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The long-term dynamics of long-range interacting N-body systems can generically be described by the
Balescu-Lenard kinetic equation. However, for one-dimensional homogeneous systems, this collision operator
exactly vanishes by symmetry. These systems undergo a kinetic blocking, and cannot relax as a whole under 1/N
resonant effects. As a result, these systems can only relax under 1/N2 effects, and their relaxation is drastically
slowed down. In the context of the homogeneous Hamiltonian mean field model, we present a closed and explicit
kinetic equation describing self-consistently the very long-term evolution of such systems, in the limit where
collective effects can be neglected, i.e., for dynamically hot initial conditions. We show in particular how that
kinetic equation satisfies an H theorem that guarantees the unavoidable relaxation to the Boltzmann equilibrium
distribution. Finally, we illustrate how that kinetic equation quantitatively matches with the measurements from
direct N-body simulations.
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I. INTRODUCTION

The evolution of long-range interacting systems [1] is
generically composed of two stages. First, the system un-
dergoes a rapid (collisionless) violent relaxation [2], which,
owing to strong potential fluctuations, allows the system
to reach a quasistationary state (i.e., a steady state of the
mean-field dynamics, as described by the Vlasov equation).
Following these drastic orbital rearrangements, the system has
become dynamically frozen for the mean-field dynamics. It
is then only through finite-N effects, i.e., Poisson shot noise
due to the finite number of particles, that the system can
keep evolving. Under these effects, the system undergoes a
slow (collisional) relaxation that drives it to thermodynamical
equilibrium.

The efficiency of the long-term dynamical relaxation of
a system therefore depends on N , the system’s number of
particles. Such a dynamics is generically accounted for by
constructing the appropriate kinetic equation to describe the
irreversible long-term orbital reshufflings occurring as a result
of the finite number of particles. As an example, in the limit
where 1/N effects dominate the dynamics, such an evolution
can generically be described by the Balescu-Lenard equation
[3,4], whose generalization to inhomogeneous systems is only
recent [5,6]. In that context, the resonant couplings of shot
noise fluctuations lead to a collision operator of order 1/N , so
that the relaxation occurs on a timescale scaling like Ntd, with
td the system’s dynamical time.1

1One important exception is 3D self-gravitating systems, where
the relaxation time is of order Ntd/ log(N ), owing to the Coulomb

However, for one-dimensional (1D) homogeneous sys-
tems, the Balescu-Lenard equation exactly vanishes, i.e., two-
body resonant correlation effects are unable to drive an overall
relaxation of the system, as highlighted in the context of 1D
plasmas [8–10], 1D self-gravitating systems [11–18], the 1D
Hamiltonian mean field (HMF) model [19–25], the dynamics
of long-range coupled particles on the unit sphere [26–29], or
even the axisymmetric dynamics of 2D point vortices [30].
All these systems are said to being undergoing a kinetic
blocking, that makes them immune to the long-term dynamics
driven by 1/N effects. For such systems, it is only three-
body effects and higher-order correlations that can drive the
system’s relaxation to thermodynamical equilibrium [31–34],
making the relaxation time much longer than Ntd.

As it must originate from perturbations to the system’s
dynamics of increasing order in 1/N , it is natural to expect
that the timescale for the collisional relaxation of a 1D ho-
mogeneous system would scale like N2td, i.e., the next order
appearing in kinetic expansions. Indeed, such a scaling of the
relaxation time in N2td was already observed for 1D plasmas
[8–10], or for long-range coupled particles on the sphere
[28,29]. In the case of the HMF model, different scalings pro-
portional to N1.7td [19,20], or even eNtd [22], were reported.
But, in [24], these results were convincingly interpreted as
being side effects associated with a too small value of N , and
a scaling in N2 was recovered through a careful analysis of
simulations with larger values of N . As argued in [24], for
such homogeneous systems, the relaxation time indeed scales

logarithm [7] associated with the divergence of the gravitational
pairwise interaction for small separations.
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like N2td. Yet, because Poisson fluctuations can lead to the
destabilization [23] of homogeneous quasistationary states to
inhomogeneous states (which relax on Ntd timescales), an
intermediary scaling [24,33] of the relaxation time with N
can be effectively measured in practice. This is especially
important in systems with small values of N , as Poisson
fluctuations are stronger therein.

In the present paper, building upon [24], we set out to
study such a very long-term dynamics of the HMF model in
the homogeneous limit. In the limit where collective effects
are neglected (i.e., the neglect of the ability of the mean
system to amplify perturbations), we present a closed kinetic
equation describing the collisional relaxation of that system
on N2td timescales, as driven by three-body correlations.
We explore the generic properties of this collision operator,
and quantitatively compare its predictions to direct N-body
simulations of that system.

The paper is organized as follows. In Sec. II, we briefly
present the considered HMF model, and the kinetic equation
describing its relaxation at order 1/N2, as given by Eq. (4).
The detailed procedure followed to obtain that equation is
presented in Appendixes A–D, while the effective analytical
calculations were performed using a computer algebra system
(see Supplemental Material [35]). In Sec. III, we explore some
of the fundamental properties of that kinetic equation, in par-
ticular its well-posedness, its conservation properties, and its
H theorem that guarantees the relaxation to the homogeneous
Boltzmann equilibrium, provided that it is linearly stable.
Finally, in Sec. IV, we quantitatively illustrate how this kinetic
equation matches with direct measurements from numerical
simulations, for hot enough initial distributions. Finally, we
conclude in Sec. V.

II. KINETIC EQUATION

We are interested in the long-term dynamics of the HMF
model [36]. It is composed of N particles of individual mass
μ = Mtot/N , with Mtot the system’s total mass. The canonical
phase space coordinates are (θ, v) and the total Hamiltonian
reads

H = 1

2

N∑
i=1

v2
i + μ

N∑
i< j

U (θi − θ j ), (1)

where the pairwise interaction potential is given by

U (θi − θ j ) = −U0 cos(θi − θ j ), (2)

with U0 > 0 the amplitude of the pairwise coupling.
In the homogeneous limit, the instantaneous statistical

state of the system can be described by the velocity (DF),
F = F (v, t ), which, following Eq. (A7), is taken to be nor-
malized as

∫
dθ dv F (v, t ) = Mtot. Describing the long-term

relaxation of such a system then amounts to describing the
long-term evolution of that DF, as driven by a closed kinetic
equation.

When limiting oneself only to 1/N effects, the dynamics of
that DF is generically given by the Balescu-Lenard equation,

which in the present context reads [37]

∂F (v1)

∂t
= π2

2
U 2

0 μ
∂

∂v1

[ ∫
dv2

∑
k=±1

1

|εk (kv1)|2

× δD(v1 − v2)

(
∂

∂v1
− ∂

∂v2

)
F (v1)F (v2)

]
, (3)

where, to shorten the notations, we do not write explicitly
the time dependence of the DFs. We also introduced the
dielectric coefficient, εk (ω), explicitly spelled out in Eq. (E3).
As already mentioned in the Introduction, owing to the Dirac
delta, δD(v1 − v2), such a collision operator exactly vanishes
by symmetry. This vanishing of the diffusion flux is a conse-
quence of three joint properties. (i) The homogeneous HMF
model has an orbital space, v, of dimension 1. As a result,
in orbital space, resonant locations correspond to isolated
points in v space. (ii) The orbital frequency of a given orbit
is �(v) = v, which is a monotonic function of the orbital
coordinate v. As a consequence, two orbits have the same
orbital frequency, if and only if they are the exact same.
(iii) Owing to the symmetries of the pairwise interaction
potential, the HMF model can only support 1 :1 resonances.
This can be seen from the resonance condition δD(v1 − v2)
that does not involve any nontrivial linear combination of
the orbital frequencies. All in all, the combination of these
three constraints imposes that the only resonant couplings
allowed by the dynamics are local resonances, v2 = v1, which,
because of the local cancellation of the drift and diffusion
contributions, are unable to drive any overall relaxation of the
system. As such, the homogeneous HMF system undergoes a
kinetic blocking, and its overall relaxation is immune to 1/N
correlation effects.

As a result, it is only by being driven by weaker three-body
correlations, associated with 1/N2 effects, that the present
system can relax to its thermodynamical equilibrium. This is
the dynamics of interest in this paper. Following an approach
similar to [24], we present in Appendixes A–D our approach
to derive such a closed kinetic equation accounting for 1/N2

effects.
The main steps of this derivation are as follows. (i) As

detailed in Appendix A, we first derive the usual BBGKY
equations, by obtaining the coupled evolution equations for
the system’s one-, two-, and three-body distribution functions.
(ii) As shown in Appendix B, using the cluster expansion,
these coupled evolution equations are written as coupled
evolution equations for the system’s one-body DF, F (v), and
the two- and three-body correlation functions. The main gain
of this rewriting is that these equations are now sorted by
increasing order in 1/N corrections. (iii) As presented in Ap-
pendix C, these equations are then truncated at order 1/N2. At
this stage, a key simplification comes from our neglect of the
contributions from collective effects, i.e., the system’s ability
to amplify perturbations, as is justified for dynamically hot
initial distributions. (iv) Finally, in Appendix D, we show how
this set of (well-posed) coupled partial differential equations
can be solved, allowing for an explicit and closed expression
for the collision operator. While not intrinsically challenging,
such calculations are made cumbersome because of the large
number of terms involved. These calculations were therefore
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carried out using Mathematica and are spelled out in detail
in the Supplemental Material [35].

All in all, the final kinetic equation derived in that fashion
reads

∂F (v1)

∂t
= π3

2
U 4

0 μ2 ∂

∂v1

[
P

∫
dv2

(v1 − v2)4

×
∫

dv3

{
δD(k1 · v)

(
k1 · ∂

∂v

)
F (v1)F (v2)F (v3)

+ δD(k2 · v)

(
k2 · ∂

∂v

)
F (v1)F (v2)F (v3)

}]
,

(4)

where, to shorten the notations, we introduced the velocity
vector v = (v1, v2, v3), as well as the two resonance vectors

k1 = (2,−1,−1), k2 = (1,−2, 1). (5)

In that equation, we also introduced P as the Cauchy principal
value, which acts on the integral

∫
dv2. We postpone to

Sec. III A the justification of the well posedness of such
a principal value. Finally, we note that Eq. (4) is tightly
related to the 1/N2 kinetic equation already put forward in
Eq. (23) of [24]. The differences are some corrections in the
overall prefactor, and the sign of the second resonant term.
Compared to [24], in Eq. (4), we also performed additional
rewritings and manipulations that offer a simpler collision
operator, involving only one principal value, and only up to
first-order gradients in the system’s DF, as detailed at the end
of Appendix D.

As usual, it is possible to rewrite Eq. (4) under the form of
a continuity equation, reading

∂F (v1)

∂t
= ∂

∂v1
[F (v1)], (6)

where the instantaneous flux in velocity space,2 F (v1), fol-
lows directly from Eq. (4).

As expected, Eq. (4) is proportional to μ2 � 1/N2, i.e., it
describes a collisional relaxation on N2td timescales. We also
note that the collision operator in the right-hand side (RHS)
involves the system’s DF three times, highlighting the fact
that this kinetic equation describes a dynamics sourced by
three-body correlations (by contrast, the Boltzmann, Landau,
and Balescu-Lenard equations involve the product of only two
DFs). These correlations are matched through two different
resonance conditions on the velocities, namely δD(k1/2 ·v). We
also note that the two resonance terms are opposite one to
another, provided one makes the change (v1 ↔ v2) in the last
integrand. This will prove important to ensure some of the
equation’s conservation properties, as detailed in Sec. III C.
Equation (4) is the main result of this section, as this closed
kinetic equation is the appropriate kinetic equation to describe
the long-term evolution of a dynamically hot 1D homoge-
neous system, sourced by 1/N2 effects, and tailored here to the
particular case of the HMF model. We finally note that Eq. (4)
only holds as long as the system’s mean DF remains linearly
stable; see the end of Sec. IV for a more detailed discussion.

2With such a convention, the flux is opposite to the direction
effectively followed by individual particles during their diffusion.

III. PROPERTIES

In this section, we now explore some of the key properties
of the kinetic Eq. (4).

A. Well posedness

Given the presence of a high-order resonance denominator
in Eq. (4), it is not obvious that the kinetic equation is well
defined, i.e., that there are no divergences when v2 → v1. As
a result, let us study the behavior of the integrand in the limit
v2 → v1. In order to shorten the notations, we temporarily
rewrite Eq. (4) as

∂F (v1)

∂t
= π3

2
U 4

0 μ2 ∂

∂v1

[
P

∫
dv2

(v1 − v2)4
K (v1, v2)

]
, (7)

where the function K (v1, v2) immediately reads from Eq. (4).
Assuming that F (v) is a smooth function, it is straightfor-
ward to perform a limited development of K (v1, v1 + δv) for
δv → 0. One gets

K (v1, v1 + δv) = K3(v1)(δv)3 + O((δv)4), (8)

where the first nonzero coefficient, K3(v), reads

K3 =F (4)FF − F (3)F ′F + 3F ′′F ′F ′ − 3FF ′′F ′′. (9)

As a consequence, in the vicinity of v2 → v1, the integral from
Eq. (7) takes the form

P
∫

dv2

(v1 − v2)4
K (v1, v2) ∼ P

∫
dδv

K3(δv)3 + O((δv)4)
(δv)4

∼ P
∫

dδv

{
K3

δv
+ O(1)

}
, (10)

which is a meaningful and well-posed integral in terms of a
principal value.

B. Boltzmann distribution

The thermodynamical equilibrium states resulting from the
collisional relaxation of a homogeneous N-body system are
expected to be (shifted) homogeneous Boltzmann distribu-
tions of the form

FB(v) = A e−β(v−v0 )2
, (11)

where β is the inverse temperature and A a normalization
constant. The shift is due to the conservation of the total
momentum.

Owing to the explicit form of the collision operator from
Eq. (4), it is straightforward to check that such DFs are indeed
equilibrium solutions of the kinetic equation. Indeed, noting
that the resonance vectors, k1 and k2, from Eq. (5) are of zero
sum, one has

∂FB(v1)

∂t
∝ {δD(k1 · v) (k1 · v) + δD(k2 · v) (k2 · v)} = 0.

(12)

This highlights that the diffusion flux for homogeneous
Boltzmann distributions exactly vanishes, i.e., these DFs are
equilibrium solutions of the 1/N2 kinetic Eq. (4). In Sec. III D,
owing to an H theorem, we will strengthen this result by prov-
ing that the homogeneous Boltzmann DFs from Eq. (11) are
the only equilibrium solutions of the present kinetic equation.
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C. Conservation laws

The kinetic equation (4) satisfies various conservation
properties, in particular the conservation of the total mass,
M(t ), the total momentum, P(t ), and the total energy, E (t ),
as we will now briefly justify. Ignoring numerical prefactors,
they are respectively defined as

M(t ) =
∫

dv1 F (v1, t ),

P(t ) =
∫

dv1 v1 F (v1, t ), (13)

E (t ) =
∫

dv1
1
2v2

1 F (v1, t ),

where the total energy only contains the kinetic energy, be-
cause we assumed that the system remains homogeneous on
average.

Following the rewriting from Eq. (6), the conservation of
the total mass follows from the absence of any boundary
contributions, so that

dM

dt
=

∫
dv1

∂

∂v1
[F (v1)] = 0. (14)

A similar calculation can be pursued for the total momentum,
and one gets

dP

dt
= −

∫
dv1 F (v1) = 0, (15)

using the symmetrization (v1 ↔ v2) in Eq. (4).
Finally, regarding the conservation of energy, following an

integration by parts of Eq. (13), one writes

dE

dt
= −

∫
dv1 v1 F (v1). (16)

Using the definition of the flux from Eq. (6), this expression
will then involve an integral of the form

∫
dv1dv2dv3, which

allows us to use symmetrizations with respect to the integra-
tion variables. First, we symmetrize all the terms with respect
to the permutation (v1 ↔ v2). Then, for the subsequent ex-
pression, we perform two additional symmetrizations, namely
(i) (v2 ↔ v3) for the terms involving the resonance condition
δD(k1 · v) and (ii) (v1 ↔ v3) for the terms involving the
resonance condition δD(k2 · v). By doing so, the resonant
denominator from Eq. (4) remains a sole function (v1−v2),
and this avoids the creation of any other type of resonance
conditions. All these calculations are straightforward and car-
ried out in detail in the Supplemental Material [35]. Forgetting
prefactors, one gets

dE

dt
∝

∫
dv1P

∫
dv2

(v1 − v2)4

∫
dv3

×
{
δD(k1 · v)(k1 · v)

(
k1 · ∂

∂v

)
F (v1)F (v2)F (v3)

+ δD(k2 · v) (k2 · v)

(
k2 · ∂

∂v

)
F (v1)F (v2)F (v3)

}
= 0, (17)

which exactly vanishes owing to the resonance conditions.

D. H theorem

We define the system’s instantaneous entropy as

S(t ) = −
∫

dv1 s(F (v1, t )), (18)

with s(F ) = F ln(F ) the Boltzmann entropy. Starting from
the rewriting of Eq. (6), it is straightforward to show that the
system’s entropy evolves according to

dS

dt
=

∫
dv1

1

F (v1)

∂F (v1)

∂v1
F (v1). (19)

Following Eq. (6), this expression involves an integral of
the form

∫
dv1dv2dv3, allowing for symmetrizations with

respect to the integration variables. We perform the exact
same symmetrizations as the ones performed in Eq. (17)
to check for energy conservation. All these calculations are
straightforward, and carried out in detail in the Supplemental
Material [35]. One gets

dS

dt
= π3

8
U 4

0 μ2
∫

dv1 P
∫

dv2

(v1 − v2)4

∫
dv3 F (v1)

× F (v2)F (v3)

{
δD(k1 · v)

[
k1 ·

(
F ′

1

F1
,

F ′
2

F2
,

F ′
3

F3

)]2

+ δD(k2 · v)

[
k2 ·

(
F ′

1

F1
,

F ′
2

F2
,

F ′
3

F3

)]2}
, (20)

where we used the shortening notation F1 = F (v1) and
F ′

1 = ∂F/∂v1. Given that all the terms involved in this integral
are positive, the kinetic Eq. (4) satisfies an H theorem, i.e., one
has

dS

dt
� 0. (21)

The expression of the entropy increase from Eq. (20)
allows us then to tackle the question of determining which
DFs are equilibrium states for the diffusion, i.e., which DFs
satisfy dS/dt = 0. Provided that one uses the symmetriza-
tion (v1 ↔ v2), the constraints associated with the two res-
onance conditions from Eq. (20) are identical, so that we
only need to consider one. Recalling the expression of the
resonance vector k1 from Eq. (5), and introducing the function
G(v) = F ′(v)/F (v), we note that a DF is stationary if it
satisfies

∀v, v′ : G

(
v + v′

2

)
= G(v) + G(v′)

2
. (22)

Because this constraint has to be satisfied for all v and v′, we
can conclude that v 	→ G(v) has to be a line, i.e., one has

G(v) = −2β(v − v0) with β > 0, (23)

where the constraint β > 0 stems from the fact that∫
dv F (v) = Mtot < +∞, i.e., the DF has to be normal-

ized, and cannot get infinitely large for v → +∞. Equa-
tion (23) immediately translates to the differential equation
F ′(v)/F (v) = −2β(v − v0), which naturally integrates to the
(shifted) homogeneous Boltzmann DF introduced in Eq. (11).

As a conclusion, the only equilibrium DFs of the kinetic
Eq. (4) are the (shifted) homogeneous Boltzmann distribu-
tions. This is an important result of this section. Indeed, while
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any (stable) DF F (v) was an equilibrium distribution for
the 1/N dynamics of a homogeneous long-range interacting
system, only homogeneous Boltzmann DFs are equilibrium
distributions for these systems’ 1/N2 dynamics.

E. Dimensionless rewriting

In order to have a better grasp at the scalings of Eq. (4), let
us finally rewrite it under a dimensionless form.

Following the conservation of total energy obtained in
Eq. (17), we introduce the system’s (conserved) velocity
dispersion as

σ 2 = 1

Mtot

∫
dθ dv v2 F (v). (24)

This typical velocity entices us then to define a dimensionless
velocity as u = v/σ , and a dimensionless time as t = t/td
(time) with td = 1/σ the dynamical time. Similarly, we define
the system’s dimensionless (PDF) as

F (u) = 2πσ

Mtot
F (uσ ), (25)

which satisfies the normalization condition
∫

du F (u) = 1.
Finally, in order to assess the “dynamical temperature” of the
system and the strength of the associated collective effects, we
introduce the dimensionless stability parameter

Q = 2σ 2

U0Mtot
, (26)

following a notation similar to [38]. The larger Q, the more
stable the system, and the weaker the collective effects. In
Appendix E, we motivate the definition of Q, and directly
relate it to the system’s dielectric function.

Using these conventions, one can rewrite Eq. (4) as

∂F (u1)

∂t
= 2π

Q4N2

∂

∂u1

[
P

∫
du2

(u1 − u2)4

×
∫

du3

{
δD(k1 · u)

(
k1 · ∂

∂u

)
F (u1)F (u2)F (u3)

+ δD(k2 · u)

(
k2 · ∂

∂u

)
F (u1)F (u2)F (u3)

}]
,

(27)

where, similar to Eq. (4), we introduced the velocity vector
u = (u1, u2, u3), and the resonance vectors, (k1, k2), as given
by Eq. (5). Similar to Eq. (6), we can rewrite Eq. (27) under
the form of a continuity equation, reading

∂F (u1)

∂t
= 2π

Q4N2

∂

∂u1
[F (u1)], (28)

where the dimensionless instantaneous flux, F (u1), follows
from Eq. (27).

Equation (27) is the appropriate dimensionless writing to
understand the expected relaxation time of a given system.
Indeed, assuming that the collision operator within brackets is
of order unity, we find therefore that the relaxation time scales
like

tr � Q4N2td. (29)

FIG. 1. Illustration of the overall relaxation of a system’s PDF,
F (u, t ), for the non-Gaussian PDF from Eq. (F2), for α = 4 and
with the dynamical temperature Q = 8.0. Detailed parameters for
these runs are spelled out in Appendix F. Even if such a distribution
undergoes a kinetic blocking, and cannot relax under 1/N effects, it
is still sensitive to the weaker 1/N2 correlations, allowing it to slowly
relax to the homogeneous Boltzmann thermodynamical equilibrium,
provided that it is linearly stable.

It is interesting to note that one recovers that dynamically
colder systems, i.e., systems with smaller values of Q, relax
faster than hotter systems. However, because collective effects
were neglected in the derivation of Eq. (27), one has to place
oneself in the regime Q � 1 for the present kinetic equation
to apply. In that dynamically hot regime, collective effects are
indeed unimportant, but, because of the factor Q4 in Eq. (29),
relaxation will only occur on very long timescales.

IV. APPLICATIONS

In order to investigate the validity of the kinetic Eq. (4), we
now set out to explore numerically the long-term relaxation of
such systems, and compare it with the kinetic prediction.

For clarity, all the details of our numerical implementation
are given in Appendix F. The main difficulty with such a
numerical exploration comes from our neglect of collective
effects in the derivation of the kinetic Eq. (4). As defined in
Eq. (26), this asks therefore for the consideration of initial
conditions with Q � 1, for which, following Eq. (29), the
relaxation can only occur on very late timescales, making
the N-body simulations more challenging. The larger Q, the
weaker the collective effects (e.g., as can be seen in Fig. 4),
and therefore the better should be the match between the
kinetic prediction and the N-body measurements.

As a first illustration, we present in Fig. 1 an example
of a system’s relaxation towards equilibrium, for an initial
condition following the non-Gaussian PDF from Eq. (F2).
As expected, even if any homogeneous DF, F = F (v), is
submitted to a kinetic blocking, and undergoes no relaxation
through the 1/N Balescu-Lenard Eq. (3), it can still relax as a
result of higher-order correlation effects, e.g., as captured by
the kinetic Eq. (4), whose detailed predictions we may now
compute.
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FIG. 2. Illustration of the dimensionless flux, F (u, t =0), as
defined in Eq. (28) for the non-Gaussian PDF from Eq. (F2) with
α = 4, as measured in N-body simulations (with the associated
errors), for various initial dynamical temperatures Q, and compared
with the prediction from the kinetic Eq. (27). Detailed parameters
for these runs are spelled out in Appendix F. As expected, the larger
Q, the hotter the system, and therefore the better the matching with
the kinetic prediction for which collective effects were neglected.

In Fig. 2, we illustrate the initial dimensionless flux,
F (u, t = 0), as defined in Eq. (28), using on the one hand
direct measurements from N-body simulations (following the
method presented in Appendix F), and on the other hand
computing the prediction from the kinetic Eq. (27). As high-
lighted, the larger the Q, the hotter the system, i.e., the weaker
the collective effects, and therefore the better the matching
between the N-body measurements and the kinetic prediction.
For systems with smaller velocity dispersions, Eq. (27) does
not apply anymore, and asks to be generalized in order to
account for the contribution of collective effects to hasten or
slow down the system’s relaxation. Finally, there are (at least)
two possible origins for the slight mismatch still observed in
Fig. 2 between the measured fluxes and the predicted one:
(i) remaining contributions associated with collective effects,
that are expected to slowly fade away as one increases Q;
(ii) some nonvanishing kinetic contributions from the term in
G(1)

2 × G(1)
2 that was neglected in Appendix C, when deriving

the system’s truncated BBGKY evolution equations. Such
generalizations are beyond the scope of this paper.

As can be noted from the overall prefactor in Eq. (27),
one expects the timescale for the system’s relaxation to scale
like N2td, with respect to N the number of particles. This
is investigated in Fig. 3, where we illustrate the dependence
of the system’s relaxation efficiency, E = ∫

du |F (u)|, as a
function of the number of particles. Here, E captures in
one number the overall rapidity of the system’s relaxation.
Because it is computed using the dimensionless flux, F (u),
as defined in Eq. (28), its kinetic prediction does not depend
on the considered values of N and Q. In Fig. 3, we observe that
the dimensionless relaxation efficiency is indeed independent
of N , so that the scaling of the relaxation time from Eq. (29)
is indeed recovered.

Before concluding, let us finally briefly describe the sys-
tem’s possible dynamics depending on the value of the dy-
namical temperature Q. As derived in Eq. (E5), we have

FIG. 3. Illustration of the dependence of the system’s dimension-
less relaxation efficiency, E = ∫

du|F (u)|, with F (u) the dimen-
sionless flux as defined in Eq. (28), for the same initial conditions
as in Fig. 2, with Q = 24.5 and various values of N . The black
line is the prediction from the kinetic Eq. (27), while the gray dots
are the N-body measurements, with the associated errors. Detailed
parameters for these runs are spelled out in Appendix F. As expected
from the scaling of Eq. (28), the dimensionless relaxation efficiency
is independent of N .

shown that the homogeneous system is linearly stable for
Q � Qc and linearly unstable for Q � Qc. This then leads to
the following possible behaviors.

(i) For Q � Qc, the homogeneous system is initially lin-
early unstable, so that it rapidly becomes inhomogeneous.
For such an inhomogeneous configuration, the kinetic block-
ing from Eq. (3) does not hold anymore. Provided that the
system remains inhomogeneous, its dynamics is driven by
the inhomogeneous Balescu-Lenard equation, which drives
a relaxation whose associated relaxation time scales linearly
with N [37]. As noted in [23], an interesting case is given
by an initial configuration satisfying 1 < Q < Qc. While such
an initial condition is initially unstable, its final homoge-
neous Boltzmann equilibrium is stable (since 1 < Q). As a
consequence, at some point, the system has to evolve from
a inhomogeneous distribution to a homogeneous one, which
accordingly delays the relaxation.

(ii) For Q � Qc, because it is linearly stable, the system
remains initially homogeneous, and evolves according to a
homogeneous kinetic equation in 1/N2. However, because it
is close to the stability threshold, collective effects, i.e., the
system’s ability to amplify perturbations, have to be taken into
account. This asks for a kinetic equation more general than
Eq. (27), where we neglected collective effects. As noted in
[23], an interesting case is given by an initial configuration
such that Qc < Q < 1. Such a system is initially stable so that
it will first remain homogeneous and undergo a slow 1/N2

relaxation. Yet, since Q < 1, the associated homogeneous
Boltzmann equilibrium is unstable. As a consequence during
its (homogeneous) relaxation, the system will unavoidably
become unstable at some point. This will drive a dynamical
phase transition rapidly making it inhomogeneous. The final
stages of the relaxation are then the ones of an inhomoge-
neous relaxation, that scales in 1/N . Owing to this dynamical
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phase transition, one expects therefore the system’s overall
relaxation time to have an intermediate scaling between N
and N2. In particular, as noted in [24], the precise time of
such phase transitions can strongly vary in systems with small
values of N , as Poisson shot noise is stronger therein. This
unavoidably affects the measurements of the effective scaling
of the relaxation time with N .

(iii) Finally, for Q � Qc, one recovers the case considered
in the present paper. Because it is dynamically so hot, the
system will not undergo any instability. It will therefore
remain homogeneous throughout its relaxation towards the
Boltzmann distribution. On the same grounds, collective ef-
fects are unimportant and can be neglected. The system’s
dynamics is therefore described by Eq. (27), and leads to a
relaxation time scaling like N2, as illustrated in Fig. 3.

V. CONCLUSION

In the present paper, we focused our attention on the
description of the very long-term dynamics of the HMF model
in the homogeneous limit, one particular example of a 1D
long-range interacting system. As highlighted in Eq. (3),
such systems are generically submitted to a kinetic blocking
that prevents their relaxation as a whole under 1/N resonant
effects. As such, their evolution is drastically slowed down,
and is only made possible by the cumulative contributions of
higher-order 1/N2 effects.

Placing ourselves within the dynamically hot limit, for
which collective effects can be neglected, and following an
approach similar to [24], we showed how one could explicitly
solve the BBGKY hierarchy of equations, truncated at order
1/N2. This led us to Eq. (4), a closed, explicit, and self-
consistent kinetic equation describing the long-term relax-
ation of the system’s homogeneous DF as driven by 1/N2

effects, as long as the mean system remains linearly stable.
We put forward the main properties of that kinetic equa-

tion, in particular the fact that it satisfies an H theorem, that
guarantees the unavoidable relaxation of the system towards
the homogeneous Boltzmann thermodynamical equilibrium
(provided that it is linearly stable). This result highlights
the fundamental importance of Boltzmann’s H theorem that
keeps being satisfied in the present 1/N2 context where the
relaxation is sourced by the product of three DFs. This there-
fore further extends the validity of Boltzmann’s H theorem
beyond the traditional kinetic equations such as the collisional
Boltzmann, Landau, and Balescu-Lenard equations, which are
sourced only by a product of two DFs.

In Eq. (29), we subsequently detailed how the present
formalism predicts a relaxation time scaling like tr � Q4N2td,
with td the dynamical time and Q the system’s stability
parameter, as defined in Eq. (26). In particular, this implied
a relaxation time scaling like N2 with respect to the number
of particles, a scaling already thoroughly checked in [24].

Finally, in Sec. IV, we presented explicit comparisons
of this kinetic equation with numerical measurements from
direct N-body simulations. We illustrated in Fig. 1 how, at
this 1/N2 order, the system does not suffer anymore from a
kinetic blocking, and can indeed relax to the homogeneous
Boltzmann equilibrium, provided that it is linearly stable. We
quantitatively showed in Fig. 2 how the numerically measured

diffusion fluxes converge to the kinetic prediction, as the
system is made hotter so that collective effects become more
and more negligible. We also illustrated in Fig. 3 how the N2

scaling of the relaxation time is also recovered numerically.
The kinetic equation presented in Eq. (4) is only a first step

towards the detailed characterization of the (very) long-term
dynamics of long-range interacting systems. In the present
context, calculations were made more tractable through the
following assumptions: (i) the HMF model contains only one
harmonic, k = ±1, in its pairwise interaction, reducing dras-
tically the allowed resonances; (ii) we neglected contributions
associated with collective effects, which prevented us from
having to solve and include the linear response theory of the
system; (iii) in the evolution equation for the three-body corre-
lation function, ∂G3/∂t , we neglected the contributions from
the source term in G(1)

2 × G(1)
2 in Eq. (B8), that would have

led to an additional collision term proportional to F 4, instead
of F 3 for the dominant term included in Eq. (4); (iv) we
assumed the system to be homogeneous. We note that kinetic
blockings of 1/N effects can also occur in 1D inhomogeneous
systems (e.g., 1D self-gravitating systems) when their orbital
frequency profile, that occurs in the resonance condition, is
monotonic (see, e.g., Refs. [29,30]). This requires further
generalizations of the kinetic equation for such inhomoge-
neous systems at the order 1/N2. Further work should try to
alleviate these shortcomings, by allowing for more complex
resonances, by accounting for collective effects to describe
dynamically colder systems that are linearly more responsive,
by accounting for possible contributions from higher order
terms in the system’s DF, as well as by allowing for (mono-
tonic) frequency profiles in inhomogeneous systems.

Finally, one should investigate the structure of the collision
operators for even higher-order kinetic equations, e.g., at order
1/N3. However, we note that it is not obvious whether or
not there exists dynamical systems undergoing a “double
kinetic blocking,” so that they are immune to both 1/N and
1/N2 effects, making them sensitive only to even higher-order
correlations such as 1/N3 effects. In the present case of the
homogeneous HMF model, such very-very-slow dynamics is
not possible, as highlighted in Eq. (23), where we showed
that the only DF for which the entropy does not increase is
the Boltzmann DF, i.e., the true thermodynamical equilibrium.
More generally, as recovered in the classical 1/N Landau and
Balescu-Lenard equations, and as recovered here for the 1/N2

kinetic equation, Boltzmann distributions are always found, a
posteriori, to be equilibrium states of the collision operator.
It would be of interest to investigate whether or not such a
property generically holds for higher order expansions, and, if
so, understand why.
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APPENDIX A: BBGKY HIERARCHY

In this Appendix, we briefly repeat the derivation of the
BBGKY hierarchy, to describe the dynamics of a long-range
coupled N-body system. Notations and normalizations are
inspired from the ones considered in [39].

We assume that the system is composed of N identical
particles of individual mass μ = Mtot/N , with Mtot the sys-
tem’s total mass. We introduce the system’s N-body PDF,
PN (w1, . . . , wN , t ), with w = (θ, v) the phase space coordi-
nates, normalized so that

∫
dw1 . . . dwN PN = 1. The dynam-

ics of PN is governed by Liouville’s equation

∂PN

∂t
+ [PN , HN ]N = 0, (A1)

where we introduced the full N-body Hamiltonian

HN (w1, . . . , wN ) = 1

2

N∑
i=1

v2
i + μ

N∑
i< j

U (θi − θ j ), (A2)

with U (θi − θ j ) the considered pairwise interaction. In
Eq. (A1), we also introduced the Poisson bracket over N
particles as

[PN , HN ]N =
N∑

i=1

{
∂PN

∂θi

∂HN

∂vi
− ∂PN

∂vi

∂HN

∂θi

}
. (A3)

We can subsequently define the system’s reduced PDFs as

Pn(w1, . . . , wn, t ) =
∫

dwn+1 . . . dwN PN (w1, . . . , wN , t ).

(A4)
Integrating Eq. (A1) with respect to all particles but the n first,
we obtain the BBGKY hierarchy of equations, namely

∂Pn

∂t
+ [Pn, Hn]n + (N − n)

∫
dwn+1[Pn+1, μ δHn+1]n = 0,

(A5)
where we used the symmetry of PN with respect to exchanges
of particles. Similarly to Eq. (A2), the n-body Hamiltonian
Hn ([ · , · ]n the Poisson bracket over n particles) naturally
follows from Eq. (A2) [Eq. (A3)], provided that one replaces
N by n. In Eq. (A5), we also introduced δHn+1 as the specific
interaction energy of the (n + 1)th particle with the n first
particles. It reads

δHn+1(w1, . . . , wn+1) =
n∑

i=1

U (θi − θn+1). (A6)

As usual, we note that the BBGKY hierarchy from Eq. (A5) is
not closed, as the evolution equation for ∂Pn/∂t involves the
higher-order PDF, Pn+1.

In order to simplify the combinatorial prefactors appearing
in Eq. (A5), we finally introduce the reduced DFs, Fn, as

Fn = μn N!

(N − n)!
Pn. (A7)

With such a choice, these DFs scale as Fn ∼ 1, with respect
to N the total number of particles. We can then rewrite the
BBGKY hierarchy Eq. (A5) under the simple form

∂Fn

∂t
+ [Fn, Hn]n +

∫
dwn+1 [Fn+1, δHn+1]n = 0. (A8)

The three first equations of the BBGKY hierarchy, i.e., the
evolution equations for F1, F2, and F3, will be the starting point
of the derivation of the kinetic equation presented in Eq. (4).

APPENDIX B: CLUSTER EXPANSION

In Appendix A, we briefly rederived the BBGKY hierarchy
of evolution equations for the system’s reduced DFs. In order
to be able to perform perturbative developments with respect
to N , the total number of particles, we now introduce the clus-
ter representation of the DFs, following an approach similar
to the one presented in [39].

We introduce the system’s two-body correlation function,
G2(w1, w2), as

F2(1, 2) = F1(1)F1(2) + G2(1, 2), (B1)

where we used the shortened notation F1(1) = F1(w1). This
correlation function characterizes how much the statistics of
the distribution of two particles differs from being separable.
Similarly, we introduce the system’s three-body correlation
function, G3(w1, w2, w3), as

F3(1, 2, 3) = F1(1)F1(2)F1(3)

+ F1(1)G2(2, 3)+F1(2)G2(1, 3)

+ F1(3)G2(1, 2) + G3(1, 2, 3). (B2)

Finally, we introduce the four-body correlation function,
G4(w1, w2, w3, w4), as

F4(1, 2, 3, 4)

= F1(1)F1(2)F1(3)F1(4)

+ {F1(1)F1(2)G2(3, 4) + F1(1)F1(3)G2(2, 4)

+ F1(1)F1(4)G2(2, 3) + F1(2)F1(3)G2(1, 4)

+ F1(2)F1(4)G2(1, 3) + F1(3)F1(4)G2(1, 2)}
+G2(1, 2)G2(3, 4)+G2(1,3)G2(2, 4)+G2(1, 4)G2(2, 3)

+ {F1(1)G3(2, 3, 4) + F1(2)G3(1, 3, 4)

+ F1(3)G3(1, 2, 4) + F1(4)G3(1, 2, 3)}
+ G4(1, 2, 3, 4). (B3)

The best way to check for the sanity of the previous definitions
is to compute the normalization of the correlation functions,
and their scaling with respect to N . Integrating Eqs. (B1),
(B2), and (B3) with respect to their phase space coordinates,
one obtains ∫

d1 F1(1) = μN ∼ 1,∫
d1 d2 G2(1, 2) = −μ2N ∼ 1

N
,

(B4)∫
d1 d2 d3 G3(1, 2, 3) = 2μ3N ∼ 1

N2
,∫

d1 d2 d3 d4 G4(1, 2, 3, 4) = −6μ4N ∼ 1

N3
,

where we used the shortening notation d1 = dw1. Owing to
these scalings, one can therefore use the correlation functions
to perform perturbative expansions with respect to the small
parameter 1/N .
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The next step of the calculation is now to inject the
previous decompositions into the three first equations of the
BBGKY hierarchy, as given by Eq. (A8), in order to obtain
the evolution equations for ∂F1/∂t , ∂G2/∂t , and ∂G3/∂t . Such
equations can be cumbersome to derive, and were obtained
using computer algebra in the Supplemental Material [35].
Writing the system’s one-body DF as F = F1, its time evo-
lution is given by

∂F (1)

∂t
+ v1

∂F (1)

∂θ1
− ∂F (1)

∂v1

∫
d2 F (2)U ′(θ1 − θ2)

−
∫

d2
∂G2(1, 2)

∂v1
U ′(θ1 − θ2) = 0. (B5)

The second equation of the hierarchy, for ∂G2/∂t , reads

∂G2(1, 2)

∂t
+

[
v1

∂G2(1, 2)

∂θ1
− ∂G2(1, 2)

∂v1

∫
d3 F (3)U ′(θ1−θ3)

− ∂F (1)

∂v1

∫
d3 G2(2, 3)U ′(θ1 − θ3)

− μ
∂F (1)

∂v1
F (2)U ′(θ1 − θ2) − μ

∂G2(1, 2)

∂v1
U ′(θ1 − θ2)

−
∫

d3
∂G3(1, 2, 3)

∂v1
U ′(θ1 − θ3)

]
(1,2)

= 0, (B6)

where we introduced the symmetrizing notation

[G(1, 2)](1,2) = G(1, 2) + G(2, 1). (B7)

Finally, the third equation of the hierarchy, for ∂G3/∂t , reads

∂G3(1, 2, 3)

∂t
+

[
v1

∂G3(1, 2, 3)

∂θ1

− ∂G3(1, 2, 3)

∂v1

∫
d4 F (4)U ′(θ1 − θ4)

− ∂F (1)

∂v1

∫
d4 G3(2, 3, 4)U ′(θ1 − θ4)

− μ
∂F (1)

∂v1
G2(2, 3)

{
U ′(θ1 − θ2) + U ′(θ1 − θ3)

}
− μ

∂G2(1, 2)

∂v1
F (3)U ′(θ1 − θ3)

− μ
∂G2(1, 3)

∂v1
F (2)U ′(θ1 − θ2)

− ∂G2(1, 2)

∂v1

∫
d4 G2(3, 4)U ′(θ1 − θ4)

− ∂G2(1, 3)

∂v1

∫
d4 G2(2, 4)U ′(θ1 − θ4)

− μ
∂G3(1, 2, 3)

∂v1
{U ′(θ1 − θ2) + U ′(θ1 − θ3)}

−
∫

d4
∂G4(1, 2, 3, 4)

∂v1
U ′(θ1−θ4)

]
(1,2,3)

= 0. (B8)

Here, similar to Eq. (B7), we introduced the symmetrizing
notation

[G(1, 2, 3)](1,2,3) = G(1, 2, 3) + G(2, 3, 1) + G(3, 1, 2),
(B9)

where it is assumed that the function G is symmetric
with respect to its last two indices, i.e., one should have
G(1, 2, 3) = G(1, 3, 2), as is the case for the term in Eq. (B8).

Equations (B5), (B6), and (B8) are the starting blocks to
obtain a self-consistent set of coupled evolution equations
describing the system’s entire dynamics up to order 1/N2.

APPENDIX C: TRUNCATING THE BBKGY HIERARCHY

In this Appendix, we detail how one may truncate
Eqs. (B5), (B6), and (B8) to lay the groundwork to derive the
closed kinetic equation presented in Eq. (4).

The first step of these simplifications is to perform a
truncation at order 1/N2 of these three evolution equations.
In Eq. (B5), we also note that the collision term for ∂F/∂t
only involves G2(1, 2), whose norm scales like 1/N , as given
by Eq. (B4). As a consequence, if one aims at deriving a
kinetic equation at order 1/N2, it is essential to account for
the corrections of order 1/N2 that can arise in G2. To perform
the truncation at order 1/N2, we therefore introduce explic-
itly the small parameter ε = 1/N . Following the definition
μ = Mtot/N , and the scalings from Eq. (B4), we perform the
replacements

μ → εμ, G2 → εG(1)
2 + ε2G(2)

2 ,

G3 → ε2G3, G4 → ε3G4. (C1)

Using this rewriting, we then keep in the evolution equations
only terms up to order ε2. Moreover, owing to the split of
G2 in two components, we can split the associated evolution
Eq. (B6) in two components, namely at order 1/N (1/N2) that
will govern the dynamics of ∂G(1)

2 /∂t (∂G(2)
2 /∂t).

A subsequent simplification arises from the homogeneity
assumption, i.e., the assumption that the system’s mean DF
remains a function of v only. This allows us to get rid of the
phase mixing term, v1∂F/∂θ1, in Eq. (B5), and also get rid of
all the mean-field potential components, i.e., terms involving∫

d2 F (2)U ′(θ1 − θ2) = 0.
In order to ease the derivations of the kinetic equation, we

also assume that the mean system is sufficiently dynamically
hot for collective effects to be negligible.3 Such an assump-
tion amounts to neglecting the backreaction of a correlation
function on the perturbating potential in which that same
correlation function is evolving. As a result, we perform the
following simplifications:4

For
∂G(1)

2 (1, 2)

∂t
:

∫
d3 G(1)

2 (2, 3)U ′(θ1 − θ3) → 0,

For
∂G(2)

2 (1, 2)

∂t
:

∫
d3 G(2)

2 (2, 3)U ′(θ1 − θ3) → 0,

For
∂G3(1, 2, 3)

∂t
:

∫
d4 G3(2, 3, 4)U ′(θ1 − θ4) → 0. (C2)

3In the context of 1/N dynamics, such an assumption gets the
Balescu-Lenard equation to reduce to the Landau kinetic equation
[5,6].

4Such a truncation amounts to assuming that the system is dynam-
ically hot, i.e., 1/Q � 1, where Q is introduced in Eq. (26).

052142-9



FOUVRY, BAR-OR, AND CHAVANIS PHYSICAL REVIEW E 100, 052142 (2019)

Finally, we perform three last approximations: (i) in the
evolution equation for ∂F/∂t , we may neglect the contribution
from G(1)

2 that is responsible for the usual 1/N Landau equa-
tion, which identically vanishes for 1D homogeneous systems
[as highlighted in Eq. (3)]; (ii) in the evolution equation for
∂G(2)

2 /∂t , we may safely neglect the contributions from the
source term proportional to μ∂G(1)

2 (1, 2)/∂v1, as one can
check that it does not contribute to the kinetic equation (see
Supplemental Material [35]); (iii) in the evolution equation
for ∂G3/∂t , we neglect the contributions from the term pro-
portional to G(1)

2 × G(1)
2 , as it will lead to a collision operator

proportional to F 4, while the other source terms will lead to
a collision operator proportional to F 3, that dominates for
sufficiently dynamically hot systems.

Following these various truncations and simplifications,
we now have at our disposal a set of four coupled evolution
equations that jointly describe the long-term dynamics of the
considered system at order 1/N2. The dynamics of ∂F (1)/∂t
reads

∂F (1)

∂t
−

∫
d2

∂G(2)
2 (1, 2)

∂v1
U ′(θ1 − θ2) = 0. (C3)

The dynamics of ∂G(1)
2 (1, 2)/∂t is given by

∂G(1)
2 (1, 2)

∂t
+

[
v1

∂G(1)
2 (1, 2)

∂θ1

− μ
∂F (1)

∂v1
F (2)U ′(θ1 − θ2)

]
(1,2)

= 0, (C4)

while the dynamics of the second-order correction,
∂G(2)

2 (1, 2)/∂t , takes the form

∂G(2)
2 (1, 2)

∂t
+

[
v1

∂G(2)
2 (1, 2)

∂θ1

−
∫

d3
∂G3(1, 2, 3)

∂v1
U ′(θ1 − θ3)

]
(1,2)

= 0. (C5)

Finally, the dynamics of the three-body correlation function,
∂G3(1, 2, 3)/∂t , reads

∂G3(1, 2, 3)

∂t
+

[
v1

∂G3(1, 2, 3)

∂θ1

− μ
∂F (1)

∂v1
G(1)

2 (2, 3)
{
U ′(θ1 − θ2) + U ′(θ1 − θ3)

}

− μ
∂G(1)

2 (1, 2)

∂v1
F (3)U ′(θ1 − θ3)

− μ
∂G(1)

2 (1, 3)

∂v1
F (2)U ′(θ1 − θ2)

]
(1,2,3)

= 0. (C6)

All together, Eqs. (C3), (C4), (C5), and (C6) form the start-
ing point to derive the kinetic Eq. (4), as we describe in
Appendix D.

APPENDIX D: DERIVING THE KINETIC EQUATION

In this Appendix, we detail the protocol followed to obtain
the 1/N2 kinetic equation put forward in Eq. (4), following
an approach similar to [24]. Here, we only present the overall

approach and the key steps, while the detailed effective (and
cumbsersome) computations were performed using symbolic
calculations in Mathematica, as detailed in the Supplemental
Material [35]. From the technical point of view, the main
difficulty is to deal, without mistake, with the large number of
terms that appear in the successive resolutions of the evolution
equations, hence the need for a numerical implementation of
this calculation.

Luckily, the four truncated evolution equations, Eqs. (C3)–
(C6), form a closed and well-posed hierarchy of coupled
partial differential equations. In particular, owing to the ab-
sence of any collective effects, that would require for the
explicit characterization of the system’s linear response, the
evolution equations can easily be solved in sequence. The
first step is to solve for the time evolution of G(1)

2 (1, 2)(t ),
as governed by Eq. (C4). This explicit solution may then be
used as a (time-dependent) source term in Eq. (C6) to obtain
the time evolution of G3(t ). This function can then be used as
a (time-dependent) source term in Eq. (C5) to derive the time
evolution of G(2)

2 (t ).
In each of these three steps, we rely on two main as-

sumptions: (i) Bogoliubov’s ansatz, so that we may take
F (1, t ) = cst when solving for the time evolution of a corre-
lation function; (ii) we neglect the transients associated with
any specific initial conditions in the system’s correlations,
i.e., we solve these differential equations with the initial con-
ditions G(1)

2 (t =0)=G3(t =0)=G(2)
2 (t =0)=0. Moreover, in

order to easily deal with phase mixing terms of the form
v1∂G(1)

2 /∂θ1, we perform Fourier developments of all the
correlation functions with respect to their θ dependence. Sim-
ilarly, the interaction potential is also expanded in its Fourier
harmonics. As imposed by Eq. (2), in the present case of the
HMF model, the interaction potential takes the simple form
U (θ ) = ∑

k=±1
−U0

2 eikθ , so that only the harmonics k =±1
can support the interaction, which offers a drastic reduction
in the total number of resonant terms that can contribute to
the system’s dynamics.

Following these three successive resolutions, we now have
at our disposal an explicit solution for the time dependence of
G(2)

2 (t ). Owing to Bogoliubov’s ansatz, we may then consider
the limit t → +∞ of that expression, in order to obtain the
asymptotic behavior of G(2)

2 , and inject it in Eq. (C3) to
obtain the closed 1/N2 collision operator driving the long-
term evolution of ∂F/∂t . At this stage, a typical time integral
appearing in the expression of G(2)

2 (t ) takes the form

∫ t

0
dt1 ei(t−t1 )ω1

∂

∂v1

[ ∫ t1

0
dt2 e−i(t1−t2 )ω2

× ∂

∂v2

{ ∫ t2

0
dt3 e−i(t2−t3 )ω3

}]
, (D1)

where the frequencies ω1, ω2, and ω3 are some linear func-
tions of the velocities v1, v2, and v3, i.e., the resonances
involved in the dynamics, while some additional gradients
with respect to the velocities can get intertwined with the time
integrals. Now, our goal is to estimate the asymptotic limit
t → +∞ of that expression in order to estimate the collision
operator driving the dynamics of ∂F/∂t . To do so, we use the

052142-10



KINETIC THEORY OF ONE-DIMENSIONAL HOMOGENEOUS … PHYSICAL REVIEW E 100, 052142 (2019)

asymptotic formula

lim
t→+∞

∫ t

0
dt1 e−i(t−t1 )ω1 = πδD(ω1) − iP

(
1

ω1

)
, (D2)

with δD(ω) the Dirac delta and P (1/ω) the Cauchy principal
value [see the expression for δ+(x) in Eq. (6.40) of [39]]. For
nested integrals as in Eq. (D1), we apply consecutively the
formula from Eq. (D2).5 Doing so, one still prevents for now
the evaluation of the gradients with respect to the velocities,
so that such gradients would only act on the Dirac deltas and
the Cauchy principal values.

Once all the time integrals have been replaced by their
asymptotic behaviors, the derived kinetic equation takes the
form

∂F (v1)

∂t
=π3

2
U 4

0 μ2 ∂

∂v1

[ ∫
dv2dv3

× {δD(2v1 − v2 − v3)[PP ′KI + PP ′′KII]

− (v1 ↔ v2)}
]
, (D3)

where we introduced the shortening notations P = P ( 1
v1−v2

),

P ′ = P ′( 1
v1−v2

), and P ′′ = P ′′( 1
v1−v2

). When making the sub-
stitution (v1 ↔ v2) in Eq. (D3), it is important to note that
(P,P ′,P ′′) → (−P,P ′,−P ′′). Finally, in Eq. (D3), we also
introduced the differential operators

KI =
[

2
∂

∂v2

∂

∂v3
− 3

∂

∂v1

∂

∂v3

+ 2
∂2

∂v2
3

+ ∂

∂v1

∂

∂v2
− 2

∂2

∂v2
1

]
F (v1)F (v2)F (v3) (D4)

and

KII =
[

∂

∂v3
+ ∂

∂v2
− 2

∂

∂v1

]
F (v1)F (v2)F (v3). (D5)

We note that Eq. (D3) is almost identical to the 1/N2 kinetic
equation already put forward in Eq. (23) of [24] for the same
physical system. The differences are some corrections in the
overall prefactor, and the overall sign of the (v1 ↔ v2) term.

Luckily, the result from Eq. (D5) can be significantly
simplified, by using integration by parts, as well as the
parity symmetries of the Dirac deltas, the principal values
and their derivatives, leading to the final result from Eq. (4).
The detailed steps for these calculations can be found in the
Supplemental Material [35]. We briefly present them below
for completeness.

The key step is to perform an integration by parts in
Eq. (D3) with respect to the integration variable v2, using the
formula

PP ′′ = − ∂

∂v2
[PP ′] − (P ′)2. (D6)

5One could be concerned by the nested bounds from the
three successive integrals of Eq. (D1). Even if one has∫ t

0 dt1

∫ t1
0 dt2

∫ t2
0 dt3 = 1

6

∫ t
0 dt1

∫ t
0 dt2

∫ t
0 dt3, when applying succes-

sively the formula from Eq. (D2), the 1
6 volume prefactor does not

have to be accounted for.

At this stage, the derivatives of the Dirac deltas that appear
are subsequently integrated using an integration by parts with
respect to the integration variable v3, so that

δ′
D(2v1 − v2 − v3) = − ∂

∂v3
[δD(2v1 − v2 − v3)], (D7)

and similarly for δ′
D(2v2 − v1 − v3). Proceeding that way

allows us not to create any higher order derivatives of the
Cauchy principal values. The kinetic equation then becomes
simpler, as it reads

∂F (v1)

∂t
= π3

2
U 4

0 μ2 ∂

∂v1

[ ∫
dv2dv3{δD(k1 · v)P P ′ MI

+ δD(k1 · v) (P ′)2 MII(k1)

+ δD(k2 · v) (P ′)2 MII(k2)}
]
. (D8)

In that equation, we introduced the differential operators

MI =
[

− 2
∂2

∂v2
1

+ ∂2

∂v2
2

+ ∂2

∂v2
3

+ 2
∂

∂v2

∂

∂v3

− ∂

∂v1

∂

∂v2
− ∂

∂v1

∂

∂v3

]
F (v1) F (v2) F (v3) (D9)

and

MII(k) =
(

k · ∂

∂v

)
F (v1) F (v2) F (v3), (D10)

with the resonance vectors k1 and k2 already defined in
Eq. (5).

At this stage, we finally note that the term in PP ′ in
Eq. (D8) will not contribute to the dynamics. Indeed, from
Eq. (D9), we note that MI is invariant under the change
(v2 ↔ v3). This symmetry can be leveraged to get rid of
this term, as follows. Owing to the presence of the dou-
ble integral

∫
dv2dv3, one can perform the symmetriza-

tion (v2 ↔ v3) for that term. This leaves the Dirac delta,
δD(k1 · v), invariant. From that same resonance condition, we
note that the arguments of the Cauchy principal values are
transformed as 1

v1−v2
→ 1

v1−v3
=− 1

v1−v2
. Given the parities of

P and P ′, we can therefore conclude that the term in PP ′
in Eq. (D8) is antisymmetric under the change (v2 ↔ v3) so
that the overall contribution of this term vanishes. The last
step of the calculation is finally to perform the replacement∫

dv2 (P ′)2 → P
∫

dv2/(v1 − v2)4. All in all, one finally ob-
tains the closed kinetic equation spelled out in Eq. (4).

APPENDIX E: LINEAR RESPONSE THEORY

As highlighted in Appendix C, in order to obtain the kinetic
Eq. (4), we had to neglect the contributions from collective
effects in the BBGKY evolution equations. As a consequence,
in order to test that kinetic equation, it is essential to place
ourselves in regimes where collective effects are indeed unim-
portant. Luckily the strength of the self-gravitating amplifica-
tion can be directly estimated by solving the linear response
theory of the system. This is what we briefly reproduce in that
Appendix.

A systematic approach to perform this calculation is to
proceed by analogy starting from the generic result regarding
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the linear stability analysis of (inhomogeneous) long-range
interacting systems. Following Eq. (5.94) of [7] [similarly
Eq. (G3) of [40] and references therein], the system’s stability
is governed by the response matrix

M̂pq(ω) = 2π
∑

k

∫
dJ

k ∂F/∂J

ω − k �(J )
ψ

(p)∗
k (J )ψ (q)

k (J ), (E1)

where the angle-action coordinates are (θ, J ) = (θ, v) and the
orbital frequencies are �(J ) = v.

Here, the response matrix characterizes the strength
with which the underlying mean-field system can am-
plify perturbations. More precisely, assuming that the sys-
tem is submitted to some external potential perturbation,
δψext, then the system’s instantaneous self-generated re-
sponse, δψ self , is given by the joint amplification of the
external perturbation and the system’s self-generated re-
sponse, so that δψ̂ self (ω) ∝ M̂(ω) · [δψ̂ self (ω) + δψ̂ext (ω)].
Owing to this loop of amplification, any external per-
turbation is said to be dressed by collective effects,
as the total perturbations in the system are given by
[δψ̂ self (ω) + δψ̂ext (ω)] ∝ [I − M̂(ω)]−1 · δψ̂ext (ω). As such,
the matrix [I − M̂(ω)]−1 plays the role of a susceptibility, that
quantifies the efficiency with which perturbations are boosted.
A system is then linearly unstable if there exists a complex
frequency ω = ω0 + iη, with η > 0, such that M̂(ω) has an
eigenvalue equal to 1, i.e., if there exists a frequency for which
the self-gravitating dressing gets infinitely large.

In Eq. (E1), we introduced a biorthogonal set of basis
elements, ψ (p), on which the pairwise interaction is decom-
posed, following the so-called matrix method [41]. For the
present system, the natural basis elements follow from the
pairwise interaction from Eq. (2), that can be written under
the separable form

U (θ1 − θ2) = −
∑
p=±1

ψ (p)(θ1) ψ (p)∗(θ2),

(E2)
ψ (p)(θ ) =

√
U0/2 eipθ ,

and it is straightforward to check that (ψ (+), ψ (−) ) indeed
form a biorthogonal basis, as defined, e.g., in Eq. (G1) of [40].
Similarly their Fourier transform with respect to the angle can
easily be computed. It is independent of the action v, and
reads ψ

(p)
k = δ

p
k

√
U0/2. Owing to this Kronecker delta, the

2 × 2 response matrix from Eq. (E1) is then diagonal. We may
finally introduce the susceptibility matrix (or dielectric func-
tion), ε = I − M̂, that is also diagonal with the coefficients

ε±(ω) = 1 ∓ π U0

∫
dv

∂F/∂v

ω ∓ v
. (E3)

Let us emphasize that the result from Eq. (E3) is identical to
the result presented in Eq. (9) of [42].

Relying on the same dedimensionalization as in Eq. (27),
one can rewrite the susceptibility coefficient from Eq. (E3)
under the form

ε±(ω) = 1 ∓ 1

Q

∫
du

∂F/∂u

ω ∓ u
, (E4)

FIG. 4. Illustration of the Nyquist contours
ω 	→ det[ε(ω + i × 10−6)] for the PDF from Eq. (F2) with
α = 4, and different dynamical temperatures. None of these
contours enclose the origin, indicating that all these systems are
linearly stable. The larger is Q, the closer is the contour to the point
(1, 0), the weaker are collective effects, and the more one is in the
applicability regime of Eq. (4).

with ω = ωtd a dimensionless frequency. We also recall that
the dimensionless PDF, F (u), and the stability parameter, Q,
were given in Eqs. (25) and (26).

Luckily, it is possible to further precise our characterization
of the system’s stability for the range of DFs that are consid-
ered in this paper. Following the generic shape of the test PDF
from Eq. (F2), let us therefore assume that the system’s DF,
F (v), is single humped, i.e., it possesses a single maximum.
We will also assume that the DF is even, so that this maximum
is reached in v = 0. Owing to this parity, in Eq. (E4), we note
that ε+(ω) = ε−(ω), so that we may limit ourselves to only
studying ε+(ω).

Because the DF is single humped in v = 0, following
Nyquist’s criterion (see, e.g., Sec. 2.6 in [42]), such a DF is
linearly stable if, and only if, ε+(0) > 0. As a consequence,
following Eq. (E4), such a DF is linearly stable if, and only if,
one has

Q > Qc = −
∫

du
∂F/∂u

u
. (E5)

Conveniently, it is straightforward to compute these stability
thresholds for the generic test DF from Eq. (F2). This DF is
parametrized by the power index α, such that α = 2 corre-
sponds to the Gaussian distribution. One finds

Qc(α = 2) = 1,

Qc(α = 4) = 4 �[3/4]2

�[1/4]2
� 0.46. (E6)

A homogeneous Gaussian PDF (i.e., a homogeneous
Boltzmann distribution) is therefore linearly stable if, and only
if, it satisfies Q > 1.

For more generic PDFs, the susceptibility coefficient from
Eq. (E4) cannot always be computed analytically. One has
to resort to numerical evaluations, e.g., following the method
presented in Appendix D of [29]. We illustrate this method
in Fig. 4 by representing the Nyquist contours associated
with the test PDF from Eq. (F2). As expected, we recover
in Fig. 4 that the larger is Q, the weaker is the system’s
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susceptibility, i.e., dynamically hot systems are less efficient at
amplifying perturbations through collective effects. Figure 4
also illustrates that the test case considered in Fig. 2 is
sufficiently hot for the system to be linearly stable. In addition,
collective effects should prove sufficiently negligible for the
kinetic Eq. (4) to be in its applicability regime.

APPENDIX F: NUMERICAL APPLICATIONS

In this Appendix, for completeness, we briefly present our
numerical approach to perform N-body simulations of the
HMF model. Following Eq. (1), the specific Hamiltonian of
a test particle embedded in that system reads

Ht (θt, vt ) = v2
t

2
− Mx(t ) cos(θt ) − My(t ) sin(θt ), (F1)

where we introduced the system’s instantaneous mag-
netizations as Mx(t ) = U0μ

∑N
i=1 cos[θi(t )], as well as

My(t ) = U0μ
∑N

i=1 sin[θi(t )]. Two important remarks should
be made with respect to Eq. (F1). First, because the pairwise
interaction does not diverge at zero angular separation, the
specific Hamiltonian from Eq. (F1) and the associated evo-
lution equations can also be used to obtain correct evolution
equations for each of the system’s particles, treating the
magnetizations as external, i.e., not taking any derivatives
of it. Second, as the magnetizations involve a sum over the
N particles, they should be interpreted as global and shared
quantities, that need to be computed only once for each time
step. This allows for the computational complexity of integrat-
ing for one time step to scale like O(N ), rather than O(N2) as
in the usual N-body problem with binary interactions.

To compute the velocity fields at a given time, we proceed
as follows: (i) we compute and store (cos, sin) for all particles;
(ii) we reduce these quantities to compute the instantaneous
magnetisations (Mx, My); (iii) we compute the velocity fields
dθi/dt and dvi/dt . Owing to the fact that the Hamiltonian
from Eq. (F1) is separable, particles are then advanced using
a fourth-order symplectic integrator [see Eq. (4.6) in [43]].
The numerical simulations presented in Sec. IV were all

performed using an integration time step equal to δt = 1/(2σ )
that guaranteed a relative error in the total energy of the order
of 10−7.

Following [44], the initial distribution of the system is
taken to be a generalized Gaussian distribution. For a given
index α and velocity dispersion σ , its PDF reads

P(v) = α

2

A(α, σ )

�(1/α)
exp[−(A(α, σ )|v|)α],

A(α, σ ) = 1

σ

(
�(3/α)

�(1/α)

)1/2

. (F2)

This PDF satisfies the normalization condition
∫

dv P(v) = 1
and is of zero mean and variance σ 2. For α = 2, this corre-
sponds to the Gaussian distribution, while larger values of α

are associated with less peaked distributions. Luckily, the PDF
from Eq. (F2) can also easily be sampled [see Eq. (9) in [44]].

To measure fluxes, as in Figs. 2 and 3, we proceeded as
follows. For each setup, we perform Nreal realizations, only
changing the initial conditions. The dimensionless velocity
space, u ∈ [−3, 3], is truncated in 50 equal size bins. For each
realization, each velocity bin location, and each time step,
we compute the proportion of particles left to that location,
subsequently averaged over all the available realizations. For
each velocity bin, the associated time series are then fitted
with a linear time dependence, whose slope is the local diffu-
sion flux, F (u, t =0). To estimate the associated measurement
errors, we follow the exact same approach for Nboot measure-
ments, except that the sample of Nreal realizations over which
the ensemble average is performed allows for repetitions, i.e.,
for the same realizations to be used more than once. The mea-
surement is then given by the median value, while the errors
are given by the 16% and 84% confidence levels. In Figs. 1
and 2, we used the values N = 103, Nreal = Nboot = 103, and
simulated the systems up to t = 5 × 108td. With our imple-
mentation, running one such realization asked for about 18 h
of computation on a single core. In Fig. 3, we used the
values 0.5 × 103 � N � 1.7 × 103, Nreal = Nboot = 224, and
simulated the systems up to t = 5 × 108td.
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