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We describe a simple form of importance sampling designed to bound and compute large-deviation rate
functions for time-extensive dynamical observables in continuous-time Markov chains. We start with a model,
defined by a set of rates, and a time-extensive dynamical observable. We construct a reference model, a
variational ansatz for the behavior of the original model conditioned on atypical values of the observable. Direct
simulation of the reference model provides an upper bound on the large-deviation rate function associated with
the original model, an estimate of the tightness of the bound, and, if the ansatz is chosen well, the exact rate
function. The exact rare behavior of the original model does not need to be known in advance. We use this method
to calculate rate functions for currents and counting observables in a set of network- and lattice models taken
from the literature. Straightforward ansätze yield bounds that are tighter than bounds obtained from Level 2.5 of
large deviations via approximations that involve uniform scalings of rates. We show how to correct these bounds
in order to recover the rate functions exactly. Our approach is complementary to more specialized methods and
offers a physically transparent framework for approximating and calculating the likelihood of dynamical large
deviations.
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I. INTRODUCTION

Dynamical systems, such as chemical networks [1], bio-
chemical and molecular machines [2–4], and models of driven
[5–8] and glassy [9–11] systems, exhibit fluctuations, de-
partures from typical behavior [12]. Fluctuations of time-
extensive observables—which can be work, entropy produc-
tion [13,14], other currents [8,15,16], or dynamical activity
[11,17]—characterize the behavior of these systems, much
as fluctuations of size-extensive quantities, such as energy or
magnetization, characterize the static behavior of equilibrium
systems [18,19]. The probability distributions that control
dynamical fluctuations satisfy certain requirements, known
as fluctuation relations [3,13,14,20–26], which impose con-
straints on their symmetries. The precise form of these distri-
butions, however, must be obtained by explicit calculation.

Here we focus on calculating probability distributions
ρT (A) for models with a discrete state space, for stochastic
dynamical trajectories of elapsed time T and time-extensive
observables A. Time-extensive observables are those that can
be built from a sum of values associated with individual pieces
of a trajectory. For large values of T these distributions often
adopt the large-deviation form [20–25,27,28]

ρT (A) ≈ e−T J (a), (1)

in which a = A/T is the time-intensive value of the observ-
able. J (a) is the large-deviation rate function, which quantifies
the likelihood of observing particular values of the observable
a [29]. The symbol ≈ denotes equality of the logarithms
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of both sides of (1), to leading order in T , for all values
of a. In the physics literature, most numerical methods for
calculating J (a) aim to first compute its Legendre transform,
the scaled cumulant-generating function (SCGF) [11,28,30–
35]. It is possible to recover J (a) from the SCGF if the former
is convex [36]. A common way to calculate the SCGF is to
use cloning methods [30,37], which duplicate or eliminate
trajectories according to their time-integrated weights. Often
cloning is supplemented by other importance-sampling meth-
ods [32–34], some of which make use of a modified dynamics
in order to produce trajectories that more closely resemble the
rare dynamics of the original model.

Determining J (a) solely by reweighting trajectories of
a modified dynamics, without prior knowledge of the rare
dynamics of the model of interest, is not widely done (see,
however, Refs. [38–41]). Standard arguments suggest that
determining the probability distribution of a within one dy-
namics by reweighting against a second dynamics requires, in
general, the evaluation of random quantities whose variance
is exponential in the trajectory length [42–45] (see Sec. II F).
Such observations are sometimes taken to mean that trajectory
reweighting, without advance knowledge of the rare dynamics
to be sampled, is little better than direct sampling using the
original model [46]. Here we argue that more optimism is
warranted, and show that the conditions under which mean-
ingful results can be extracted from trajectory reweighting
are much less restrictive than has been recognized. Moreover,
trajectory reweighting presents few technical complications
beyond the requirement to simulate the original model with
modified rates, and allows the reconstruction of J (a) directly,
without first calculating the SCGF.

To compute the large-deviation rate function J (a) for a
given model and dynamical observable a, we use a simple
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form of importance sampling [42–44,47–50]. We begin with
a modification of the model dynamics. This modified or ref-
erence model is a microscopic ansatz for the original model’s
behavior, conditioned on particular values of the observable
a. The ansatz is characterized by a set of parameters whose
values we determine variationally. In practical terms we sim-
ply guess a reference dynamics that is able to generate more
or less of a than the normal dynamics. Let the typical value
of a produced by original and reference models be a0 and
ã0, respectively [51]. Reweighting trajectories of the reference
model produces an upper bound on the rate function J asso-
ciated with the original model at the point ã0, an estimate of
the tightness of the bound, and, if the ansatz is chosen well,
the exact rate function (to within statistical error). That is, the
reference dynamics is a true ansatz, a guess whose accuracy
can be determined by subsequent calculation. Repeating the
calculation for a set of reference models possessing a set of
distinct values {ã0} allows us to attempt reconstruction of J (a)
at the set of points a ∈ {ã0}. In this respect the procedure
is similar to umbrella sampling of equilibrium systems. We
show that the conditions under which the exact rate function
can be recovered are less restrictive than usually assumed.

Any reference dynamics can be reweighted to produce
some upper bound on J (a), simply by making the desired
value of a typical [52]. Good choices of reference dynam-
ics, leading to tight bounds, render the fluctuations of the
reweighting factor or likelihood ratio (the ratio of path prob-
ability of new and old dynamics) small. We show here that
relatively simple reference-model choices produce meaning-
ful (i.e., tight) bounds, for a set of models and observables
taken from the literature. We compare the bounds produced
by our method with universal bounds on currents [53,54] and
nondecreasing counting variables [55]. Those bounds can be
obtained from Level 2.5 of large deviations [56,57], the exact
rate function for the empirical flow (jumps between states) and
measure (state occupation times), via a uniform rescaling of
rates. That approach provides important physical insight into
the quantities that constrain fluctuations of time-integrated
observables, and also provides numerical bounds on rate func-
tions. Our approach, which uses a microscopic ansatz within
the exact path integral for the dynamics, produces tighter
bounds, particularly far into the tails of rate functions. The
extent to which bounds vary as we change the nature of the
ansatz provides physical insight into how much certain types
of microscopic processes contribute to the rare dynamics of
a model. Microscopic ansätze, even relatively simple ones,
are capable of capturing a wide range of behavior, including
regimes of anomalous fluctuations in which the usual central-
limit theorem breaks down [39]. Computing a correction to
these bounds, by measuring fluctuations of the likelihood ra-
tio, allows the recovery of the exact rate function. Importantly,
fluctuations of the likelihood ratio do not need to be zero for
J (a) to be calculated

The approach described here is variational, in the sense
that we vary the parameters of the reference model in or-
der to identify the dynamics that best approximates the
rare dynamics of interest. Variational principles underpin
the study of large deviations, embodied by the notion that
“any large deviation is done in the least unlikely of all the
unlikely ways” [27]. Variational ideas are central to different

representations of rare processes—see, e.g., Sec. 5 of
Ref. [31]—and have been widely used in analytic and nu-
merical work [33,35,58–60]. The aim of this paper is to
present a simple, physically motivated approach to bounding
and calculating rate functions using a variational principle
enacted by (only) direct simulations, and to present a set of
convergence criteria, adapted from Ref. [61], that reveal when
bounds can be corrected to produce the exact rate function.
We have provided a GitHub script [62] that computes the
correction term automatically, this being the most involved
step of the calculation. These results extend our previous work
[39–41] by (1) showing how different forms of physically
motivated reference dynamics can be used to treat different
models and (2) by providing a set of criteria that identify when
the exact rate function can be recovered. One point we empha-
size is that considerable progress can be made using physical
intuition and basic knowledge of the properties of a model,
without the application of other forms of importance sampling
(such as cloning or transition-path sampling). Our method
requires only continuous-time Monte Carlo simulation, and
so can be applied to any set of circumstances in which that
method can be used, including to models with unbounded
state spaces [39]. In addition, it can be used to reconstruct
families of large-deviation rate functions from a single set
of simulations, using the principle that the dynamics of one
model can be reweighted to examine the dynamics of many
others [41]. Reference models represent a form of importance
sampling similar in spirit but different in detail to the umbrella
potentials used in equilibrium sampling [63,64].

In Sec. II we describe our approach, which we refer to as
VARD (for variational ansatz for rare dynamics). In general
terms there are many forms of VARD that have been used
in the literature (see above); we use the term to convey the
specific notion of doing (only) direct simulations of a family
of modified models. In Sec. III we apply the method to four
models taken from the literature. We have chosen models from
the literature that display a variety of interesting behavior:
two lattice models (the asymmetric simple exclusion process
[6,65] and the Fredrickson-Andersen model [66]) and two
network models, and we sample both currents and nonde-
creasing counting variables to show that the method works
the same way for each. In the cases described in Secs. III B–
III E, relatively simple choices of reference model allow the
computation of the exact rate function, and we gain physical
insight into the nature of the dynamics that contributes to
particular pieces of J (a). We also show, in Sec. III F, that
bounds that are descriptive in small systems remain so in
larger systems. We conclude in Sec. IV.

II. A VARIATIONAL ANSATZ FOR RARE DYNAMICS

A. Continuous-time Markov chains and large deviations

Consider a continuous-time dynamics [67] on a set of
discrete states, defined by the master equation

∂t Px(t ) =
∑
y �=x

WyxPy(t ) − RxPx(t ). (2)

Here Px(t ) is the probability that a system resides in (mi-
cro)state x at time t . Wxy is the rate for passing from state
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x to state y, and Rx = ∑
y �=x Wxy is the escape rate from x.

The standard algorithm for simulating the dynamics (2) is as
follows [68]. From state x, choose a destination state y with
probability

pxy = Wxy

Rx
. (3)

The time increment �t required to make this move is a
random number drawn from the exponential distribution with
mean 1/Rx,

px(�t ) = Rxe−Rx�t . (4)

Given an initial state x0, the dynamics defined by (3) and (4)
generates a trajectory ω = x0 → x1 → · · · → xK (ω), which
consists of a sequence of K (ω) jumps xk → xk+1 and asso-
ciated jump times �tk . In this paper we are concerned with
calculating

ρT (A) =
∑

ω

p(ω)δ[T (ω) − T ]δ[A(ω) − A], (5)

the probability distribution, taken over all trajectories of
elapsed time T , of a time-extensive dynamical observable

A(ω) =
K (ω)−1∑

k=0

αxkxk+1 . (6)

Here αxy is the change of the observable A upon moving
from x to y, and A(ω) is the sum of these quantities over
a single trajectory ω. We define a(ω) ≡ A(ω)/T (ω) as the
time-intensive version of A. T (ω) is the elapsed time of tra-
jectory ω, and is equal to T when TK (ω) � T < TK (ω)+1, where
TK (ω) = ∑K (ω)−1

k=0 �tk . The symbol p(ω) is the probability of
a trajectory ω. Given an initial state, this term is equal to a
product of factors (3) and (4) for all jumps of the trajectory,
multiplied by the probability of not exiting state xK (ω) between
times TK (ω) and T .

In (5), the delta functions denote the conditions of fixed A
and fixed T that we wish to impose on the trajectory ensemble.
This conditioning defines the microcanonical path ensemble
[31], of which (5) is the normalization constant.

We focus on models for which, for large values of T , the
probability distribution (5) adopts the large-deviation form
(1). Our aim is to calculate the rate function J (a) (sometimes
the notation I (a) or ϕ(a) is used to denote a rate function
[28,55]). This function quantifies the rate of decay of atypical
values of a. For many models J (a) has a unique minimum at a
point a = a0, where J (a0) = 0. This point defines the typical
value of a: the distribution ρT (A) concentrates on a0 in the
long-time limit, an expression of the law of large numbers
[27,28]. In general, a rate function can have more than one
point at which it is zero, defining multiple typical values of
an observable [28,39,69]. Often, the rate function is quadratic
in the neighborhood of its minimum, an expression of the
central-limit theorem [27,28]. Exceptions to this norm occur
at phase transitions, where the usual central-limit theorem
does not hold [70]. Far from their minima, rate functions
display a variety of behaviors [28]. However, direct simulation
of the dynamics (3) and (4) leads to poor sampling of J (a)
anywhere other than in the neighborhood a ≈ a0.

B. Quantifying rare events

To remedy the sampling problem for values of the observ-
able a far from a0, we introduce a reference model. We wish
to reweight the trajectories of the reference model in order
to approximate or calculate J (a) for values of a potentially
far from a0. The reference model must satisfy certain require-
ments. It needs to be able to generate all trajectories possible
in the original model, but no trajectories not possible in the
original model (otherwise the reweighting factor, discussed
below, can be infinity or zero). We want the reference model
to be able to generate trajectories possessing values of a that
are rarely generated by the original model, which is relatively
easy to arrange, but we also need to be able to recover
from reference-model trajectories the probability with which
such trajectories would have been generated by the original
model. This second requirement is harder to arrange, but not
prohibitively so. As we show, if the reference model generates
trajectories possessing values of a in a manner completely un-
like the original model, then we have to do prohibitively heavy
sampling of reference-model trajectories in order to calculate
J (a). If, however, the reference model generates trajectories
possessing values of a in a manner similar to the original
model, then J (a) can be reconstructed from trajectories of the
reference model with relatively little effort. Importantly, the
method tells us when this is so: we do not need to know in
advance the precise nature of the rare dynamics of the original
model in order to recover J (a).

For a trajectory ω of the reference model we want to be
able to influence how much of the dynamical observable is
produced per jump, A(ω)/K (ω), and the number of jumps
per unit time, K (ω)/T . To control the former we use a
reference-model dynamics that selects destination states with
probability

p̃xy = W̃xy

R̃x
, (7)

where W̃xy is an effective rate, and R̃x = ∑
y �=x W̃xy. [The true

rates of the reference model are, from (7) and (9), W̃xy(Rx +
λ)/R̃x.] Here we use the parametrization

W̃xy = e−sαxy−βxyWxy, (8)

which is a modification of (3). The factor e−sαxy is chosen in
order to guide the jump destination according to the change
of the observable αxy weighted by a parameter s. In general
such a bias is not sufficient to control A(ω)/K (ω), and so we
also consider an additional arbitrary bias, βxy. For the models
considered here a simple and physically motivated guess for
what βxy should be is sufficient to produce a good reference
model. We shall return to this point.

To control the number of jumps per unit time, K (ω)/T , we
draw times between jumps of the reference model from the
distribution

p̃x(�t ) = (Rx + λ)e−(Rx+λ)�t , (9)

where λ > − minx Rx serves to make the jump time from a
given state unusually large or small by the reckoning of the
original model. This “clock trick” provides a simple way
of sampling jump times without having those times appear
explicitly in the reweighting factor [41]. (The parameter βxy
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can also affect jump times indirectly, if, for example, it is
chosen to be proportional to Ry, the escape rate from the
destination state.)

Next observe that the path weight p(ω) in (5) can be writ-
ten p̃(ω)φ(ω), where φ(ω) = p(ω)/p̃(ω) is the reweighting
factor, the ratio of weights of a trajectory ω in the original and
reference models. φ(ω) is also known as the likelihood ratio
or the Radon-Nikodym derivative [31,50]. For a jump x → y
in time �t , the reweighting factor is the product of (3) and (4),
divided by the product of (7) and (9); for the entire trajectory
ω we have

φ(ω) = esA(ω)+λT (ω)+T q(ω), (10)

where

q(ω) = 1

T

K (ω)−1∑
k=0

(
βxkxk+1 + ln

R̃xk

Rxk + λ

)
(11)

is the piece of φ that is not fixed by the delta-function
constraints in (5). [The time-dependent piece of (10) produced
by K (ω) jumps is eλTK (ω) ; the contribution from the final entry
in the path weight, the probability of not jumping between
time TK (ω) and T (ω), leads to the factor of eλT (ω) shown in
(10).]

We can then write (5) in the form

ρT (A)

ρ̃T (A)
= esA+λT

∑
ω p̃(ω)eT q(ω)δ(T )δ(A)∑

ω p̃(ω)δ(T )δ(A)
, (12)

where ρ̃T (A) ≈ e−T J̃ (a) is the analog of (5) for the reference
model, and we have used the shorthand δ(X ) ≡ δ[X (ω) − X ].
Replacing the sums over trajectories with an integral over
trajectory weights gives

ρT (A)

ρ̃T (A)
= esA+λT

∫
dq p̃T (q|a)eT q, (13)

where p̃T (q|a) is the normalized probability distribution of
q(ω) for trajectories of the reference model that have specified
values of a and T . For large T we assume that this distribution
will obey a large-deviation principle of its own. If so, we can
write, using the rules of conditional probability,

p̃T (q|a) ≈ e−T J̃ (q|a) = e−T [J̃ (q,a)−J̃ (a)], (14)

where J̃ (q, a) is the joint rate function for q and a within the
reference model.

We next take the large-T limit in (13), replace all prob-
ability distributions with their large-deviation forms, and set
a = ã0, the value typical of the reference model (such that
J̃ (ã0) = 0). The result, upon taking logarithms, is

J (ã0) = −sã0 − λ − lim
T →∞

T −1 ln
∫

dq eT [q−J̃ (q,ã0 )]. (15)

Finally, we introduce δq ≡ q − q̃0, where q̃0 is the value of q
typical of the reference model. This value can be computed
from a single reference-model trajectory (for a given set of
parameters s, λ, βxy). Extracting eT q̃0 from the exponential in
(15) and evaluating the integral using the saddle-point method
yields

J (ã0) = J0(ã0) + J1(ã0), (16)

where
J0(ã0) = −sã0 − λ − q̃0 (17)

and
J1(ã0) = − max

δq
[δq − J̃ (δq, ã0)]. (18)

Equations (16)–(18) provide an exact representation of the
rate function, if the probability distributions (5) and (14) adopt
large-deviation forms [71]. Figure 1 illustrates the relationship
between Equations (16), (17), and (18), which are central to
the sampling scheme discussed in this paper.

C. We can compute J(a) as the sum of a bound and a correction

The piece J0(ã0) � J (ã0), Eq. (17), is an upper bound on
the rate function at the point a = ã0, by Jensen’s inequality
applied to (13), and can be obtained from the sample mean of
a single trajectory of the reference model. It is always possible
to calculate this term. If J̃ (a) is locally quadratic about ã0,
meaning that the usual central-limit theorem holds [72], then
errors in the computation of ã0 go as

√
〈(a − ã0)2〉 ∼ T −1/2.

The same is true for the computation of q̃0. Thus statistical
errors in the computation of the bound can be made negligible
simply by computing (17) for a sufficiently long trajectory.

The term J1(ã0), Eq. (18), is a correction to the bound,
and can be calculated by sampling values of q, Eq. (11),
of trajectories of the reference model that have a = ã0. It is
possible to calculate this term if the reference model is chosen
well, but not if it is chosen badly.

The two terms in (18) describe a competition between
the logarithmic weight δq associated with reference-model
trajectories that have atypical values of q, and the logarithmic
probability J̃ (δq, ã0) of observing such trajectories. When
J̃ (δq, ã0) is differentiable, (18) can be written

J1(ã0) = −δq� + J̃ (δq�, ã0), (19)

where
∂δqJ̃ (δq, ã0)|δq=δq� = 1. (20)

Thus we need to measure the value of J̃ (δq, ã0) at the point
δq� at which its gradient is unity, which will be a unique
point when J̃ (δq, ã0) is convex. The sampling problem is now
localized: instead of sampling J (a) arbitrarily far from a0

(using the original model), we need only sample a specific
piece δq� of an auxiliary rate function, J̃ (δq, ã0) (using the
reference model). This fact, summarized in Fig. 1, shows why
the present scheme has the potential to be much more efficient
than unbiased simulation, if the reference model is chosen
well.

This sampling problem is still formidable in general. If
the reference model is chosen badly, meaning that its typical
trajectories have very different character to trajectories of
the original model that have a = ã0, then the bound will be
slack, meaning that J0(ã0) � J (ã0), and so J1(ã0) will be
large. In this case J̃ (δq, ã0) will be broad around its minimum
δq = 0 (the variance of δq will be large) and unreasonably
heavy sampling using the reference model will be required to
determine the point δq� (because this corresponds to a rare
event within the reference model).

However, for good choices of the reference model the
opposite situation arises: the bound will be tight, meaning that
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FIG. 1. Large deviations from a variational ansatz for rare dynamics (VARD). (a) We aim to bound or calculate the large-deviation rate
function J (a) (black dashed line) for a given model and observable a, under the continuous-time dynamics (3) and (4). We introduce a reference
model (7) and (9), a variational ansatz for the rare dynamics of the original model conditioned upon a. The reference model has rate function
J̃ (a) (gray line; we do not aim to compute this function). The typical value of a generated by the reference model is ã0; this is potentially
far from the typical value a0 generated by the original model. Evaluation of (17) from the sample mean of a single trajectory of the reference
model produces one point J0(ã0) on the blue line, an upper bound on J (a). (b) If we can evaluate the auxiliary rate function J̃ (δq, ã0 ) at the
point δq� at which its gradient is unity, then we can calculate the correction term (18) and determine one point on the green curve in panel (a),
the exact rate function of the original model. If not, then we gain information about the quality of the bound J0(ã0 ). Variation of the parameters
of the reference model allows reconstruction of the entire blue and (potentially) green curves in panel (a). VARD thus reduces a single nonlocal
problem, the computation of J (a) arbitrarily far from a0, to a series of local problems, each requiring the evaluation of an auxiliary rate function
J̃ (δq, ã0 ) at the point δq� at which its gradient is unity. As we show in this paper, this procedure can be carried out for models commonly found
in the literature using relatively simple choices of reference model.

J0(ã0) ≈ J (ã0), and so J1(ã0) will be small. In this case the
latter can be evaluated with reasonable numerical effort (in the
examples that follow we can gather the required statistics of
q by subsampling a single trajectory of the reference model.)
If we can reconstruct J̃ (δq�, ã0), then we can calculate J1(ã0)
and we have obtained the exact rate function.

D. Computing the correction

Given a model and an observable a, we construct a ref-
erence model (7) and (9) so as to approximate or calculate
J (a). In Sec. III we provide a set of worked examples of this
procedure. In general terms we simply guess which rates of
the original model can be modified so as to produce more or
less of a than usual, and introduce a parameter (s, λ, or βxy)
able to control the rate in question. We do not know in advance
which combination of these modified rates best approximates
the way in which the original model produces rare values of
a, but by running short trajectories of the reference model
for different values of its parameters we can identify how
this is done within the space of possibilities defined by the
reference model. From the sample mean of each reference-
model trajectory we obtain the values ã0 and q̃0; plotting ã0

against −sã0 − λ − q̃0 for a range of values of reference-
model parameters, and identifying the lower envelope of these
points (conveniently calculated using a union of convex hull
constructions), gives the bound J0(a) associated with that
choice of reference model.

This bound is the starting point for our attempt to calculate
the correction J1(a). The correction term can be interpreted as
a measure of how close the typical dynamics of the reference
model is to the desired rare dynamics of the original model.
If J1(a) = 0, then typical trajectories of the reference model
correspond exactly to trajectories of the original model con-
ditioned on the relevant value a of the order parameter. If J1

is small, then (slightly) atypical versions of reference-model
trajectories correspond to the desired rare dynamics; and if
J1 is large (or cannot be calculated), then it is the very rare
trajectories of the reference model that correspond to the
desired rare dynamics of the original model.

In previous versions of our sampling method [39–41] we
used a cumulant expansion to evaluate the integral in (15),
giving, in place of (18),

Japprox
1 (ã0) = T

2
σ 2

ref + T 2

6
κref + · · · . (21)

Here σ 2
ref ∝ 1/T is the variance of δq over typical trajectories

of the reference model (those having a = ã0), i.e., σ 2
ref =

〈(δq)2〉ref , and κref = 〈(δq)3〉ref ∝ 1/T 2. Equation (21) can
give accurate results for the rate-function correction [39–41]
but does not provide a self-consistent way of determining
when the correction is accurate. At best we can determine that
the first omitted term in the expansion (21) is small, but this
does not provide a proof of convergence.
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In this paper we present an alternative way to calculate the
correction term (18), which builds upon methods designed
to compute rate functions (or their SCGF Legendre duals)
empirically [61,73]. This process is more involved than the
computations required to evaluate (21), but has the advantage
of providing a set of clear convergence criteria and statistical
error bars. This information reveals when we have converged
(18), and so have the exact rate function, and when we have
not, thus turning the reference-model guess into a true ansatz.
In the remainder of this section we describe the method we
use to compute (18). We have provided a GitHub script [62]
for calculating the correction automatically.

To obtain the correction we first assume that J̃ (δq, a) is
differentiable, and so work with (19) instead of (18). We
then introduce the two-dimensional (2D) scaled cumulant-
generating function (SCGF),

θ̃ (kδq, ka) ≡ lim
T →∞

T −1 ln〈eT (kδqδq+kaa)〉ref , (22)

where the angle brackets denote a trajectory ensemble average
within the reference model. The SCGF (22) is related to
J̃ (δq, a) through the double Legendre transform

J̃ (δq, a) = kδqδq + kaa − θ̃ (kδq, ka), (23)

where kδq and ka are conjugate to δq and a respectively. As
a result, if we want to calculate J̃ (δq, a) at a single point, we
can calculate the right-hand side of (23). Doing so is much
more efficient than attempting to reconstruct J̃ (δq, a) directly,
for the reasons given in Sec. II F.

The formula for the correction (19) depends on J̃ (δq�, ã0),
which we can get from (23):

J̃ (δq�, ã0) = kδq� δq� + kã0 ã0 − θ̃ (kδq� , kã0 ). (24)

We can simplify this relationship by combining the implicit
definition of kδq in the Legendre transform with (20) to get

kδq� = ∂δqJ̃ (δq, ã0)|δq=δq� = 1. (25)

Inserting (25) into (24) yields

J̃ (δq�, ã0) = δq� + kã0 ã0 − θ̃
(
1, kã0

)
. (26)

The quantity ã0 is the typical value of the observable in the
reference model, and can be obtained from a single reference-
model trajectory. The three other unknown quantities on the
right-hand side of (26) that are needed for the correction are
δq�, kã0 , and θ̃ (1, kã0 ).

To calculate these quantities we have to compute the value
of the 2D SCGF (22) at various points (kδq, ka). We can do
this using a simple extension of existing techniques developed
to sample points on one-dimensional (1D) SCGFs [61,73].
Following Ref. [61] we generate a single long trajectory of
the reference model and subsample it into M approximately
independent blocks ωi of length T (ωi ) = B. Within each
block we record the sample mean of δq and a, which we write
as δqi and ai. θ̃ (kδq, ka) can be calculated from this data set
using the estimator

ˆ̃θ (kδq, ka) = 1

B
ln

(
1

M

M∑
i=1

eB(kδqδqi+kaai )

)
. (27)

Equation (27) is guaranteed to converge to the exact value of
the SCGF, θ̃ (kδq, ka), in the limit M → ∞ and B → ∞. The
convergence properties of this estimator for finite M and B

will be addressed in the next section (Sec. II E). For now we
assume that we can obtain convergence as needed. Finally,
note that by changing the values of kδq and ka in (27) a single
data set consisting of values of ai and δqi, generated from
a single long trajectory, can be used to recover many points
(kδq, ka) on θ̃ (kδq, ka).

We now turn to the calculation of the three unknowns in
(26), δq�, kã0 and θ̃ (1, kã0 ). First, we use the relation

ã0 = ∂ka θ̃ (kδq� = 1, ka)
∣∣
ka=kã0

(28)

to find kã0 . We do so by calculating the SCGF, θ̃ (kδq, ka), along
a 1D slice through its 2D domain using the estimator (27).
This slice is defined by fixing kδq = kδq� = 1 and varying ka.
We then use the method of finite differences to get ∂ka θ̃ (kδq� =
1, ka) at each point ka and find the point that fulfills (28). Once
we know the value of kã0 we can calculate θ̃ (1, kã0 ), again
using (27). Finally we can compute δq� using the analog of
(28) for δq,

δq� = ∂kδq θ̃
(
kδq, kã0

)∣∣
kδq=1. (29)

Inserting δq�, kã0 , θ̃ (1, kã0 ), and ã0 into (26) yields J̃ (δq�, ã0).
The correction to the bound, J1(ã0), then follows from (19).

E. Convergence of the SCGF estimator

When used with only a finite number M of blocks of
finite length B, the estimator ˆ̃θ (kδq, ka), defined in (27), can
exhibit statistical and systematic errors. In this section, we
analyze these errors to understand when the estimate of J1(ã0)
calculated through the SCGF (22) will be accurate. As in the
previous subsection, this analysis closely follows Ref. [61].

To quantify the statistical error associated with our calcu-
lated value of J1(ã0) we repeat the calculation procedure using
R independent trajectories. Each of these trajectories is split
up into M blocks of length B, and used to calculate J1(ã0).
Our final estimate for the correction is then

Ĵ1(ã0) = 1

R

R∑
j=1

J ( j)
1 (ã0), (30)

where J ( j)
1 (ã0) is the value of the correction calculated from

the jth trajectory. The statistical error of (30) can be estimated
using

Err[Ĵ1(ã0)] =
√

Var[Ĵ1(ã0)]

R
. (31)

This statistical error is meaningful only if we know that the
systematic error in the calculation is comparatively small.
There are two sources of systematic error that arise when
using (27): correlation error and linearization error. Corre-
lation error results from the fact that the derivation of the
estimator assumes that the trajectory blocks are long enough
to be approximately independent. This will be true if B > Tcorr

where Tcorr is the correlation time of the reference model. If,
however, the subsampled blocks of a trajectory are correlated,
meaning that B < Tcorr, then we will not obtain an accurate
estimate of θ̃ (kδq, ka) even as M, R → ∞.

One way to resolve this correlation issue is to increase
the block time B, but this also increases the magnitude of
the other systematic source of error, linearization error. Lin-
earization error is a manifestation of the fact that trajectories
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that contribute most to the average in the SCGF (22) for
ka, kδq �= 0 have atypical values of δq and a. Using larger B
creates more self-averaging within a single trajectory and, as
a result, makes sampling these atypical values more difficult.
Linearization error also increases for fixed B with increasing
|ka| and |kδq|, because larger values of these parameters weight
rare trajectories’ contributions to the SCGF more heavily. Ref-
erence [61] contains a detailed discussion of these problems.
The authors of that work describe a method for checking to see
if linearization error will substantially influence the estimate
of the SCGF at a point (kδq, ka) for some fixed B. We use this
check, modified to account for the fact that our SCGF is 2D,
as follows.

First, we calculate the SCGF (27) along another 1D slice
through its 2D domain. This slice is defined by fixing kδq = 0
and increasing ka, starting from ka = 0 [74]. By using finite
difference along this slice we can calculate how a varies with
ka. To compute the statistical error, we generate R independent
trajectories [usually the same R trajectories we used to get
(31)], split each one into M blocks of length B, and use each
data set to calculate a(ka) along the slice. Our final estimate
for the value of a at each ka is

â(ka) = 1

R

R∑
j=1

a( j)(ka), (32)

where a( j)(ka) is calculated from the jth trajectory.
We will not end up using the â(ka) values themselves.

Instead, we focus on the associated values of the statistical
error, calculated in the same way as the error of (27),

Err[â(ka)] =
√

Var[â(ka)]

R
. (33)

A plot of Err[â(ka)] as a function of ka will peak at some
point k̂′

a(B) and then decline. Again kδq = 0 is fixed during
this entire calculation. As discussed in Ref. [61], k̂′

a(B) is an
estimate for the maximum value k′

a(B) at which the calcula-
tion of the SCGF will converge without being overwhelmed
by linearization error. k′

a(B) is a decreasing function of B,
because linearization error grows as B is increased.

Next we note that θ̃ (kδq = 0, k′
a) corresponds to a point on

the rate function J̃ (a′), via the Legendre transform (23). If we
can converge the value of J̃ (a′), then we can, with the same
data set, also converge the value of J̃ (δq, a) at any point for
which

J̃ (δq, a) < J̃ (a′). (34)

This statement is intuitive in the context of probabilities and
rate functions. However, it also applies when working with the
SCGF, provided that J̃ (δq, a) is convex [36]. Thus the value
of a point ˆ̃θ (kδq, ka) estimated using (27) will be unaffected by
linearization error if the associated point on the rate function,
ˆ̃J (δq, a), satisfies

ˆ̃J (δq, a) < ξ ˆ̃J (a′), (35)

where ξ < 1 is an empirical constant (we set ξ = 0.8). The
terms ˆ̃J in (35) are averages over R independent data sets
of the corresponding Legendre transform (23). This formula
allows the convergence criteria derived in [61] for estimating

1D SCGFs and rate functions to be applied in an arbitrary
number of dimensions.

We now discuss the procedure we use to converge the cor-
rection (19) while accounting for correlation and linearization
errors. For fixed block time B we first increase M and R until
the error bars for Ĵ1(ã0), (33), are smaller than a desired value.
We repeat this process for larger and larger B until Ĵ1(ã0)
becomes independent of B. This is equivalent to increasing
B until it becomes larger than the reference-model correlation
time Tcorr. If this happens while the convergence criterion (35)
holds at J̃ (δq�, ã0), then the calculation has succeeded, and
we have computed (to within statistical error) the exact value
of the correction J1(ã0).

If, however, the convergence criterion (35) fails to hold
in the regime in which (27) still changes rapidly with B,
then the bound J0(ã0) is too far from the exact answer for
us to effectively sample J1(ã0) using direct simulation of the
reference model. In this case the chosen ansatz is probably
missing a crucial piece of the physics of the rare trajectories
of the original model. On several occasions our failure to
converge J1(ã0) based on an initial guess led us to construct
a modified ansatz from which we could converge the exact
correction. In the cases described in this paper we were
able to reconstruct J (a) using physically transparent ansätze
containing only a modest number of parameters.

A quick way to estimate the scale of the correction is to
compute the first term in (21), which requires computing only
the variance of δq within the reference model. By the central-
limit theorem we will have J̃ (δq, ã0) ≈ (δq)2/(2T σ 2

ref ) close
enough to the origin, where σ 2

ref ∝ 1/T is the variance of q
within the reference model. If σ 2

ref is small (which is the case
when the ansatz is very good), then the correction J1(ã0) ≈
T σ 2

ref/2. Thus if T σ 2
ref/2 looks small when plotted in the

form of Fig. 1 it might be worth attempting to compute the
correction (18). If not, a better reference model ansatz is
probably required.

F. Efficiency of the correction calculation

Standard arguments are often used to suggest that comput-
ing the exact value of J (a) is not possible without knowledge
of the exact rare dynamics, or the use of methods such as
cloning or transition-path sampling. This claim is based on
the fact that computing J (a) requires computation of the
integral in (15), and assumes that because the integrand grows
exponentially with T , the number of trajectories required to
converge this expression as T → ∞ is prohibitively large.
While this latter statement is correct, it does not speak directly
to the task at hand. To compute the integral we do not need
to take T → ∞. Instead, we need T � T ′ where T ′ is the
smallest time at which the large-deviation principle applies.
Taking T � T ′ makes sampling more difficult and is unnec-
essary. It is possible for T ′ to be large, but if the reference-
model dynamics are close enough to the rare dynamics of the
original model, then the variance of q will be small and it will
be possible to converge this integral term without using an
unreasonable number of trajectories.

Moreover, computing the correction is numerically cheaper
than inspection of the integral alone might suggest. If we
switch to the SCGF representation, (22), we can instead work
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with trajectories of length T = Tcorr, where Tcorr is the correla-
tion time of the reference model (in practice these trajectories
are constructed by subsampling a single longer trajectory).
Generally, Tcorr is much smaller than T ′, the time required
for the large-deviation principle to apply, and so sampling the
moderately rare events required to reconstruct the auxiliary
rate function J̃ (δq, a) near its minimum is cheaper in the
SCGF representation. This property is ideal for the present
method because we have reduced the problem of sampling
J (a) arbitrarily far from its minimum to one of sampling
J̃ (δq, ã0) (potentially) close to its minimum. Working with
the SCGF also removes the constraint a = ã0 present in (18).
Finally, we note that we are calculating the SCGF that is
Legendre dual to the correction term (18) and not the SCGF
that is Legendre dual to the original rate function J (a). Thus
our method can in principle reproduce rate functions J (a) that
are not convex (J0 is not required to be convex).

G. Summary: A variational ansatz for rare dynamics (VARD)

(1) Given a continuous-time dynamics with rates Wxy

and a path-extensive dynamical observable a, we wish to
determine J (a), the large-deviation rate function for a for
trajectories of the model Wxy of fixed time (assuming that
J (a) exists). We use a reference dynamics to calculate J (a)
as the sum of an upper bound J0(a) and a correction J1(a).
The bound can always be calculated, and the correction can
be calculated if the criteria described in Sec. II E hold. If so,
then we succeed in calculating J (a); if not, then the method
returns an upper bound J0(a) � J (a).

(2) Determine a reference-model dynamics (7) and (9)
able to produce more or less of a than the original model. In
this paper we set the arbitrary bias βxy using physical intuition.

(3) Run a set of reference-model trajectories for different
values of the reference-model parameters (s, λ, βxy). For each
trajectory, evaluate ã0 and q̃0, using Eqs. (6) and (11), and then
use Eq. (17) to plot the point (ã0, J (ã0)); see Fig. 1(a). The
lower envelope of these points over values of the reference-
model parameter set is the tightest upper bound on J (a)
associated with the ansatz chosen in step 2.

(4) Attempt to calculate the correction J1(a) at points
on the bound by running a few (∼5) trajectories for each
reference model. With the data from each trajectory, calculate
J̃ (δq�, ã0), Eq. (26), using Eqs. (27), (28), and (29). Insert
the resulting values into Eq. (19). Calculate the averaged
correction Ĵ1(a) and associated statistical error using Eqs. (30)
and (31).

(5) To verify convergence, repeat the calculation of step 3
for increasing values of the block time B, until the averaged
estimate for the correction Eq. (30) no longer changes with B,
and the convergence criterion (35), with δq = δq� and a = ã0,
holds [75]. The accompanying GitHub script [62] performs
steps 4 and 5 automatically.

III. VARD APPLIED TO FOUR EXAMPLES

A. Summary of the section

We now apply the method to four models taken from the
literature. In each case, a simple and physically motivated
ansatz for the modified dynamics allows computation of the

exact rate function J (a). We focus on models whose state
space is small enough that the exact rate function can be com-
puted by standard methods—Legendre transform of the SCGF
calculated using the largest eigenvalue of the tilted rate ma-
trix [28]—in order to validate our method (at the end of
the section we also use VARD to compute descriptive rate-
function bounds for two systems too large to solve by matrix
diagonalization). In figures, the exact rate function is shown as
a black dashed line. Absent the exact answer we would apply
the method in exactly the same way. For a given reference
model the fluctuations of the quantity q reveal whether the
bound J0(a) is tight and whether we can compute J (a) exactly.

B. Entropy production in a four-state model

We start by sampling entropy production in the four-state
model of Ref. [54], shown in the inset of Fig. 2(a). This is a
fully connected network model with transition rates

W12 = 3, W13 = 10, W14 = 9,

W21 = 10, W23 = 1, W24 = 2,
(36)

W31 = 6, W32 = 4, W34 = 1,

W41 = 7, W42 = 9, W43 = 5.

These rates do not satisfy detailed balance, and so the model
produces nonzero entropy on average. To quantify the fluc-
tuations of entropy production for trajectories of fixed time
we construct a reference model as follows. The dynamical ob-
servable is a = σ = T −1 ∑

αxy, where the sum is taken over
all jumps x → y of a trajectory, and αxy = ln(pxy/pyx ), where
pxy = Wxy/

∑
y Wxy. Our basic reference-model parametriza-

tion is defined by the parameters s and λ appearing in (7) and
(9), together with any additional set of biases βxy suggested by
the physics of the problem under study. Here we reason that
none is necessary: the bias λ is always required, in order to
sample jump times, and the bias s is sufficient to influence the
entropy produced per jump, A/K (a fact that is easy to guess
and to confirm with some short simulations). We therefore
impose no additional bias and set βxy = 0.

We ran trajectories for a fixed number K = 1.5 × 108 of
events, roughly equivalent to a time of T = 107 in the unbi-
ased model. We simulate in the constant-event ensemble for
convenience, because there all simulations, regardless of the
value of λ, take approximately the same amount of processor
time. The equations of Sec. II then allow us to compute
the rate function for the original model in the constant-time
ensemble (see Ref. [76] for more on the relationship between
the constant-event and constant-time ensembles).

The bounds J0(a) resulting from a scan of s, for three
values of λ, are shown as colored lines in Fig. 2(a). In figures
we use the compact notation J0[x] to indicate the bound J0(a)
swept out by scanning the set of parameters {x}. We also show
the exact rate function (black dashed line), obtained by matrix
diagonalization. Different combinations of s and λ produce
the best (lowest) bound at different values of a, so indicating
the “least unlikely way” of realizing each value of a within the
manifold of dynamics accessible to the reference model. The
bound produced by the scan λ = 0 provides the best bound
close to the typical value a0, but not far from it, indicating that
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FIG. 2. Entropy production rate σ for the four-state model of Ref. [54], the rates Wxy of which are given by (36). (a) Bounds (17) for the

large-deviation rate function J (σ ). Each point on the colored lines results from a reference-model dynamics [Eqs. (7) and (9)] obtained by
scanning the indicated parameters. The black dashed line is the exact answer. (b) Bound (blue line) resulting from a scan of the parameters s
and λ compared with the WLR bound of Ref. [54], Eq. (37). Inset: The sum (green line) of the bound and the correction (18) equals the exact
rate function, arbitrarily far into its tails. The boxed region in panel (b) indicates the scale of Fig. 2 of Ref. [54]. Error bars for both axes are
smaller than the thickness of the lines.

very rare values of a are produced by the original model using
a combination of rare jump types (s �= 0) and rare jump times
(λ �= 0).

The bound swept out by scanning both s and λ is shown
in blue in Fig. 2(b). We used 201 equally spaced s values on
the interval [−5, 5], and 51 equally spaced λ values on [0, 50].
This bound lies close to the exact answer, even far into the tails
of the rate function. For comparison we show the weakened
linear response (WLR) universal current bound of Ref. [54]
(gray dashed line); the dotted box in the center of the figure
indicates the scale of Fig. 2 of that paper. The WLR bound is

J[WLR] = σ0

4c2
0

(c − c0)2, (37)

where c is a current, c0 is its typical value (in the original
model), and σ0 is the typical value of the rate of entropy
production. c0 and σ0 must be determined by running a single
trajectory of the original model, and (37) then provides a
bound on the probability of observing an atypical value of c.
The bound is tightest in the case c ∝ σ .

The WLR bound can be derived from Level 2.5 of large
deviations [56,57] using a mean-field ansatz that assumes all
currents scale with time in the same way (for both forward
and time-reversed versions of the model). By contrast, the
(s, λ)-bound results from a microscopic ansatz, (7) and (9),
inserted into the exact result (5) for the dynamical partition
sum, and does not assume that all currents scale in the same
way. Inspection of the tails of the bounds reveals that the
microscopic ansatz captures the rare behavior of the model
more accurately than does the homogeneous ansatz. Thus we
learn that the rare behavior of even this very simple model
does not simply resemble a speeded-up or slowed-down ver-
sion of its typical behavior. The bound (37) is a universal
statement about the physics that constrain fluctuations, and is

not designed to be a means of accurate numerical sampling.
Nonetheless, it is meaningful and instructive to compare the
bounds produced by different types of ansätze.

For each of the reference models that lie on the bound
J0[s, λ] we calculate the correction (18) using the procedure
described in Sec. II D. For all points we obtain convergence of
the correction. The result, J0(a) + J1(a), is shown as a green
line in the inset of Fig. 2(b), and matches the exact answer
(black), obtained by matrix diagonalization, as it should. We
used 104 blocks, each of length of 50Tevent, where Tevent is
the time per event for each reference model. The average
correction (30) and statistical error are obtained from 10
independent data sets. Error bars on the rate function are
calculated by combining the error from the correction and the
error from the bound according to

Err[Ĵ (ã0)] =
√

{Err[Ĵ0(ã0)]}2 + {Err[Ĵ1(ã0)]}2. (38)

The error in the bound is estimated by running 10 additional
trajectories at each point and calculating the standard devia-
tion of J0(ã0). The standard deviation of ã0, calculated in the
same way, yields error bars for the horizontal axis.

From this example it is clear that VARD is numerically
much more efficient than direct simulation (of the original
model): accurate calculation of the rate function at values of
order 100 indicates accurate calculation of probabilities of
order e−100T , where T is the elapsed time of the trajectory.
We do not know in advance which values of reference-model
parameters constitute good choices, for particular values of
a, but it is a simple matter to scan parameters and pick the
smallest value of J0 given a. Additional sampling then allows
us to determine if we can calculate the correction (18), and
therefore the exact rate function. We were able to do this here
with little additional numerical effort. In this example, the
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FIG. 3. Large-deviation rate function J (c) of particle current, c, for the version of the ASEP studied in Ref. [54]; rate constants are given
in the text. (a) We show the exact answer (black), the WLR universal current bound [53,54] (gray), and the bound produced using our default
(s, λ) reference-model parametrization (dark blue). (b) With additional physical insight used to refine the reference model it is possible to
tighten the bound (compare dark blue and light blue lines). The green line in (a) is the corrected version of the 6D bound. The boxed region
in panel (a) indicates the scale of Fig. 3 of Ref. [54] [not the scale of Fig. 3(b)]. Error bars for both axes are smaller than the thickness of the
lines.

state space of the model is small enough that its dynamics
can be solved by matrix diagonalization, and so we possess
the exact answer in advance. We made this choice because
we wish to benchmark the method. However, our procedure
would be identical if we did not know the exact answer ahead
of time: define the reference model, pick the best bound, and
attempt to calculate the correction term. The results of the
latter calculation tell us if we have the exact answer, or, if
not, roughly how close we are to obtaining it. If we are not
close at all, then we need a better reference-model guess.
Inspection of the bounds produced by different reference
models is also physically instructive, indicating the extent to
which certain dynamical mechanisms contribute to the rate
function at particular values of the order parameter.

C. Current in the ASEP

We next sample current in the asymmetric simple exclusion
process (ASEP), a model of hard particles that hop between
lattice sites [6,65] (an interesting alternative would be to
consider the symmetric simple exclusion process, which has
fewer parameters but also shows complex scaling behavior
[77]). We consider the version of the model studied in Fig. 3
of [54], shown in Fig. 3, with open boundaries and a lattice of
L = 15 sites. The rate constants are α = 1.25, β = 0.5, γ =
0.5, δ = 1.5, p = 1, q = 0.5, placing the model in the high-
density region of the ASEP phase diagram [78,79]. The dy-
namical observable is a = c = T −1 ∑

αxy, where the sum is
taken over all jumps x → y of a trajectory, and αxy = ±1 if
the jump x → y sees a particle move to the right (upper sign)
or left (lower sign).

In Fig. 3(a) we show the bound swept out by our default
(s, λ) reference-model parametrization (dark blue), which
provides a meaningful numerical bound on the exact rate
function (black) even far into the tails. We ran trajectories
for K = 5 × 105 events, roughly equivalent to a time T =
105 in the unbiased model. We scanned 81 equally spaced
s values on the interval [−2, 2], and 41 equally spaced λ

values on [0, 10]. Also shown is the WLR universal current
bound [53,54] (gray). The WLR bound describes accurately
the moderately rare behavior of the model, but not the very
rare behavior, which is quantified by the tails of the rate
function. Comparison of bounds indicates, as in the previous
subsection, that very rare currents are generated by trajectories
that do not resemble speeded-up or slowed-down versions
of the forward- or backward-running typical dynamics: the
configurations visited in the tails of the rate function are
different to those visited near the center.

While the (s, λ)-bound is already meaningful, it is possible
to produce tighter numerical bounds by guessing additional
ways in which the very rare high- or low-current behavior
might be achieved. Inspection of the way in which s couples
to the rate constants (here any rate involving a hop to the right
is multiplied by e−s and any rate involving a hop to the left
is multiplied by es) reveals that varying s moves the reference
model around the ASEP phase diagram [78,79]. The original
model sits in the high-density region of phase space, but the
reference model need not. Inspection of the phase diagram
indicates that the end rates α, β, γ , δ, separate from the bulk
rates p and q, play a key role in determining the ASEP’s
typical behavior: if particles are fed in relatively quickly or
slowly then we reside in the high- or low-density region of
phase space, respectively, and if input- and output rates are
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balanced then we can access the maximum-current region.
Returning to (8) we introduce a set of parameters βxy that
couple to the end rates, such that the rate α in the original
model becomes e−uαα in the reference model (uα being a
parameter), and similarly for the three other end rates. We also
include a contribution to βxy that biases trajectories toward
or away from creating particle-particle contacts (i.e., particles
on adjacent sites), reasoning that controlling such contacts
can help control the escape rate of visited configurations, so
helping cause or prevent traffic jams. A simple way to do this
is to add to βxy a bias −μ�xy, where μ is a parameter and �xy

is the change in the number of particle-particle contacts when
moving from x to y.

With the new bias determined we can generate an improved
bound for the ASEP. We split the calculation into two parts
and focus separately on the piece of the rate function for
values of the observable greater than the mean, a > a0, and
less than the mean, a < a0. Since the dynamics in these two
different regimes are qualitatively different, generating an
effective set of reference models for each requires scanning
over different regions of the ansatz parameter space. For
a < a0 we scanned s, λ, uγ , and μ. For a > a0 we scanned
s, λ, uα, uβ , and μ, making six parameters in total. Combining
these calculations produces the six-dimensional (6D) bound
shown in light blue in Fig. 3(b). This bound is tighter than the
default (s, λ)-bound. The six-parameter scan can be carried
out with reasonable numerical effort: for a given set of param-
eters we need only a short single trajectory to compute the
averages required for the bound, and there is no requirement
for communication between the calculations. On the left side
we scanned 11 equally spaced s values on the interval [0, 2];
21 equally spaced λ values on the interval [−0.6, 0], and 17
more on the interval [0, 8]; 29 uγ values so that γ takes on
equally spaced values on the interval [0.1, 1.5]; and 31 equally
spaced μ values on the interval [−1, 0.5]. On the right side we
scanned 11 equally spaced s values on the interval [−2, 0]; 17
equally spaced λ values on the interval [0, 8]; 21 uα values
and 21 uβ values so that α and β each take on values equally
spaced on the interval [0.5, 1.25]; and 11 equally spaced μ

values on the interval [0, 0.5]. The lower envelope of the
values of (17) constitutes the improved bound.

Correcting the 6D bound by calculating the correction
J1 at points along the bound gives the green line shown in
Fig. 3(a), which agrees with the exact rate function even far
into the tails. For this calculation we used 104 blocks of length
100Tevent, where Tevent is the time per event in each reference
model. Errors are computed as in Sec. III B.

D. Activity in a three-state model

We consider the three-state model of Fig. 3 of Ref. [55],
shown in Fig. 4. The rate constants are γ = 1 and κ = 1/2.
Our chosen dynamical observable, a, is the number of jumps
from states 1 → 0 per unit time. The parameter s in our
default (s, λ) reference-model parametrization (8) has no role
to play here: s controls the probability of the 1 → 0 process,
but once in state 1 there is nowhere to go but state 0. Thus s
cannot influence the number of counted events per jump, A/K ,
and so we set s = 0.

0 1 2 3 4
k
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15

J
(k

)

J [Exact]
J [λ, η]

J [λ]

J [CMP]

1 20
γ

γ

κ

κ

J
(a

)

a
FIG. 4. Large-deviation rate function J (a) for the number of

jumps 1 → 0 per unit time, a, for the three-state model of Ref. [55].
We compare with the exact answer (black) the bounds produced by
reference models in which we control jump times (blue), or jump
times and jumps from 0 → 1 (green). Error bars for both axes are
smaller than the thickness of the lines. Also shown is the CMP
universal activity bound [55], Eq. (39) (gray).

At this point we need to apply our physical intuition
in order to create a reference-model ansatz able to control
A/K . Inspection of the network reveals that controlling the
jump destination from state 0 is sufficient for this purpose:
if we jump 0 → 1, then we must subsequently jump 1 → 0,
whereas if we jump 0 → 2, we will return to 0 without making
the counted jump. In Eq. (8) we therefore set β01 = η (a
parameter) such that the reference-model rate for the process
0 → 1 is W̃01 = e−ηγ . We set all other βxy = 0. Scanning η

and λ (our usual jump-time bias) produces the bound shown
in green in Fig. 4. Bounds were calculated using 11 equally
spaced λ values on the interval [−0.5, 0] and 101 values on the
interval [0, 25], and 51 equally spaced η values on the interval
[−5, 5]. All trajectories were run for K = 107 events, roughly
equivalent to a time of T = 107 in the unbiased model. Error
bars are computed as in Sec. III B.

The (η, λ)-bound is effectively exact, as we can deduce by
measuring the fluctuations of q (which here are nonexistent).
In this case the model is simple enough that each reference
model used to compute the bound enacts the exact rare
dynamics of the original model, conditioned on a particular
value of a. As a result, the correction term J1 vanishes,
and the bound J0 is exact. (This exactness is reasonable on
account of the fact that the system has relatively few ways
of realizing values of A/K and K/T , but it is not obvious
in advance that the chosen parametrization would require no
additional correction.) Recall that the correction term can be
interpreted as a measure of how close the typical dynamics
of the reference model is to the desired rare dynamics of
the original model; here, typical trajectories of the reference
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FIG. 5. Large-deviation rate function J (k) for the number of jumps per unit time, k, for the 1D Fredrickson-Andersen model. (a) We
compare with the exact answer (black) the bounds produced by reference models in which we control jump times (dark blue) or jump times
and the mean up-spin fraction (light blue). Also shown is the CMP universal activity bound [55], Eq. (39) (gray). (b) The sum (green) of the
bound (produced using a reference model in which we control jump times, mean up-spin fraction, and pair correlations) and the correction
matches the exact answer. Error bars for both axes are smaller than the thickness of the lines.

model correspond exactly to trajectories of the original model
conditioned on the relevant value of the order parameter.

The chosen observable is a nondecreasing counting vari-
able, not a current, and so the universal bound of Refs. [53,54]
does not apply. One bound that does apply is the Conway-
Maxwell-Poisson (CMP) bound of Ref. [55],

J[CMP] = k0

a0

(
a ln

a

a0
+ a0 − a

)
, (39)

where a is the dynamical observable, a0 is its typical value (in
the original model), and k0 is the typical dynamical activity
(the total number of events per unit time) of the original model
[note that there is an a missing in front of the logarithm in
Eq. (17) of Ref. [55]].

The CMP bound is shown in gray in Fig. 4. Similar to
the universal current bound, the CMP bound is derived from
Level 2.5 of large deviations using an ansatz that assumes the
rare behavior of the system to be a speeded-up or slowed-
down version of its typical behavior. It therefore has similar
properties to our λ-bound, shown in blue in Fig. 4 [the λ

bound is constructed from the pieces of the (η, λ)-bound with
η = 0]. Comparison of this bound and the (λ, η)-bound shows
the extent to which the very rare behavior of this model is
dominated by trajectories comprising rare jump times and an
atypical propensity to jump left from state 0. Analogous to
its current counterpart, the CMP bound is a general statement
about the physics controlling the fluctuations of counting
variables, and is not intended to be a means of numerical sam-
pling. Nonetheless, comparison of its properties with bounds
obtained by the microscopic ansatz used here is instructive,
and addresses the point raised in Ref. [55]: “It would be
interesting to find alternative yet simple variational ansatzes
that can capture [the] strong fluctuation behavior [of the three-
state model].”

E. Activity in the FA model

We consider the 1D Fredrickson-Andersen (FA) model
with periodic boundary conditions [66]. This is a lattice
model with simple thermodynamics and with dynamical rules
that give rise to slow relaxation and complex spatiotemporal
behavior [80]. On each site of a lattice (here of length L =
15) lives a spin, which can be up or down. Up-spins (resp.
down-spins) can flip down (resp. up) with rate 1 − c (resp. c)
if at least one of their neighboring spins is up; if not, then
they cannot flip (the rate c here should not be confused with
the symbol for current in previous sections). In Fig. 5(a) top,
we show an example FA model configuration, with periodic
boundary conditions; the spins in red cannot flip. Our chosen
dynamical observable, a = k = T −1 ∑

αxy, is the number of
jumps per unit time, where αxy = 1 for all jumps x → y. The
large-deviation properties of k have been studied in detail, and
give rise, in certain limits, to singular behavior in the SCGF
that is Legendre dual to J (k) [10,11].

In Fig. 5(a) we show the CMP universal activity bound
[55] on J (k) and the bound produced by our reference-model
λ-scan. These are of similar character, because they assume
that the rare behavior of the model is a speeded-up or slowed-
down version of its typical behavior. All trajectories were
run for K = 3 × 105 events, roughly equivalent to a time of
T = 105 in the unbiased model. We used 61 equally spaced λ

values on the interval [−0.6, 0], and 61 more on the interval
[0, 12]. To produce a tighter bound we need to assume that
the configurations visited by rare trajectories are different to
those visited by typical ones (the CMP bound assumes that
they are the same). The parameter s in our default (s, λ)
reference-model parametrization (8) again has no role to play,
because biasing all jumps equally is equivalent to biasing
none. A simple alternative is to choose the bias βxy so that
the reference model can generate a larger or smaller number

052139-12



DIRECT EVALUATION OF DYNAMICAL … PHYSICAL REVIEW E 100, 052139 (2019)

0 8 16 24
k

0.0

2.5

5.0

7.5

10.0

J
(k

)
(a) L = 40

0 10 20 30 40
k

(b) L = 100
J [MPS]
J [λ, c, μ]

J [CMP]

FIG. 6. Large-deviation rate function J (k) for the number of jumps per unit time, k, for the Fredrickson-Andersen model of Ref. [81] with
c = 0.1. Lattice sizes are (a) L = 40 sites and (b) L = 100 sites. We compare the matrix product state (MPS) calculation of Ref. [81] (black)
with the three-parameter VARD bound of Fig. 5 (blue). Also shown is the CMP universal activity bound [55], Eq. (39) (gray).

of up-spins than is typical in the original model. We choose
the parameters βxy so that the parameter c in the original
model becomes e−ηc in the reference model, with η being a
parameter. A (λ, η)-scan of the reference model produces the
bound J0[λ, c] shown in light blue in Fig. 5(a). This bound
provides a reasonable approximation of the exact answer over
the whole range of k, indicating that much of the physics of
rare activity fluctuations of the FA model can be accounted for
by considering the typical behavior of versions of the model
with different values of the parameter c. Here we chose η

so that c takes on 100 equally spaced values on the interval
[0.02, 2].

It is possible to tighten this bound by reasoning that there
must exist spatial correlations between up-spins if we condi-
tion trajectories upon activity per unit time k. For instance,
given an up-spin fraction of exactly 1/2, the escape rate
(the sum of rates leading out of a given state, a quantity
relevant to the number of jumps per unit time) is maximized
by having pairs of up-spins separated by pairs of down-spins,
and minimized by having up-spins and down-spins alternate.
We induce these types of spatial correlations using the same
μ-bias used for the ASEP in Sec. III C, favoring more or fewer
contacts between up spins. Scanning c, η, and μ produces
a bound slightly tighter than J0[λ, η] (not shown). We used
41 equally spaced μ values on the interval [−1, 1]. From
this bound we compute the correction J1, and the sum of the
bound and correction matches the exact answer; see Fig. 5(b).
We computed the correction by splitting the calculation into
two pieces, one on either side of the mean value a = a0. For
a < a0 we used 104 blocks of length 50Tevent, where Tevent

is the average time per event in each reference model. For
a > a0 we used 105 blocks of length 600Tevent. The different
block lengths generated by the convergence procedure (see
Sec. II E) for a < a0 and a > a0 signal that the correlations
present in the dynamics are qualitatively different in each
of these regimes. Understanding the nature of these correla-

tions is of physical interest [11,80]. Errors are calculated as
in Sec. III B.

F. Toward large-scale calculations

In this paper we have demonstrated proof-of-principle of
VARD using network systems or lattice models whose state
space is small enough that their rate functions can be obtained
by matrix diagonalization, so providing a benchmark for the
method. VARD can also be applied to systems too large for
matrix diagonalization to be feasible, in order to produce
bounds or (if the ansatz is good enough and convergence of the
correction is obtained) exact rate functions. An active line of
research is to study large versions of certain lattice models in
order to determine how their large-deviation properties change
with system size [11,34,81]. In these regimes, specialized
techniques are necessary. For instance, in Ref. [34], a cloning
procedure combined with feedback control was used to calcu-
late large-deviation functions for an FA model of L = 36 sites.
In Ref. [81] a matrix product state (MPS) calculation was used
to compute large-deviation functions for an FA model of sizes
of order L = 100 sites (these results show some differences
with the results of Ref. [34], indicating that this is a technically
challenging regime). Note that the FA model of Ref. [81] has
open boundaries and slightly different facilitation rules than
used in the previous section: spins facilitated by two spins flip
at twice the rate of spins facilitated by one spin.

In Fig. 6 we compare the MPS calculation of Ref. [81]
with the three-parameter VARD bound used in Fig. 5 for two
lattice sizes that are considered large by current standards
(the parameter c = 0.1). In both cases the VARD bound is
descriptive, capturing the main features and the trends with
k of the MPS result. The bound is less tight for the larger
system size, suggesting that more terms in the ansatz are
required as the system becomes larger. However, the bound
quality, even using an ansatz containing only three parameters,
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remains reasonable. As for the ASEP, the natural next step
is to include additional parameters in the ansatz in order to
tighten the bound and calculate the correction [compare dark
blue and light blue lines in Fig. 3(b)]. A natural way to develop
improved bounds is to use Monte Carlo learning procedures
in order to optimize reference models containing a potentially
large number of parameters [82].

IV. CONCLUSIONS

We have described how direct simulation of a variational
ansatz for rare dynamics (VARD) can be used to compute
bounds for large-deviation rate functions in continuous-time
Markov chains [83]. This approach requires only direct simu-
lation of versions of the original model with modified rates,
and so is technically simple and easy to implement. It is
also physically instructive, in the sense that the quality of
the bounds produced by different physical ansätze reveal
the extent to which different types of dynamical processes
contribute to the rare behavior of the model of interest.

If the ansatz is chosen well, then bounds can be corrected to
produce the exact rate function, arbitrarily far into its tails; in
the literature it is often assumed or stated that such precision
is not accessible via direct reweighting of trajectories, and
requires the use of specialized numerical techniques such as
cloning or path sampling. For the models studied in Figs. 2–5,
two network models and two lattice models taken from the
literature, it is possible to calculate the exact rate function
using only simple and approximate guesses about the nature
of the rare dynamics. Although this rare behavior can be
complex, we are rarely working in the dark: the model itself
can exhibit different behavior in different parameter regions,
and often its rare behavior at one point in parameter space is
similar to its typical behavior at another point in parameter
space. For example, we have studied the ASEP in its high-
density region, where (typically) the lattice is crowded and
particles move slowly. The ansatz we used to calculate its
current rate function is equivalent to guessing that the rare,
high-current behavior in the high-density region is similar to
the typical behavior in the maximum-current region, where
particles move quickly and possess spatial anticorrelations.
Similarly, the FA model is complex, but the likelihood of its
rare behavior at one value of the parameter c can be well
approximated by looking at the typical behavior of models at
different values of c. We have also shown that bounds that are
descriptive in small systems remain so in systems too large to
solve by matrix diagonalization; we will discuss this regime
further in forthcoming work.

VARD is similar to classical umbrella sampling [63,64] in
the sense that the rate function J̃ (a) of the reference model can
be regarded as a nonequilibrium umbrella potential, concen-
trating sampling at a desired point; see Fig. 1. It is different,
however, in that VARD does not require overlapping sampling
windows—reference models are used independently—and we
compute an absolute rate-function value J (a), as opposed to a
free-energy difference. This latter distinction results from the

fact that the path weight appearing in (5) is known exactly, and
at the sampling point ã0 we know that the rate function of the
reference model vanishes; by contrast, in the equilibrium case
we know the probability of visiting a certain state only up to a
normalization constant, and we do not know the absolute free
energy of the reference model (unless it is particularly simple
[84]).

VARD provides insight into the approaches used to pro-
duce universal rate-function bounds from Level 2.5 of large
deviations, via homogeneous ansätze [53–55], by showing
how relaxing such assumptions leads to the tightening of
bounds in different sectors of parameter space. It is also
complementary to numerical large-deviation methods that
use path-sampling, cloning, or adaptive methods to calculate
the SCGF [85] that is Legendre dual to J (a) [11,28,30–35].
Sometimes path sampling or cloning are used in isolation,
and sometimes they are combined with a modified dynamics.
VARD lies at the other extreme of the methods spectrum in
the sense that it uses only a modified dynamics. The bounds
that result provide a natural starting point for those specialized
methods, because the set of reference models that live on
the bounds already resemble the rare dynamics of interest.
Indeed, direct sampling of those reference models is, in the
cases described in Figs. 2–5, sufficient to recover the statistics
(the constituent configurations and jump times) required to
compute J (a) exactly.

There are several possible variants of the present method.
The λ-scan accesses roughly the same information as the
universal bounds of Refs. [53–55], and one possible numerical
simplification would be to eliminate the λ-scan in favor of the
universal bounds (37) or (39). We have also simply scanned
parameters in order to identify the best bounds associated
with a given ansatz, but as the complexity of an ansatz grows
it is natural to replace the scan with an evolutionary Monte
Carlo procedure [82]. For instance, consider a set of reference
models having N parameters, and construct an initial (s, λ)-
bound. Take models at various points on this bound, and
define a window �a for the observable. For each model,
perturb the N parameters, generate a short trajectory, and
calculate Eq. (17). If this value is less than the current bound
(and a lies within the designated window), accept the new
reference model; otherwise, retain the original.
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