus of the
exponent in (34) grows linearly with d:

〈R2〉 = constd,5c− 2
d
(
c

2
d Dt

)1/2
exp

[
−πed

2
c

2
d Dt

]
. (35)

In higher dimensions, the decay (35) in the parameter
c2/d Dt is faster. This is due to the lower probability of the
formation of big cavities with the growing dimension.

The reciprocal standard deviation is calculated with the
help of (6), (7), and (33):

Var1/2[R2]

〈R2〉 = constd,6
(
c

2
d Dt

)− d
4(d+2)

× exp

[(
1 − 2− 2

d+2
)
(d + 2)

d

(
1

2
�d jd

d−2
2 ,1

) 2
d+2 (

c
2
d Dt

) d
d+2

]
.

(36)

The formula (36) for the reciprocal standard deviation is
valid for any d in the long-time domain c2/d Dt � 1. The
entire expression (36), except for the unspecified numerical
constant constd,6, is exact within the approximate method of
cavities. As before, the exponent in (36) is supposedly exact
without recourse to the approximation of cavities. The entire
expression (36), certainly, agrees with the previous formula
(12) up to the numeric coefficient Ad .
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The reciprocal standard deviation (36) signifies strong
non-self-averaging in any dimension. The relative fluctuations
grow as a stretched exponential. As before, both the standard
deviation and the mean-square displacement decay to zero
with different exponents, and it is only their ratio (36) that
grows. The evolution of these quantities is governed by the
decay of the survival probability density in the cavities of
varying sizes.

In the high-dimension limit d → ∞, the reciprocal stan-
dard deviation (36) takes a simpler form:

Var1/2[R2]/〈R2〉 ≈ constd,6(c2/d Dt )−1/42πec2/d Dt . (37)

For survivors in infinite dimensions the self-averaging is
not restored. The reciprocal fluctuations (37) grow exponen-
tially with time, and this signifies strong non-self-averaging.

As d → ∞ the stretched exponential in (36) grows into a
somewhat faster usual exponent (37) in c2/d Dt , as it usually
is in the problem of sinks. As for the d dependence, the
limiting expression (37) reveals no significant dependence
on dimension d . In infinite dimensions, the strong non-self-
averaging of survivors is preserved.

H. Higher dimensions: Self-averaging, all particles

The mean-square displacement (10) of all the particles,
both the survivors and the trapped ones, in d dimensions at
long time c2/d Dt � 1 is calculated with the help of (33)

〈R2〉 = 2(d−2)/d�(2/d )�2/d (d/2)

πd (d−2)/d c2/d

{
1 − constd,7

(
c

2
d Dt

) d+4
2(d+2)

× exp

[
−d + 2

d

(
1

2
�d jd

d−2
2 ,1

) 2
d+2 (

c
2
d Dt

) d
d+2

]}
. (38)

In the long-time limit, the mean-square displacement (38)
tends to a constant, as all the particles stick to the boundary of
the cavities. The transition term is a stretched exponential.

Both terms in (38) are calculated exactly within the
approximate method of cavities, the second term—up to
the unspecified numeric prefactor constd,7. The exponent of
the transition term is supposed to be exact irrespective of
the approximation of cavities. The entire expression (38)
agrees with the previous results (26)–(29) up to the numeric
coefficient Ã′

d .
In the high dimension limit d � 1, the formula (38) takes

a simpler form:

〈R2〉 ≈ d

2πec2/d

{
1 − constd,7

(
c

2
d Dt

) 1
2 exp

[
−πed

2
c

2
d Dt

]}
.

(39)

The limiting value of the mean-square displacement in high
dimensions is linear in d . This proportionality is of the same
kind as in the usual case 〈R2〉 = 2dDt . The dimensional factor
in (39), as before, scales with trap concentration as c−2/d . The
exponent of the transition term for high dimensions becomes
linear in d as well. The decay of the transition term in t is
faster for higher dimensions. This is explained by the lower
probability of the formation of big cavities.

The reciprocal standard deviation is calculated with the
help of (10), (11), and (33):

Var1/2[R2]

〈R2〉

=
[

d�

(
4

d

)
�−2

(
2

d

)
− 1

]1/2

− constd,8
(
c

2
d Dt

) d+8
2(d+2)

× exp

[
− (d+2)

d

(
1

2
�d jd

d−2
2 ,1

) 2
d+2 (

c
2
d Dt

) d
d+2

]
. (40)

Equation (40) was calculated exactly within the approx-
imate method of cavities. The second transition term has
been found up to an unspecified coefficient constd,8, which
is solely a function of dimension d . The stretched exponent
of the transition term should be exact irrespective of the
approximation of cavities. The entire expression (40) agrees
with the previously found particular cases (22)–(25) up to the
factor Ãd .

At long time in any finite dimension d , the reciprocal
standard deviation (40) tends to a constant. This signifies
non-self-averaging, not a strong one. In the general case,
the particular value of this constant in the long-time limit
depends upon the adopted approximation for the shape and
size distribution of the cavities.

An interesting question is whether the conclusion on non-
self-averaging changes in the limit of infinite dimensions or
not. For high values of d the expression (40) takes a simple
form:

Var1/2[R2]

〈R2〉 ≈
√

2π√
3d

− constd,8
(
c

2
d Dt

) 1
2 exp

[
−πed

2
c

2
d Dt

]
.

(41)

The limiting value of the reciprocal standard deviation
decreases to zero as d−1. It means that, although in any finite
dimension the mean-square displacement of all the particles
is a non-self-averaging quantity, in the limit of infinite dimen-
sions self-averaging is restored in some sense.

With the increasing dimension, the reciprocal standard
deviation becomes smaller. On a qualitative level, in the limit
of infinite dimensions the fluctuating system becomes more
“regular.” The zero limit of the reciprocal standard deviation
signifies some kind of restored self-averaging.

The decrease of the high-d limit (40) is in line with the
corresponding decrease for the cases d = 1, 2, 3, considered
in (22)–(25) and discussed there.

We note also that in the case of survivors (37), the self-
averaging was not restored in the limit of infinite dimensions.
There the exponentially growing reciprocal standard deviation
was formed by the most fluctuating part of the particles—the
survivors. The “regularizing” effect of infinite dimensions
was not enough to overcome the exponentially increasing
reciprocal fluctuations.

In the case of all the particles accounted for, the major
part of those, the trapped ones, forms the regular compo-
nent. These particles produce nonstrong non-self-averaging.
This “weaker” non-self-averaging can indeed be overcome
by the “regularizing influence” of the growing dimension,
d → ∞ (41).
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It should be noted also that the onset time for the fluctua-
tion regime with the increasing dimension d slowly decreases
as t f ≈ D−1c−2/d . Therefore, the time range for the cited fluc-
tuation asymptotics exists in all the cases considered above.

V. CONCLUSIONS

The main results of the paper are the following.
The mean-square displacement of surviving particles is

strongly non-self-averaging. Its reciprocal fluctuations grow
as a stretched exponential (12)–(15).

The mean-square displacement of all the particles, both
the survivors and the trapped ones, is also non-self-averaging.
This non-self-averaging, however, is not a strong one–the
reciprocal fluctuations tend to a constant (22)–(25). The tran-
sition proceeds via a stretched exponential.

The formulation of self-averaging normalized “per one
survivor in the system on average” is equivalent to the result
for survivors and corresponds to strong non-self-averaging,
(12)–(15).

The normalization “per one survivor in a sample prior
to averaging” in the case of decoupled cavities is irrelevant
[Eqs. (31) and (32) and the subsequent discussion].

The critical dimension in the problem of sinks is infinite
due to the drastic difference between the classes of trajectories

upon which the effective-medium and the fluctuational results
are being built.

In higher dimensions, the strong non-self-averaging of
survivors is preserved, (36) and (37).

For the case of all the particles taken into account, the
nonstrong non-self-averaging diminishes with the increasing
dimension (40) up to restoration of the self-averaging in some
sense for d = ∞ (41).

In all the cases, the non-self-averaging signifies the poor
measurability and reproducibility of results in single mea-
surements due to large fluctuations, both in real-world exper-
iments and in computer simulations.

These results complete the entire picture of the self-
averaging in the random-trapping problem, a function of the
increasing disorder (trap depth) that ranges from the regular
regime to irreversible trapping, started in [16,22–25].

The consideration of the self-averaging of the survival
probability of particles and of some other related quantities
we will provide in a future publication.

ACKNOWLEDGMENTS

The author thanks Professor P. V. Elyutin and Dr. V. V.
Atrazhev for stimulating discussions.

[1] A. A. Ovchinnikov, S. F. Timashev, and A. A. Belyy, Kinet-
ics of Diffusion-Controlled Chemical Processes (Nova Science
Publishers, Hauppauge, NY, 1989).

[2] V. M. Kenkre and P. Reineker, Exciton Dynamics in Molecular
Crystals and Aggregates (Springer, Berlin, 1982), p. 111.

[3] S. Havlin and D. Ben-Avraham, Adv. Phys. 51, 187
(2002).

[4] J. Rudnick and G. Gaspari, Elements of the Random Walk: An In-
troduction for Advanced Students and Researchers (Cambridge
University Press, Cambridge, 2004).

[5] P. Krapivsky, S. Redner, and E. Ben-Naim, A Kinetic View of
Statistical Physics (Cambridge University Press, Cambridge,
2010).

[6] K. A. Pronin, Statistical Mechanics and Random Walks: Prin-
ciples, Processes and Applications (Nova Science Publishers,
Hauppaugue, NY, 2013), p. 613.

[7] M. V. Smoluchowski, Z. Phys. 17, 557 (1916).
[8] B. Ya. Balagurov and V. G. Vaks, Zh. Eksp. Teor. Fiz. 65, 1939

(1973) [Sov. Phys. JETP 38, 968 (1974)].
[9] A. A. Ovchinnikov and Ya. B. Zeldovich, Chem. Phys. 28, 215

(1978).
[10] M. D. Donsker and S. R. S. Varadhan, Commun. Pure Appl.

Math. 32, 721 (1979).
[11] P. Grassberger and I. Procaccia, J. Chem. Phys. 77, 6281 (1982).
[12] B. Meerson, P. V. Sasorov, and A. Vilenkin, J. Stat. Mech.

(2018) 053201.
[13] Ya. B. Zeldovich and A. A. Ovchinnikov, Zh. Eksp. Teor. Fiz.

74, 1588 (1978) [Sov. Phys. JETP 47, 829 (1978)].
[14] С. H. Gochanour, H. C. Andersen, and M. D. Fayer, J. Chem.

Phys. 70, 4254 (1979).
[15] R. F. Loring, H. C. Andersen, and M. D. Fayer, J. Chem. Phys.

76, 2015 (1982).
[16] K. A. Pronin, Sov. J. Theor. Math. Phys. 61, 1249 (1984).

[17] V. N. Prigodin, Zh. Eksp. Teor. Fiz. 88, 909 (1985) [Sov. Phys.
JETP 61, 534 (1985)].

[18] S. F. Burlatskii, A. A. Ovchinnikov, and K. A. Pronin, Zh. Eksp.
Teor. Fiz. 92, 625 (1986) [Sov. Phys. JETP 65, 353 (1987)].

[19] S. F. Burlatskii and K. A. Pronin, J. Phys. A 22, 531 (1989).
[20] A. A. Ovchinnikov and K. A. Pronin, Zh. Eksp. Teor. Fiz. 88,

921 (1985) [Sov. Phys. JETP 61, 541 (1985)].
[21] A. A. Ovchinnikov and K. A. Pronin, J. Phys. C 18, 5391

(1985).
[22] K. A. Pronin, Physica B (Amsterdam, Neth.) 141, 76 (1986).
[23] K. A. Pronin, Russ. J. Phys. Chem. B 3, 309 (2009).
[24] K. A. Pronin, Russ. J. Phys. Chem. B 10, 327 (2016).
[25] K. A. Pronin, Phys. Rev. E (to be published).
[26] I. M. Lifshits, S. A. Gredeskul, and L. A. Pastur, Introduction

to the Theory of Disordered Systems (Wiley, New York, 1988).
[27] J. Köhler and P. Reineker, Chem. Phys. 146, 415 (1990).
[28] D. H. Dunlap, R. A. LaViolette, and P. E. Parris, J. Chem. Phys.

100, 8293 (1994).
[29] A. Hansen and J. Kertesz, Phys. Rev. E 53, R5541 (1996).
[30] S. N. Majumdar and A. Comtet, Phys. Rev. Lett. 89, 060601

(2002).
[31] M. Serva, Physica A (Amsterdam, Neth.) 332, 387 (2004).
[32] B. Bassetti, M. Zarei, M. Cosentino Lagomarsino, and G.

Bianconi, Phys. Rev. E 80, 066118 (2009).
[33] O. Riordan and L. Warnke, Phys. Rev. E 86, 011129 (2012).
[34] A. M. Berezhkovskii and A. Szabo, J. Chem. Phys. 139, 121910

(2013).
[35] A. Efrat and M. Schwartz, Physica A (Amsterdam, Neth.) 414,

137 (2014).
[36] L. Luo and L.-H. Tang, Phys. Rev. E 92, 042137 (2015).
[37] M. Dentz, A. Russian, and P. Gouze, Phys. Rev. E 93,

010101(R) (2016).
[38] N. Sano, Solid-State Electron. 128, 25 (2017).

052144-9

https://doi.org/10.1080/00018730110116353
https://doi.org/10.1080/00018730110116353
https://doi.org/10.1080/00018730110116353
https://doi.org/10.1080/00018730110116353
https://doi.org/10.1016/0301-0104(78)85052-6
https://doi.org/10.1016/0301-0104(78)85052-6
https://doi.org/10.1016/0301-0104(78)85052-6
https://doi.org/10.1016/0301-0104(78)85052-6
https://doi.org/10.1002/cpa.3160320602
https://doi.org/10.1002/cpa.3160320602
https://doi.org/10.1002/cpa.3160320602
https://doi.org/10.1002/cpa.3160320602
https://doi.org/10.1063/1.443832
https://doi.org/10.1063/1.443832
https://doi.org/10.1063/1.443832
https://doi.org/10.1063/1.443832
https://doi.org/10.1088/1742-5468/aabbcc
https://doi.org/10.1088/1742-5468/aabbcc
https://doi.org/10.1088/1742-5468/aabbcc
https://doi.org/10.1063/1.437999
https://doi.org/10.1063/1.437999
https://doi.org/10.1063/1.437999
https://doi.org/10.1063/1.437999
https://doi.org/10.1063/1.443175
https://doi.org/10.1063/1.443175
https://doi.org/10.1063/1.443175
https://doi.org/10.1063/1.443175
https://doi.org/10.1007/BF01035011
https://doi.org/10.1007/BF01035011
https://doi.org/10.1007/BF01035011
https://doi.org/10.1007/BF01035011
https://doi.org/10.1088/0305-4470/22/5/016
https://doi.org/10.1088/0305-4470/22/5/016
https://doi.org/10.1088/0305-4470/22/5/016
https://doi.org/10.1088/0305-4470/22/5/016
https://doi.org/10.1088/0022-3719/18/28/009
https://doi.org/10.1088/0022-3719/18/28/009
https://doi.org/10.1088/0022-3719/18/28/009
https://doi.org/10.1088/0022-3719/18/28/009
https://doi.org/10.1016/0378-4363(86)90348-7
https://doi.org/10.1016/0378-4363(86)90348-7
https://doi.org/10.1016/0378-4363(86)90348-7
https://doi.org/10.1016/0378-4363(86)90348-7
https://doi.org/10.1134/S1990793109020213
https://doi.org/10.1134/S1990793109020213
https://doi.org/10.1134/S1990793109020213
https://doi.org/10.1134/S1990793109020213
https://doi.org/10.1134/S1990793116020068
https://doi.org/10.1134/S1990793116020068
https://doi.org/10.1134/S1990793116020068
https://doi.org/10.1134/S1990793116020068
https://doi.org/10.1016/0301-0104(90)80061-2
https://doi.org/10.1016/0301-0104(90)80061-2
https://doi.org/10.1016/0301-0104(90)80061-2
https://doi.org/10.1016/0301-0104(90)80061-2
https://doi.org/10.1063/1.467261
https://doi.org/10.1063/1.467261
https://doi.org/10.1063/1.467261
https://doi.org/10.1063/1.467261
https://doi.org/10.1103/PhysRevE.53.R5541
https://doi.org/10.1103/PhysRevE.53.R5541
https://doi.org/10.1103/PhysRevE.53.R5541
https://doi.org/10.1103/PhysRevE.53.R5541
https://doi.org/10.1103/PhysRevLett.89.060601
https://doi.org/10.1103/PhysRevLett.89.060601
https://doi.org/10.1103/PhysRevLett.89.060601
https://doi.org/10.1103/PhysRevLett.89.060601
https://doi.org/10.1016/j.physa.2003.10.038
https://doi.org/10.1016/j.physa.2003.10.038
https://doi.org/10.1016/j.physa.2003.10.038
https://doi.org/10.1016/j.physa.2003.10.038
https://doi.org/10.1103/PhysRevE.80.066118
https://doi.org/10.1103/PhysRevE.80.066118
https://doi.org/10.1103/PhysRevE.80.066118
https://doi.org/10.1103/PhysRevE.80.066118
https://doi.org/10.1103/PhysRevE.86.011129
https://doi.org/10.1103/PhysRevE.86.011129
https://doi.org/10.1103/PhysRevE.86.011129
https://doi.org/10.1103/PhysRevE.86.011129
https://doi.org/10.1063/1.4816105
https://doi.org/10.1063/1.4816105
https://doi.org/10.1063/1.4816105
https://doi.org/10.1063/1.4816105
https://doi.org/10.1016/j.physa.2014.06.071
https://doi.org/10.1016/j.physa.2014.06.071
https://doi.org/10.1016/j.physa.2014.06.071
https://doi.org/10.1016/j.physa.2014.06.071
https://doi.org/10.1103/PhysRevE.92.042137
https://doi.org/10.1103/PhysRevE.92.042137
https://doi.org/10.1103/PhysRevE.92.042137
https://doi.org/10.1103/PhysRevE.92.042137
https://doi.org/10.1103/PhysRevE.93.010101
https://doi.org/10.1103/PhysRevE.93.010101
https://doi.org/10.1103/PhysRevE.93.010101
https://doi.org/10.1103/PhysRevE.93.010101
https://doi.org/10.1016/j.sse.2016.10.016
https://doi.org/10.1016/j.sse.2016.10.016
https://doi.org/10.1016/j.sse.2016.10.016
https://doi.org/10.1016/j.sse.2016.10.016

