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Analytical measure of temperature for nonlinear dynamical systems
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We present an analytical approach for measuring the temperature of nonlinear dynamical systems in the
microcanonical ensemble. Via the self-consistent phonon theory, one can analytically obtain the temperature with
respect to the internal energy density in a canonical way. We show how that provides a measure of temperature
in the microcanonical ensemble, under the hypothesis of ensemble equivalence. Two models, the FPU-β and
φ4 lattices, are studied obtaining results consistent with those derived from time averages along trajectories
in the phase space. Furthermore, our approach is corroborated by the fact that temperature obtained in terms
of the average energy density after thermalization agrees with the thermostat temperature. The hypothesis is
validated via examining the energy distribution for different numbers of particles in the canonical ensemble.
Further, we have quantified the corresponding finite size effects. Unlike other existing methods, which require
time-consuming computations, our analytical approach performance improves with the number of particles.
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I. INTRODUCTION

Temperature, concerning the zero, second, and third laws
of thermodynamics, is a cornerstone of thermodynamics and
statistical mechanics [1–3]. The thermodynamic temperature
T is defined as

1

T
=

(
∂S

∂E

)
M

, (1)

where S is entropy, E is the internal energy, and M =
{M1, M2, . . .} are parameters, such as volume or external fields
[4]. If a system is in contact with a heat bath, temperature is
well defined as a parameter in the distribution function and
as a measure of thermal fluctuations. However, if the system
is isolated, the notion of temperature is subtle and must be
derived from entropy in the microcanonical ensemble. Al-
though there are many definitions of entropy [3] for dynamical
systems, such as “surface” entropy obtained by Boltzmann
and “volume” entropy derived by Gibbs, the temperatures
obtained by these definitions in general approach the same
value as the degrees of freedom tend to infinity. However,
using Boltzmann entropy may lead to negative temperature
for specific systems, such as spin system and classical pen-
dulum [3,5–10]. The development of molecular dynamics
simulations has further stimulated the interest for evaluating
temperature in practical systems.

Considering the global geometric structure of the energy
surface, Rugh [11,12] has proposed a dynamical expression
for the temperature of Hamiltonian systems, which we de-
note TR. Using Eq. (1) and the statistical physics defini-
tion of entropy, the temperature of isolated systems can be
expressed by

1

kBTR
= lim

t→∞
1

t

∫ t

0
�(q, p)dτ, (2)
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where q and p are the canonical coordinates and momenta,
respectively. Here one has [11,12]

� = ∇ ·
( ∇H

‖∇2H‖
)

, (3)

where the gradient ∇ = ( ∂
∂q , ∂

∂p ) refers to the full phase space
and H represents the Hamiltonian of the systems, and 〈·〉
denotes the microcanonical average on the energy constant
hypersurface. Jepps et al. [13], as well as Rickayzen and
Powles [14], have generalized Rugh’s formula as � = ∇ ·
( B

B·∇H ), where B is an arbitrary continuous and differentiable
vector in phase space. Note that Eq. (3) is recovered when
B = ∇H . When considering the choice B = ∇V , where V is
the potential of the Hamiltonian, one obtains � = ∇ · ( ∇V

‖∇2V ‖ ).
This yields the configurational temperature [15–17], which
provides a definition of the temperature only in terms of the
coordinates and has been used for checking the algorithmic
correctness of Monte Carlo programs as well as for designing
new thermostats [13,18]. The above dynamical approaches
have been widely used to study the temperature of spin
systems [19–22], liquid [23], plasmas [24], and nonlinear lat-
tice systems [12,18,25,26]. In particular, for one-dimensional
lattice systems, � can be written as [12,18]

� = N − 2∑N
i=1 p2

i

. (4)

Note that the counting of degrees of freedom depends on
the symmetry of the Hamiltonian. For systems conserving
only energy, e.g., the φ4 system, the numerator in Eq. (4)
should be N − 1. If the total momentum of systems is also
conserved, e.g., the FPU-β system, the numerator should be
N − 2 instead [18].

All the above methods quantify temperature mainly in
a numerical way. Yet analytical quantifications of tempera-
ture with respect to the energy of nonlinear systems seem
unavailable so far. In this paper, using the self-consistent
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phonon theory (SCPT), we propose an analytical approach
to quantify the relation between temperature and energy for
nonlinear Hamiltonian systems in the microcanonical ensem-
ble. For illustrating the validity of our approach, we apply
it to two popular models, namely, the FPU-β lattice and the
φ4 lattice. Meanwhile, the dynamical approach [11,12] and a
thermalization method are also employed as for comparison,
which shows that our approach is validated in the system of
large size (see the discussion part). Note that our approach
can be generalized to high-dimensional lattices of interacting
oscillators [27,28].

The paper is organized as follows. In Sec. II, we briefly
introduce the SCPT and derive the expression of temperature.
In Sec. III, the temperature of two typical lattice models
(FPU-β and φ4) are studied. We then compare our analytical
approach with Rugh’s method and with the thermalization
method. Finally, we summarize our main results and give a
discussion in Sec. IV.

II. SELF-CONSISTENT PHONON THEORY

In this section, we use the self-consistent phonon theory for
a one-dimensional Hamiltonian system to derive the tempera-
ture for dynamical systems in the microcanonical ensemble. In
literature, SCPT, that can be traced back to Feynman [29], has
been developed to study the properties of thermal conduction
in low-dimensional nonlinear lattices [27,28,30,31].

Without loss of generality, we consider the Hamiltonian of
a one-dimensional system in the form of

H =
∑

n

p2
n

2m
+ W (δqn) + V (qn), (5)

where δqn = qn − qn−1, W (δq), and V (q) are the nearest-
neighbor interaction and on-site potentials, respectively. The
partition function of systems in the canonical ensemble can be
written by

Z =
∫

e−H/(kBT )dq dp. (6)

An exact evaluation of the integral of the partition function
Eq. (6) is generally impossible, due to the presence of non-
linearity in Eq. (5). The key idea of SCPT is replacing the
original Hamiltonian by a trial Hamiltonian that allows an
approximate evaluation of the exact partition function given
by Eq. (6). A reasonable choice of the trial Hamiltonian is a
chain of N coupled harmonic oscillators in the form of

H0 =
∑

n

p2
n

2m
+ fc

2
(qn − qn−1)2 + f

2
q2

n, (7)

where the trial parameters fc and f are to be obtained by min-
imizing the right-hand side of the Feynman-Jensen inequality
for free energies:

F � F0 + 〈H − H0〉0. (8)

In Eq. (8) the average is taken with respect to the trial system
of free energy F0 = −kBT ln Z0, where the trial partition
function is written as

Z0 =
∫

e−H0/(kBT )dq dp. (9)

The average in Eq. (8) can be easily calculated because the
integrand is of a quadratic form. Then one can obtain the
renormalized phonon frequency

ω2
p = 2

m

{
∂Vρ

∂ρ2
+ 4 sin2

(
pπ

N

)
∂Wγ

∂γ 2

}
, (10)

where Vρ and Wγ are the average value of the on-site potential
and interaction potential energies, respectively,

Vρ =
∫

dy√
2πρ2

e
− y2

2ρ2 V (y),

Wγ =
∫

dy√
2πγ 2

e
− y2

2γ 2 W (y). (11)

In Eq. (11), ρ2 and γ 2 correspond to the lattice displacement
and the two-point correlation function, i.e.,

ρ2 ≡ 〈
q2

n

〉 = kBT

Nm

∑
p

ω−2
p (12)

and

γ 2 ≡ 〈(qn − qn−1)2〉 = kBT

Nm

∑
p

4 sin2
( pπ

N

)
ω2

p

. (13)

One can obtain the trial parameters fc and f in Eq. (7) by
solving the self-consistent equations (10)–(13).

Therefore, the self-consistent approach illustrated above
yields the average internal energy density as

〈ε〉c =
〈

p2
n

2m

〉
+ Wγ + Vρ. (14)

Note that 〈p2
n/m〉 = kBT , where T is the kinetic temperature

of the system in the canonical ensemble. In the thermody-
namic limit N → ∞, the microcanonical ensemble is gen-
erally equivalent to the canonical ensemble if the energy of
the microcanonical system equals the internal energy of its
corresponding canonical system, i.e., ε = 〈ε〉c. Under such a
hypothesis, the temperature of microcanonical systems can be
written as

kBT = 2(ε − Wγ − Vρ ). (15)

Equation (15) gives a general relation between the tempera-
ture and the energy density of a dynamical system, from the
perspective of the microcanonical ensemble.

One can immediately assure Eq. (15) for the harmonic
system, for which W (δqn) = kδq2

n/2 and V (qn) = f0q2
n/2.

Here k is the coupling strength and f0 the strength of the
harmonic on-site potential. According to Eq. (11),

Wγ = k

2
γ 2, Vρ = f0

2
ρ2. (16)

It is then straightforward to obtain the temperature of the
harmonic system as

kBT = ε, (17)

which is consistent with the equipartition theorem.
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III. RESULTS FOR TWO MODELS

In this section, we apply our approach to the temperature of
two one-dimensional nonlinear lattices, i.e., the FPU-β lattice
and the φ4 lattice. The approach is then validated in two ways.
First, according to Rugh’s method [11,12], � can be written
by Eq. (4) [18]. In order to obtain the temperature (denoted by
TR) of the systems in terms of Eqs. (2) and (4), we employ the
SABA2C symplectic algorithm [32], which is of a ten-order
symplectic integrator, to integrate the equations of motion
derived from the Hamiltonian Eq. (5). In our simulations, the
integration time step is t = 0.01 and the energy drift can be
less than 10−6 for simulations of 108 time steps.

Second, we compare the SCPT results with those by a
“thermalization method,” since temperature is well defined
when the system is in contact with a heat bath. As a first
step, the systems are fully thermalized by linking each site
to a Langevin heat bath [33,34] at temperature Tb. After
thermalization, heat baths are removed and the energy density
ε of the isolated Hamiltonian systems Eq. (5) can be obtained.
Here, the energy density is averaged over 104 realizations, in
order to reduce the fluctuations due to the finite-size effects.
Then the temperature T (ε) in terms of Eq. (15) is compared
with the temperature of heat baths Tb.

In our numerical simulations, the Boltzmann’s constant kB

and the mass m are set as units, i.e., kB = 1 and m = 1. But for
the sake of clarification, we keep kB and m in all the following
formulas.

A. FPU-β lattice

The FPU-β lattice, originally proposed to study the prob-
lem of energy equipartition [35], has on-site potential V (x) =
0 and interaction potential

W (δxn) = k

2
δq2

n + β

4
δq4

n. (18)

In terms of Eq. (11), one can easily obtain the average
interaction potential

Wγ = k

2
γ 2 + 3

4
βγ 4. (19)

Noting that sinusoidal terms in the summation of Eq. (13)
are canceled, one can explicitly get the two-point correlation
function

γ 2 = −k +
√

k2 + 12βkBT

6β
(20)

and the effective force constant

fc = k + 3βγ 2. (21)

Therefore, in terms of Eq. (15), the temperature of the FPU-β
system can be explicitly given by

kBT = 36βε + 2k2 − 2k
√

k2 + 9βε

27β
. (22)

Note that, for harmonic limit β → 0 in Eq. (22), one finds
kBT = ε, which is consistent with Eq. (17). For the limit
β → ∞, one finds kBT = 4

3ε.
We compare the results obtained by numerical simulations

in terms of Rugh’s method with that by SCPT. Figure 1(a)

FIG. 1. Comparing the temperature obtained by SCPT with that
by Rugh’s dynamical approach (as denoted by TR) for the FPU-β
model. (a) Temperature as a function of the nonlinear strength β with
fixed energy density ε = 1 and (b) temperature as a function of the
energy density ε with fixed nonlinear strength β = 1. Here k = 1 and
N = 1024.

depicts temperature versus the nonlinear strength β with fixed
energy density ε = 1, showing that differences between T and
TR are slight. The temperature T as the function of the energy
density ε, with fixed nonlinear strength β = 1, is shown in
Fig. 1(b). One can see an excellent agreement between Rugh’s
method and SCPT.

Next, Langevin heat baths at temperature Tb are connected
to each site for a long time to guarantee the systems are
fully thermalized at Tb. We obtain the energy density for the
Hamiltonian Eq. (5); then we calculate the temperature T
according to Eq. (22). For comparison with the thermalization
method, one can see in Fig. 2(a) that the temperature T cal-
culated by SCPT slightly fluctuates around the reference line

FIG. 2. Comparing temperature obtained by SCPT with the tem-
perature of heat bath used to thermalize the FPU-β system (see text
for details). (a) Temperature versus the nonlinear strength β when
the temperature of heat bath Tb = 1. The solid line corresponds to the
reference value Tb = 1. (b) Temperature versus Tb with fixed β = 1.
The solid line represents the reference line T = Tb. One can see a
good agreement between T and Tb. Here k = 1 and N = 1024.
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Tb = 1. The change of T with Tb is depicted in Fig. 2(b), in
which one finds that temperature obtained by SCPT coincides
with the solid line T = Tb. These results indicate the validity
of our approach.

B. φ4 lattice

The φ4 lattice is a typical model in which total momentum
is not conserved. Its Hamiltonian consists of not only a
harmonic interaction potential

W (δqn) = k

2
δq2

n, (23)

but also of a quartic on-site potential

V (qn) = λ

4
q4

n. (24)

In terms of Eq. (11), Wγ and Vρ are given by

Wγ = k

2
γ 2,

Vρ = 3

4
λρ4. (25)

The summation of Eq. (12) can be replaced by an integral as
the system size is large, which yields

ρ2 = kBT√
3λρ2(3λρ2 + 4k)

. (26)

Then the effective force constant f in Eq. (7) is given by

f = 3λρ2 = 3λkBT√
f ( f + 4k)

. (27)

Solving Eq. (13) as well as Eq. (10), we can get the relation
between γ and f ,

γ 2 = kBT

k
− f 2

3λk
. (28)

Finally, according to Eq. (15), the temperature of the φ4

system is given by

kBT = ε + f 2

12λ
. (29)

Considering Eqs. (27) and (29), one gets the following equa-
tion:

16(kBT − ε)2 − k2
BT 2 + 16k

√
4

3λ
(kBT − ε)

3
2 = 0. (30)

The temperature of the φ4 system can be equivalently obtained
by solving Eq. (30). Like for the FPU-β model, one gets
kBT = ε in the harmonic limit λ → 0 and kBT = 4

3ε in the
strong nonlinearity limit λ → ∞.

Similar to the FPU-β model, we first compare our results
with those by Rugh’s method. It is seen from Fig. 3(a) that
the deviation between T and TR is small for fixed ε = 1.
Figure 3(b) shows T as a function of the energy density ε,
with fixed nonlinear strength λ = 1. An excellent consistency
between T and TR can be observed.

As for comparison with the thermalization method for the
φ4 model, one can see in Fig. 4(a) that T obtained by SCPT
is slightly larger than the thermostat temperature, which is

FIG. 3. Comparing the temperature obtained by SCPT with that
by Rugh’s dynamical approach for the φ4 model. (a) Temperature as
a function of the nonlinear strength λ with fixed energy density ε = 1
and (b) temperature as a function of the energy density ε with fixed
nonlinear strength λ = 1. Here k = 1 and N = 1024.

fixed at Tb = 1. In Fig. 4(b), we illustrate the temperature T
as a function of Tb. The nice consistency between T and Tb

is observed, which supports the validity of our theory for the
φ4 model.

IV. SUMMARY AND DISCUSSIONS

In summary, we presented an analytical approach to mea-
sure temperature in nonlinear dynamical systems in the micro-
canonical ensemble and we gave a general relation between
temperature and energy density for nonlinear interacting lat-
tice systems. As an exemplification, we applied our approach
to two typical nonlinear lattices: the FPU-β lattice and the φ4

FIG. 4. Comparing the temperature obtained by SCPT with the
temperature of heat bath used to thermalize the φ4 system (see text
for details). (a) Temperature versus the nonlinear strength λ as the
temperature of heat bath Tb = 1. The solid line corresponds to the
reference value Tb = 1. (b) Temperature versus Tb with fixed λ = 1.
The solid line represents the reference line T = Tb. One can see a
good agreement between T and Tb. Here k = 1 and N = 1024.
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FIG. 5. Energy density distribution g(ε) for (a) the FPU-β lattice
and (b) the φ4 lattice. The red, blue, and green solid lines correspond
to the number of particles N = 256, 512, and 1024, respectively. The
orange dashed lines represent the average energy density obtained
by SCPT. Here nonlinearity strengths are given by β = 1 and λ=1.
And the thermostat temperatures are Tb = 1 for both cases. The
distributions are obtained in terms of average over 104 realizations.

lattice. Furthermore, the dynamical approach to temperature
and the thermalization method were used in order to validate
our approach. Our results show that the approach is consistent
with the two methods for both models, indicating its validity.
In comparison with Rugh’s numerical method, our approach
is especially effective for systems of large size. Note that our
method can be in principle generalized to high-dimensional

systems of nonlocal interactions (e.g., next-nearest neighbor
interactions).

SCPT actually lies in the canonical ensemble, while the
systems we considered are in the microcanonical ensemble.
The energy is a constant (restricted to a very narrow range)
for a system in the microcanonical ensemble, while it fluctu-
ates between zero and infinity for the system in the canon-
ical ensemble. How can we ensure the temperature derived
from a canonical ensemble can measure a system in the
microcanonical ensemble? To explain the problem, we first
examined the energy distribution of the systems. After full
thermalization, we obtained the probability density function
of the energy density over 104 statistical samples. In Fig. 5,
we depicted the distribution of energy density for the two
models, i.e., the FPU-β model [Fig. 5(a)] and the φ4 model
[Fig. 5(b)]. As one can see, for both models, the probability
density is a normal distribution and the average 〈ε〉 (the
most probable value corresponding to the peak) agrees with
that calculated by SCPT [Eq. (15)] denoted by the dashed
line. Moreover, as the number of particles increases, the
distribution becomes sharper and sharper. It is thus reasonable
to conjecture that the distribution approaches a δ function
when N → ∞, which corresponds to the microcanonical en-
semble with ε = 〈ε〉. In fact, it has been indicated that the
ratio of the canonical temperature and the microcanonical
temperature is (N − 2)/N , which approaches 1 when N → ∞
[12]. Secondly, we examined the finite size effects of our
calculations, as shown in Fig. 6. Rugh’s method coincides
with our approach with small deviations, which is practically
satisfactory when N > 1000 for the FPU-β [Fig. 6(a)] and
the φ4 model [Fig. 6(b)]. For the thermalization method,

FIG. 6. Temperature T as a function of the system size N . First, our approach is compared with Rugh’s method for (a) the FPU-β model
and (b) the φ4 model, respectively. Second, our approach is compared with the thermalization method (see text for details) for (c) the FPU-β
model and (d) the φ4 model, respectively. In our calculations, the parameters are given by β = 1, λ = 1, and ε = 1.
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one can see the fluctuations of SCPT calculations [Figs. 6(c)
and 6(d)] since the average energy density obtained after
thermalization has finite size dependence. Yet, the relative
difference between T and Tb is less than 0.5% as N > 100.
The discrepancy mainly comes from invalidity of the assump-
tion of ensemble equivalence at small system size. We thus
propose our approach as an analytically viable approach to

the calculation of temperature in interacting systems of many
particles.
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