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Work statistics for sudden quenches in interacting quantum many-body systems
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Work in isolated quantum systems is a random variable and its probability distribution function obeys the
celebrated fluctuation theorems of Crooks and Jarzynski. In this study, we provide a simple way to describe
the work probability distribution function for sudden quench processes in quantum systems with large Hilbert
spaces. This description can be constructed from two elements: the level density of the initial Hamiltonian,
and a smoothed strength function that provides information about the influence of the perturbation over the
eigenvectors in the quench process, and is especially suited to describe quantum many-body interacting systems.
We also show how random models can be used to find such smoothed work probability distribution and apply
this approach to different one-dimensional spin-1/2 chain models. Our findings provide an accurate description
of the work distribution of such systems in the cases of intermediate and high temperatures in both chaotic and
integrable regimes.
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I. INTRODUCTION

The past decade gave birth to a new research field, called
quantum thermodynamics, that gathers concepts borrowed
from two older fields, namely, thermodynamics and quantum
mechanics. Much of the progress made on quantum thermo-
dynamics concerns the interplay between quantum informa-
tion and thermodynamics [1,2], implementations of small-
scale thermal machines [3–8], the mechanisms behind the
thermalization of quantum systems [9–12], and the quantum
fluctuation relations and nonequilibrium response of quantum
many-body systems [13–21]. The latter is the main subject of
the present study.

Fluctuation theorems [22–25] are simple equalities that
establish relations between nonequilibrium quantities, such
as the work, with equilibrium ones, such as the free energy.
These theorems were initially derived for classical systems
and later extended, along with the definition of work, to the
quantum regime. While for initial diagonal states, such as
thermal ones, there is consensus about the definition of quan-
tum work in terms of the two projective energy measurement
schemes [26–31], there are some desired properties that are
not present when applying this definition to initial states with
coherences in the energy eigenbasis [32]. Thus, there is still an
ongoing debate about the proper definition of quantum work
in the presence of coherences [33]. Interestingly, the work
statistics, and thus the verification of fluctuation theorems,
were experimentally obtained both in the classical [34–36]
and quantum domains [37–41].
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In the present study, we are interested in obtaining the work
statistics for high-dimensional quantum many-body systems
in thermal equilibrium after a sudden quench between the
initial Hamiltonian and a final one. We show that for large
dimensional complex systems, for instance systems described
by a random model, the work probability distribution function
(pdf) admits a simple representation that does not require the
full knowledge of the exact initial and final energy spectra
and eigenvectors. The work pdf can be obtained in terms
of two smoothed energy functions: the first one is the level
density, and the second one is a smooth version of the strength
function (SF), also known as the local density of states [42].
We also show the conditions that random models representing
the initial and final Hamiltonians must obey in order to derive
an ensemble average (EA) of the work distribution that has
the same structure of the energy-smoothed work distribution
found.

We test our approach in two different models of one-
dimensional spin-1/2 chain models. The first model is com-
pletely integrable while the second presents a transition from
an integrable to a chaotic regime that can be described by a
particular random model, called embedded Gaussian orthog-
onal ensembles EGOE(1 + 2) [43], where (1 + 2) refers to
Hamiltonians composed by terms with one- and two-body
interactions. These systems are relevant in condensed matter
physics and can be implemented in different experimental
setups [44–46]. We show that the smoothed description is
accurate in the regime of intermediate and high temperatures
for all perturbation strengths, irrespective to the system’s
integrability. These findings provide a unified description of
sudden quenches in interacting quantum many-body systems
along with analytical expressions for the work pdfs.

This paper is organized as follows. In Sec. II we briefly
derive the work distribution associated to the definition of
quantum work via the two projective energy measurement
schemes in sudden quenches. Then, in Sec. III, we introduce
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the expression of the energy-smoothed work pdf for sudden
quenches in systems with large Hilbert spaces. In Sec. IV A
we derive an analogous expression for the EA work pdf of
random Hamiltonian models. In Sec. IV B we discuss the level
density and the strength function in the EGOE(1 + 2), which
are used in the description of the deterministic spin-1/2 chain
models considered in Sec. V A. We apply our approach to
these models in Sec. V B. Finally, in Sec. VI we present our
conclusions.

II. WORK DISTRIBUTION FOR SUDDEN QUENCHES

We consider a work protocol where a system with Hamilto-
nian H := H (0) is driven to the final one, H̃ := H (τ ), through
the change of a controllable parameter described by a unitary
Uτ . The initial state of the system is thermal at temperature T ,

�0 = e−βH

Z0
, (1)

with Z0 = Tr e−βH (0) being the partition function for the
initial Hamiltonian, and β := 1/kB T with kB being the Boltz-
mann constant. In this context, work is defined as the differ-
ence in energy obtained from two projective energy measure-
ments, one at the beginning and one at the end of the protocol.
Thus, work is a random variable w that can take values wnm :=
Ẽm − En , given by the possible energy differences, where Ẽm

(En) is the energy of the mth (nth) level of the final (initial)
Hamiltonian. Defining �0

n and �τ
m as the projectors over the

n and m levels of the initial and final Hamiltonian eigenbases,
respectively, we can compute the probability of obtaining wnm

in a single run as pm,n = pn pm|n. Here, pn = Tr[�0�
0
n] is the

probability of obtaining En in the first projective measure-
ment and pm|n = Tr[�τ

mUτ�
0
n�0�

0
nU

†
τ ]/pn is the conditional

probability of obtaining Ẽm in the second measurement given
that the first measurement gave En as a result. Therefore, the
pdf associated to the quantum work, called work distribution
function, is given by

P(w) :=
N∑

m,n=1

pm,n δ[w − (Ẽm − En)], (2)

where δ represents the Dirac delta distribution, and N is
the dimension of the system. For initial thermal states, such
pdf obeys important fluctuation theorems, establishing rela-
tions between nonequilibrium and equilibrium properties of
the system under consideration. One such theorem is the
Jarzynski equality [22] that can be derived from Crooks’
theorem [23], which relates forward and backward protocols
and shows that both processes always differ by an exponential
of the entropy production.

Different kinds of driving protocols could be considered,
but in this study we are interested in a specific one called sud-
den quench. This is represented by an instantaneous change
of the Hamiltonian, and thus the unitary operation associated
with the driving is represented by the identity operator, Uτ ≈
1. We consider initial and final energy spectra with possi-
ble degeneracies, therefore �0

n := ∑
γ |ψγ

n 〉〈ψγ
n | and �τ

m :=∑
α |ψ̃α

m〉〈ψ̃α
m|, where {|ψγ

n 〉} and {|ψ̃α
m〉} are the sets of eigen-

vectors of H and H̃ , respectively, with eigenenergies En and
Ẽm, respectively, and γ and α, accounts for the possible

degeneracies. One can notice that we can rewrite the work
distribution function as

P(w) =
N∑

n=1

∑
γ

e−βEn

Z0
SFn,γ (w), (3)

where Z0 = ∑N
n=1 gne−βEn [47], and SFn is the strength func-

tion of the nth eigenstate of the initial Hamiltonian in terms of
the final one, which is defined by

SFn,γ (w) :=
N∑

m=1

∑
α

∣∣〈ψ̃α
m

∣∣ψγ
n

〉∣∣2
δ[w − (Ẽm − En)]. (4)

The SF is the distribution of the squared modulus of the
overlaps between initial eigenstates and final ones, and gives
information about the effect produced by the quench on the
system’s eigenstates. In the literature, it is also known as
local spectral density or local density of states [48], and was
introduced a long time ago in nuclear physics [49,50]. More
recently, it was also used as a key concept in the definition
of chaotic eigenstates of quantum many-body systems for the
study of the eigenstate thermalization hypothesis [12]. The SF
is normalized,∫

dw SFn,γ (w) =
∑

m

∑
α

∣∣〈ψ̃α
m

∣∣ψγ
n

〉∣∣2 = 1, (5)

and its centroid is given by

ε̄(En) =
∫

dw w SFn,γ (w) = H̃γ γ
nn − En, (6)

where H̃γ γ
nn := 〈ψγ

n |H̃ |ψγ
n 〉 are the diagonal elements of the

final Hamiltonian in the eigenbasis of the initial one. The
variance of the SF can be calculated by summing up the off-
diagonal elements of the final Hamiltonian in the eigenbasis
of the initial one,

σ̄ 2(En) = 〈ψn|H̃2|ψn〉 − 〈ψn|H̃ |ψn〉2

=
∑
n �=n′

∑
γ �=γ ′

∣∣H̃γ γ ′
nn′

∣∣2
. (7)

Remarkably, both quantities, centroid and variance, can be
calculated without diagonalizing the final Hamiltonian, a task
that could be hard in large many-body interacting systems.

III. WORK DISTRIBUTION FOR SUDDEN QUENCHES IN
SYSTEMS WITH LARGE HILBERT SPACES

When one is dealing with complex systems with large
Hilbert spaces, N � 1, like in quantum many-body systems,
the spacing between nearest-neighbor energy levels decreases
with the dimension, so it is convenient to treat the initial and
final spectra as if they were continuous variables. Then, we
can perform the following approximation in Eq. (4):

N∑
m=1

∑
α

(· · · ) ≈
∫ ∞

−∞
dẼ ρ̃(Ẽ )

∑
α

(· · · ) , (8)

where ρ̃(Ẽ ) is the level density of the final Hamiltonian,
normalized to the total number of eigenlevels,∫ ∞

−∞
dẼ ρ̃(Ẽ ) = N. (9)
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Using the approximation of Eq. (8), we can write a smoothed
version of the SF of Eq. (4),

SFγ (w, E ) =
∫ ∞

−∞
dẼ ρ̃(Ẽ )

∑
α

|〈ψ̃α (Ẽ )|ψγ (E )〉|2

×δ[w − (Ẽ − E )]

= ρ̃(w + E )
∑

α

|〈ψ̃α (w + E )|ψγ (E )〉|2, (10)

where the notation |ψγ (E )〉 (|ψ̃α (Ẽ )〉) corresponds to the
energy eigenstate of H (H̃ ) with energy E (Ẽ ). Note that
the continuous version of the SF in Eq. (10) is correctly
normalized. Using the approximation given by Eq. (8) and the
continuous version of the SF in Eq. (3), we obtain

Psm(w) = 1

Z0

∫ ∞

−∞
dE ρ(E )e−βE

∑
γ

SFγ (w, E ), (11)

where the normalization is just the partition
function associated with the initial thermal state
Z0 = ∫ ∞

−∞ dE g(E )ρ(E )e−βE .
The approximation introduced in Eq. (8) represents a sort

of energy smoothing of the spectrum considered. In the limit
of infinitely small energy smoothing, Eq. (11) recovers the
work pdf in Eq. (3). This can be easily checked by using
the level density corresponding to an energy comb, ρ(E ) =∑N

n=1 δ(E − En), in Eq. (11), and an equivalent expression for
ρ̃(Ẽ ) in Eq. (10). We shall show that the main behavior of the
exact work pdf, Eq. (3), of some many-body systems can be
described through an energy smoothing of the spectrum. This
happens whenever the exact work pdf fluctuates a little around
Eq. (11), constructed from the smoothed energy functions,
ρ(E ) and SFγ (w, E ). In such cases, the smoothed work pdf,
Psm(w), represents an advantage since, in principle, one does
not need to know either the spectra or the eigenvectors of
the Hamiltonians to describe ρ(E ) and SFγ (w, E ). From the
experimental point of view, this represents a viable alternative
for systems with large Hilbert spaces, where the determination
of the exact spectra could be impossible. From the theoretical
point of view, the analytical determination of Psm(w) involves
the development of models that allow one to describe the
smoothed functions, ρ(E ) and SFγ (w, E ), in the systems with
large Hilbert spaces, without knowledge of the exact spectra
of the initial and final Hamiltonians. In many-body interacting
systems, an important class of such models is the random
models for the Hamiltonian matrices of the quench. The next
section is devoted to analyzing what are the features that these
random models must have in order to describe Psm(w).

IV. RANDOM MODELS

In interacting many-body systems, the functional form
of ρ(E ) and SFγ (w, E ) could be difficult to obtain [51].
A possible approach to deal with this problem is to verify
whether the initial and final Hamiltonians can be fit into some
random model. Therefore, we analyze the generic properties
that random models representing the above class of Hamilto-
nians must have in order to provide an EA of the work pdf
that matches the structure of the energy-smoothed work pdf
in Eq. (11).

A. The EA of the work distribution

In the study of the so-called quantum chaos and thermaliza-
tion of isolated many-body systems, one often invokes some
random model description of the Hamiltonians [12]. They
have also brought new insights to quantum thermodynam-
ics [52–54], with special attention devoted to the work pdf
[53–55], and also were explored in the context of information
scrambling [56–58]. Here, we show the basic conditions that
any large Hilbert space random model has to fulfill in order
to possibly obtain an expression of the work pdf with the
structure of Eq. (11).

Any random model can be characterized by a joint proba-
bility distribution P(E, θ) of energies and eigenvectors. The
random variables characterizing each model are the vector
E := (E1, . . . , EN ) [Ẽ := (Ẽ1, . . . , ẼN )] containing the un-
perturbed (perturbed) eigenenergies, and θ (θ̃) that is the
vector of parameters defining the initial (final) eigenvectors,
viz., {|ψγ

n (En, θ)〉} ({|ψ̃α
m(Ẽm, θ̃〉)}). We define PEA(w) :=

〈〈〈〈P(w, E, θ, Ẽ, θ̃)〉〉E,θ〉〉Ẽ,θ̃ as the EA of the work pdf,
P(w, E, θ, Ẽ, θ̃) , given by Eq. (3). We denote the EA with
respect to the initial ensemble of Hamiltonians by

〈〈(· · · )〉〉E,θ :=
∫

dE
∫

dθ(· · · )P(E, θ), (12)

and analogously for the final ensemble of Hamiltonians,
〈〈(· · · )〉〉Ẽ,θ̃ . All energy integrations are in the domain
(−∞,∞). Here, we do not assume any particular form of
the ensembles of random Hamiltonians, but rather we want
to show under which kind of assumptions PEA(w) has the
structure of Psm(w) in Eq. (11).

In Appendix A we show that the EA work pdf can be
written as

PEA(w) ≈ 1

Z0,EA

∫ ∞

−∞
dE ρE (E )e−βE

∑
γ

SFγ ,EA(w, E ),

(13)

under the following conditions: (i) statistical equivalence of
the eigenvalues and eigenvectors of the Hamiltonians of the
quench, (ii) an annealing approximation that is generically
valid for large values of N [54,57–59], and (iii) the joint dis-
tributions approximately factorize as independent functions of
the eigenlevels and eigenvectors, viz., P(E, θ) ≈ P(E)P(θ).
To write Eq. (13), we defined the level density of the initial
ensemble of Hamiltonians H ,

ρE (E ) := N
∫

dE′P(E), (14)

with dE′ meaning an integration over all eigenergies except
one, viz., E . We also defined the EA of the strength function
as

SFγ ,EA(w, E ) := ρ̃E (E + w)

×
∑

α

〈〈|〈ψ̃α (w + E , θ̃)|ψγ (E , θ)〉|2〉θ〉θ̃,

(15)

with 〈(· · · )〉θ := ∫
dθ(· · · )P(θ) (equivalently for 〈(· · · )〉θ̃)

and the density of states of the final ensemble of Hamil-
tonians, ρ̃E (Ẽ = E + w). Finally, the EA partition function
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associated to the initial thermal state is 〈Z0(E)〉E := Z0,EA :=∫ ∞
−∞ dE g(E )e−βEρE (E ) . Again, this partition function is just

a normalization constant and allows one to check the con-
sistency of the approximations made. Therefore, using the
statistical independence of eigenvalues and eigenvectors of the
random ensembles of initial and final Hamiltonian matrices
and the annealing approximation of the EA, we obtained an
expression for the work pdf, Eq. (13), that is equivalent to
Eq. (11).

The expression in Eq. (13) is useful only when the en-
sembles of Hamiltonians considered have a sort of ergodic
property, i.e., for a sufficiently large dimension N the work pdf
calculated from single draws of Hamiltonians from the ensem-
bles (running average) is close to the EA [60]. This property
was verified recently in [54] for the work pdf of quenches
using the usual Gaussian ensembles (GEs) of random matrix
theory (RMT) [60,61]. In Appendix B we rederive the results
of [54] for Gaussian ensembles, but using Eq. (13).

B. Two-body random ensembles

Many developments concerning the relation between the
definition of quantum work and the classical definition have
already been accomplished [62–64], with special attention
devoted to quantum systems with classically chaotic coun-
terparts [65–67]. Unlike in classical mechanics, chaos in
quantum mechanics has no clear definition [68]. However,
analytical and numerical results suggest that quantum systems
with classical chaotic counterparts share a common behavior
for some of their spectral features [69,70]. For instance, the
statistical behavior of the nearest-neighbor spacing distribu-
tion, P(s) with s := Ej+1 − Ej , and the spectral rigidity, 3,
follow the behavior predicted by the Gaussian ensembles
of RMT corresponding to quantum systems without time-
reversal invariance (GUE) or with time-reversal invariance
(GOE or GSE) [71], with the prominent characteristic of in-
variance with respect to basis rotations [60,61]. For classically
integrable quantum systems the corresponding behavior of
these local spectral fluctuations is that of Poisson systems
[70].

Much more subtle is the concept of chaos in complex
systems with no classical counterpart, which is common in the
case of interacting quantum many-body systems [12,72]. For
such systems, the chaotic regime is usually defined as the one
where the level spacing distribution follows the prediction of
the Gaussian ensembles. However, it has been observed that
the notion of quantum chaos is also directly related to the
structure of the energy eingenstates. This observation arose in
the context of the study of thermalization in isolated quantum
systems of interacting particles, where the Hamiltonians can
be separated into a sum of two parts, H = H ′ + λV . The first
one, H ′, describes the noninteracting particles, or the “mean-
field” part, being an effective single-body Hamiltonian that
could contain also some mean-field effect coming from the
two-body interactions, while the second one, V , describes the
perturbation part, absorbing the typical two-body interactions
[12,72]. The important tool to characterize the structure of the
energy eigenstates of the total Hamiltonian is the SF [49]. It
gives the overlap distribution of a given eigenstate of H with
the mean-field basis of H ′. Typically, the eigenstates of H may

be considered chaoticlike for large values of the interaction
strength, λ, where the SF displays a Gaussian form [72].

Despite the success of Gaussian ensembles in describing
local fluctuations, it became clear that no realistic quantum
system follows all the predictions of these ensembles. In
particular, the semicircle law for the level density, valid
for Gaussian ensembles of large dimension, is completely
artificial and is not followed by any physical system [68].
Therefore, random models that consider the k-body nature of
the interactions were introduced [73–78] in order to describe
complex systems with realistic level densities. The most com-
mon k-body random ensembles are those with two-body in-
teractions (k = 2), called two-body random ensembles, which
was recently used to address the increase of correlations in
bosonic systems after a quench [79], and in the analysis
of spectral properties of a deterministic integrable quantum
system [80]. Within these ensembles, the most studied are
the embedded Gaussian ensembles, constructed by using a
usual Gaussian ensemble in the k-particle space of effective
interaction and then propagating it to the total N-particle
space (N > k) using the direct product structure [43]. When
one considers the GOE in the k-particle space, the associated
embedded ensemble is known as EGOE.

EGOEs exist for fermionic and also for bosonic systems
[81] and the EGOE(1 + 2) are particularly useful for (1 + 2)-
body Hamiltonians of the form

H = H ′ + λV, (16)

where H ′ is the one-body part, V is the two-body residual
interaction, and λ is the strength of the perturbation [43,81].
H ′ describes the noninteracting constituents, particles, or
quasiparticles, and in general comes from some mean-field
approximation that defines the single-particle states filled
with a number of noninteracting particles. Usually H ′ in
EGOE(1 + 2) are considered diagonal with or without ran-
dom entries [12,43,81]. The interactions between constituents
are embedded into V , which contains the two-body nature of
the interactions. In the mean-field eigenbasis, the interaction
term gives an approximate bandlike structure to the matrix
H . Thus, the privileged character of the mean-field basis
breaks the invariance of the EGOE(1 + 2) with respect to
basis rotations. Also, this basis is associated to the main
property of quantum chaos in complex systems described by
Hamiltonians of the form of Eq. (16): the eigenstates of H are
delocalized in the mean-field basis [12].

One of the main features of the EGOE(1 + 2) is that for
a large dimension N , the level density associated to H in
Eq. (16) displays a Gaussian form for every value of λ [43,81]:

ρE (E ) ≈ ρG
E (E ) := N√

2πσE

e−(E−Ē )2/2σ 2
E , (17)

where the centroid Ē , and the variance σ 2
E are independent

of N . Besides their dependence on the parameter λ, their
values are also fixed by the variance σ 2 of the Gaussian
distributed diagonal entries of the Gaussian ensemble used
in the k-particle space. The parameter σ 2 defines the energy
scale of the EGOE(1 + 2) considered. Usually, the numerical
values of the centroid and variance, Ē and σ 2

E , are obtained
from a numerical fitting over the level density calculated from
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several single draws of Hamiltonian matrices of fixed large
dimension N . The dependence of Ē and σ 2

E on N can be
inferred by repeating the procedure for various values of N
for which the diagonalization of the matrices is possible, and
then extrapolating for very large values of N .

In the EGOE(1 + 2), the strength function of the nth
eigenstate of an unperturbed Hamiltonian, H ′, in the basis
of a perturbed one, Eq. (16), depends on the strength of the
perturbation λ. In fact, for large dimensions the EA SF in
the EGOE(1 + 2) shows also a transition from a Breit-Wigner
(BW) form,

SFEA(w, E ) ≈ SFBW(w, E )

:= 1

2π

�[
(w + E − ε̄)2 + �2

4

] , (18)

for λ < λF , to a Gaussian form,

SFEA(w, E ) ≈ SFG(w, E ) := 1√
2πσ̄ 2

e−[(w+E−ε̄)2/2σ̄ 2],

(19)

for λ > λF [43,81], where ε̄ := ε̄(E ), � := �(E ), and σ̄ :=
σ̄ (E ). We remark that the EGOE(1 + 2) displays no degen-
eracies, so for such ensemble the sums over α and γ can be
neglected [for instance, in Eqs. (13) and (15)].

In the EGOE(1 + 2) with large values of N , the ergodic
property of both the level density and the strength function
have been verified [43,81]. Therefore, the running average
of such quantities is close to the ensemble average. For the
strength function, it corresponds to SFn(w) ≈ SFEA(w, En) in
the limit N → ∞. Usually, the approximation is verified for
all perturbation strengths by performing a histogram function
of SFn(w) within a small energy window Enl � En � Enr

(with nl � n � nr) and with a small binning of the variable w.
By increasing the dimension of the matrices and maintaining
the bin’s size of the histogram, it is possible to verify the
convergence of the distribution SFn(w) to SFEA(w, En) for
every value of E ∼ En .

In addition to the value of λF , the transition from an inte-
grable to a chaotic regime in the EGOE(1+2) is determined
by another value of the interaction strength, λc, that sets the
transition from a Poissonian to a Wigner-Dyson distribution
in the nearest-neighbor level spacing [81]. Thus, these types
of random ensembles are well suited to describe deterministic
many-body interacting systems that present this type of tran-
sition in the level statistics [12,72].

V. WORK DISTRIBUTION IN MANY-BODY SYSTEMS AND
RANDOM ENSEMBLES

In Sec. IV A we have shown that certain random models
can be used to approximate the work statistics of complex
systems. This is done by considering a smoothed version of
the level density and of the strength function, both obtainable
through an ensemble average. However, it is not yet clear
the role played by the temperature and by the perturbation
strength for an accurate description of the exact P(w). In the
next sections we consider sudden quenches for two different
one-dimensional spin-1/2 chains with Hamiltonians of the
form of Eq. (16). In both systems, we compare the exact work

pdf with the one given by the EGOE(1 + 2) using the level
density of Eq. (17) and the SF of Eqs. (18) and (19) for a
broad range of temperatures and perturbation strengths.

A. Spin-1/2 chains

The models we considered are two different one-
dimensional spin-1/2 chains with two-body finite-range in-
teractions. The first one has only first neighbor interactions,
and is given by [72]

H1 := H0 + μV1,

H0 :=
L−1∑
i=1

J
(
Sx

i Sx
i+1 + Sy

i Sy
i+1

)
,

V1 :=
L−1∑
i=1

JSz
i Sz

i+1, (20)

where L is the number of sites, and Sk
i , with k = x, y, or z, are

the spin operators at site i. The parameter J sets the energy
scale and is chosen to be 1 in what follows. The flip-flop
term, H0, that moves the excitations (spin up in the z direction)
through the chain, can be mapped onto a system of noninter-
acting spinless fermions or hard-core bosons and is integrable.
Perturbations over H1, known as the XXZ Hamiltonian, are
applied by changing the coupling or anisotropy parameter,
μ, from some initial value μi to some final value μ f . Here
we consider quenches that are obtained by a sudden change
μi → μ f . It is important to remark that the Hamiltonian
H1 is always integrable, irrespective to the strength of the
parameter μ.

The second model we consider is built by introducing
second-neighbor interactions to the first model, and is given
by [72]

H2 := H1 + λV2,

V2 :=
L−2∑
i=1

J
[(

Sx
i Sx

i+2 + Sy
i Sy

i+2

) + μSz
i Sz

i+2

]
. (21)

The quench we study in this system is given by a sud-
den change of the strength in the second-neighbor interac-
tions, λi → λ f . The inclusion of second-neighbor interac-
tions, given by V2, allows the system to display a chaotic
structure when the value of λ is sufficiently high [72]. The mo-
mentum conservation is avoided by considering open bound-
ary conditions. However, other symmetries are present. First,
the two models conserve the total spin in the z direction for
any value of the parameters, viz., [H1,2, Sz] = 0, with Sz =∑L

i=1 Sz
i . This conserved quantity allows us to break up the to-

tal state space into subspaces of a fixed number K of spins up
which do not mix under evolution, and we work within such
subspaces of dimension DK = L!/[K! (L − K )!]. The models
also preserve the value of the total spin, S2 = (

∑L
i=1

�Si )2 , if
μ = 1, then we do not use this value throughout. There is
also a parity symmetry defined as the collective permutation
of mirrored sites in the chain that is avoided by dealing
with one of the two (positive or negative) parity subspaces.
Therefore, the effective dimension of the systems considered
is N ≈ DK/2. A systematic study of the level densities and
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FIG. 1. Elements characterizing the work pdf of the model of Eq. (21) with μ = 0.5. Panels (a), (b), and (e) for a quench λi = 0.7 →
λ f = 0.9; and (c), (d), and (f) for λi = 0.7 → λ f = 3.2. Panels (a) and (c): Histograms of the level densities. In (a) the left histogram (blue)
is for ρ(E ) with λ = 0.7, and the right one (red) is for ρ̃(Ẽ = E ) with λ = 0.9. In panel (c) the histograms correspond to ρ(E ) with λ = 0.7,
and ρ̃(Ẽ = E ) with λ = 3.2. The black dashed curves are the Gaussian fittings in Eq. (17). Panels (b) and (d): The strength functions. Dots
represent the histograms and the full black lines correspond to the Breit-Wigner fit in (b), SFBW(w, E ), and to the Gaussian fit, SFG(w, E ), in
(d). Panels (e) and (f): In (e) we plot the width � and the centroid ε̄ (inset) of the fitting SFBW(w, E ) as a function of the initial energy. These
values were obtained through the fitting of the corresponding histograms of the energy-smoothed strength function SF(w, E ) for different
values of E . In (f) we plot the centroid ε̄ and the width σ̄ using Eqs. (6) and (7), respectively. See text for details.

the strength functions of the models in Eqs. (20) and (21)
were performed in Ref. [72]. In order to make our presentation
self-contained, we summarize the results of Ref. [72], and
apply them to sudden quench processes discussed here. It is
worth mentioning that our results are equivalent to those of
Ref. [72] if we consider, in each quench process λi → λ f

or μi → μ f , the eigenstates of the Hamiltonians H1 + λiV2

or H0 + μiV1 as the mean-field basis, respectively. On the
contrary, in Ref. [72] the mean-field bases were always the
eigenstates of H1 or H0 .

Let us start by considering the level densities in Fig. 1
[panels (a) and (c)] that refer to Hamiltonians of the model in
Eq. (21) with L = 15, K = 5, and μ = 0.5. Thus, in this case
the dimension of the system we consider is N = 1512. In this
system, there is a crossover from integrability to chaos that oc-
curs for λc ≈ 0.5, where the level spacing distribution changes
from a Poissonian to a Wigner-Dyson distribution [72]. The
parameters considered in Fig. 1 panel (a) are associated to a
small quench λi = 0.7 → λ f = 0.9 , and the ones in panel (d)
to a larger quench, λi = 0.7 → λ f = 3.2. By small or large
quench, we mean the value of the difference between the
initial and final values of the coupling parameters (μ f − μi

for the first model and λ f − λi for the second model). If
the shape of the SF is a Breit-Wigner distribution, then we
call it a small quench, and we call it a large quench if the
SF is a Gaussian distribution. Therefore, the initial and final
Hamiltonians displayed in the figures are all in the chaotic
regime. The initial and final level densities, ρ(E ) and ρ̃(Ẽ ),
are shown in the form of histograms with small binning size.
The dashed curves show that, in both perturbation regimes,
the histograms are well approximated by Gaussian distribu-
tions, ρG

E (E ), corresponding to the EA of the EGOE(1 + 2),
Eq. (17).

For the quench λi = 0.7 → λ f = 0.9 a typical strength
function is displayed in Fig. 1, panel (b). In this case the SF
is expected to behave as a Breit-Wigner distribution in the
limit of large dimension N . This is verified in panel (b) of
Fig. 1, where we plot the energy-smoothed strength function
SF(w, E ) as a histogram constructed from SFn(w) in an small
energy window Enl � En � Enr around a fixed value of the
initial energy E ∼ En, and for a small bin size in the variable
w. We fit this histogram with the EA function, SFBW(w, E )
in Eq. (18), of the EGOE(1 + 2). We have similar fittings
when repeating the procedure but varying the initial energy
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E ∼ En, and in panel (e) of Fig. 1 we show the center ε̄ (inset)
and the width of these Breit-Wigner fittings, viz., SFBW(w, E )
in Eq. (18), as a function of the initial values of the energy
E . On the other hand, for a quench λi = 0.7 → λ f = 3.2,
the SFs behave as Gaussian distributions in the limit of large
dimension N , then this perturbation is considered large. This
is verified in panel (d) of Fig. 1, where a Gaussian fitting is
displayed. We remark that in this case the centroid ε̄ and the
width σ̄ of the SFs were computed from the matrix elements
(without any diagonalization or fitting) using Eqs. (6) and
(7), and showed perfect agreement with those obtained by
numerical diagonalization. In panel (f) of Fig. 1 we show the
center ε̄ and the width of the SFG(w, E ), in Eq. (19), as a
function of the initial values of the energy E .

We also consider quenches in the model of Eq. (20), where
the system is integrable. The first one corresponds to the
change μi = 0.1 → μ f = 0.5 (that we call “small perturba-
tion”), and the second to the change μi = 0.1 → μ f = 2.4
(that we call “large perturbation”). In both cases the results
(not shown) are analogous to those shown in Fig. 1, i.e., the
initial and final level densities are well fitted by Gaussian
distributions, ρG

E (E ) in Eq. (17), corresponding to the EA
of an EGOE(1 + 2). Unlike the EGOE(1 + 2), the model of
Eq. (20) does not have a transition to a chaotic regime. How-
ever, we observe that the strength functions also behave as the
prediction for these ensembles, i.e., for a small perturbation
it follows the Breit-Wigner fitting, SFBW(w, E ) in Eq. (18),
and for a large perturbation, it follows the Gaussian fitting,
SFG(w, E ) in Eq. (19).

We have checked the convergence of the level densi-
ties and strength functions and found that ρ(E ) ≈ ρG(E ) in
Eq. (17) for all ranges of parameters analyzed. Similarly,
SF(w, E ) ≈ SFBW(w, E ) when small perturbations are con-
sidered, and SF(w, E ) ≈ SFG(w, E ) for large perturbations,
independently of whether the initial and final Hamiltonians
are in the chaotic or in the integrable regimes. Convergence
to the EA is shown in the histograms of Fig. 2 for the same
sudden quench used in Fig. 1 [panels (d), (f), and (g)], but
for two different dimensions: N = 1512 in panels (a) and
(b) and N = 3215 in panels (c) and (d). In these plots, one
can see that by fixing the size of the histogram binning,
the size of the fluctuations of ρ(E ) and SF(w, E ) around the
curves ρG(E ) and SFG(w, E ), respectively, decreases as the
dimension increases.

B. Work distribution for spin chains

In the previous section we showed that the ρ(E ) and
SF(w, E ) of the models considered can be borrowed from
the EGOE(1 + 2) when the dimension of the system is large,
viz., N � 1. Both functions are fundamental pieces in the
construction of Psm(w). However, the work pdf depends on
the temperature through the Boltzman factor, and the accuracy
of Psm(w) in describing the exact P(w) must be checked for
different ranges of temperatures. Here, we show that the exact
P(w) can be described by Psm(w), or essentially by PEA(w)
[Eq. (13) from EGOE(1 + 2) models], only for intermediate
and large temperatures, being also analytically computable.

The presence of the Boltzman factor in Eq. (13), or
equivalently in Eq. (11), allows the characterization of low

FIG. 2. For the same big quench of Fig. 1, λi = 0.7 → λ f = 3.2,
we plot the histograms (in blue) of the initial level densities ρ(E )
[(a) and (c)], and the smoothed strength function SF(w, E = 3)
[(b) and (d)]. In panels (a) and (b) the initial and final Hamiltonians
have a dimension N = 1512 and in (c) and (d), N = 3215 . As the
dimension increases, the fluctuations of the histograms decrease
around the Gaussian fittings. We kept the bin size fixed: in (a) and
(c) it is 0.055 and in (b) and (d) it is 0.097 . See text for details.

or high temperatures by defining the parameter Neff that is
proportional to the number of levels below the energy E such
that βE ∼ 1. Therefore, a given value of β corresponds to a
high temperature if Neff/N � 1 and to a low temperature if
Neff/N  1. We can roughly estimate Neff by writing βE ≈
βNeff s̄ ≈ 1, with a mean level spacing approximately given
by s̄ = 1/ρG

E (Ē ), with ρG
E (Ē ) being the maximum value of

the level density in Eq. (17).
In Figs. 3 and 4 we show the results for the same pa-

rameters that we considered in Fig. 1. The initial and final
Hamiltonians are both in the chaotic regime. For intermediate
and high temperatures, panels (b) and (c), respectively, we
see a very good agreement between Psm(w) ≈ PEA(w) and
P(w), the latter represented by a histogram. However, for
small temperatures, panel (a), we observe large deviations.
The reason is that for small temperatures P(w) does not
converge to a smooth function. We check this by increasing
the system’s dimension N , but maintaining Neff/N  1 fixed,
and performing a histogram representing P(w) with the same
bin size as in Figs. 3 and 4. On the one hand, we observe
that the size of the fluctuations of the histograms does not
decrease (plot not shown) in the case of low temperatures. On
the other hand, the fluctuations of the histograms representing
P(w) decrease around the smooth curve for intermediate and
high temperatures. An example of this type of calculation is
shown in Fig. 5.
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FIG. 3. The dashed lines (in blue) are the histograms that rep-
resent P(w) in Eq. (3) for a small quench, λi = 0.7 → λ f = 0.9,
using the model in Eq. (21) (with μ = 0.5 and N = 1512) for inverse
temperature values: (a) β = 5, so Neff/N = 0.066 ; (b) β = 0.5, so
Neff/N = 0.66; and (c) β = 0.05, so Neff/N = 6.6 . The initial and
final Hamiltonians are in the chaotic regime. The bin size is ∼0.08
and the total number of bins is 1800 in all the histograms. The full
line (in black) corresponds to the EA, PEA(w), in Eq. (13) using
the Gaussian level density ρG

E (E ) in Eq. (17) and the Breit-Wigner
function SFBW(w, E ) in Eq. (18) (see text for details).

In Fig. 6 we show that there is also a good agreement in the
intermediate and high temperature regimes when the initial
and final Hamiltonians are integrable, for both large and small
perturbations.

VI. CONCLUSIONS

We have shown that for quench processes in quantum
systems with large Hilbert spaces, such as interacting quantum
many-body systems, there is a simple way to describe the

FIG. 4. The same as Fig. 3 but for a large quench, λi = 0.7 →
λ f = 3.2 and for different values of the inverse of temperature:
(a) β = 20, so Neff/N = 0.0165; (b) β = 2, so Neff/N = 0.165 ;
and (c) β = 0.005, so Neff/N = 66. Here, both the initial and final
Hamiltonians are in the chaotic regime. The bin size is ∼0.14 and
the total number of bins is 250 in all histograms. The full line (in
black) corresponds to the EA, PEA(w) in Eq. (13), constructed using
the Gaussian functions, ρG

E (E ) in Eq. (17) and SFG(w, E ) in Eq. (19)
(see text for details).

work distribution function. Such construction is a smoothed
work pdf given by an energy integration of the product of two
energy smooth functions, weighted by a Boltzmann factor.
The smooth functions are the level density of the initial
Hamiltonian and the strength function of the eigenstates of
the initial Hamiltonian in the eigenbasis of the final one.

We also have shown that an equivalent expression can be
obtained for the ensemble average of the work distribution
for quantum quenches over random Hamiltonian models,
provided that the eigenvalues and eigenvectors of the Hamil-
tonians in the ensembles are statistically independent, and also
that an annealing approximation over the ensemble average is
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FIG. 5. The dashed lines (in blue) are the histograms that rep-
resent the exact work pdf P(w) in Eq. (3) for a small quench, λi =
0.7 → λ f = 0.9, using the model in Eq. (21) (with μ = 0.5). We use
a system with N = 1512 for the plots on the right and N = 3235 for
the plots on the left. In both cases Neff/N = 60. The full lines (in
black) correspond to the EA, PEA(w), in Eq. (13) using the Gaussian
level density ρG

E (E ) in Eq. (17) and SFBW(w, E ) in Eq. (18).

valid. The latter condition is usually verified when the dimen-
sions of the ensemble matrices are sufficiently large. When
the ensembles of random matrices describe well the density of
levels and the corresponding strength function of the systems
considered, the energy-smoothed work pdf can be obtained
from the ensemble average. This is very advantageous since,
in general, this approach provides analytical expressions valid
for many realistic systems.

We numerically checked in spin-1/2 chains models, whose
level density and strength function are well described by the
EGOE(1 + 2), that the exact quantum work pdf has small
fluctuations around the energy-smoothed work pdf for large
Hilbert space dimensions. Our results show that the energy-
smoothed work pdf represents a good description of the exact
work pdf for intermediate and high temperatures, but fails in
the regime of low temperatures. We have also verified the
agreement between the smoothed description and the exact
work pdf in both integrable and chaotic regimes for large and
small quench strengths.

The approach developed here is general and avoids the
demanding task of diagonalization of many-body interacting
Hamiltonians. Our findings constitute one step further towards
a generic description of the thermodynamics of many-body
Hamiltonians, with possible implications in quantum chaos
and condensed matter physics.
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FIG. 6. The dashed lines (in blue) are the histogram functions
that represent the exact work pdf, P(w), in Eq. (3) in the regime of
high temperature (β = 0.05) and when the initial and final Hamil-
tonians are in the integrable regime. The dimension of Hamiltonian
matrices is N = 1512 in all the systems used. Therefore, Neff/N = 8
in all the panels. In panel (a) we use the model in Eq. (21) with a
small quench, λi = 0.1 → λ f = 0.3. In panels (b) and (c) we use
the model in Eq. (20). In (b) we have a small quench μi = 0.1 →
μ f = 0.5 . In (c) we have a large quench μi = 0.1 → μ f = 2.4 .
All histograms have a bin size ∼0.02, and a total number of bins
800. The full lines (in black) correspond to the EA, PEA(w), in
Eq. (13) using the Gaussian level density ρG

E (E ) in Eq. (17) and
the Breit-Wigner function SFBW(w, E ) in Eq. (18) for panels (a) and
(b) and SFG(w, E ) in Eq. (19) for panel (c).
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APPENDIX A: ENSEMBLE AVERAGE OF WORK DISTRIBUTION IN RANDOM MODELS

This Appendix shows the demonstration of Eq. (13). After performing the EA of the expression in Eq. (3), where we used the
linearity of averages, we see that the result does not depend on the indexes “n” and “m,” due to the first assumption of statistical
equivalence of the eigenvalues and eigenvectors of the Hamiltonians. Therefore, we can write

PEA(w) = N2

〈〈〈〈
e−βE

(∑
α,γ |〈ψ̃α (Ẽ, θ̃)|ψγ (E, θ)〉|2)δ(w − Ẽ + E )

Z0(E)

〉〉
E,θ

〉〉
Ẽ,θ̃

≈ N2

〈〈〈〈
e−βE

( ∑
α,γ |〈ψ̃α (Ẽ, θ̃)|ψγ (E, θ)〉|2)δ(w − Ẽ + E )

〉〉
E,θ

〉〉
Ẽ,θ̃

〈Z0(E)〉E
, (A1)

where we have used in the last line an annealing approxi-
mation [54,57–59], constituting the second assumption. Such
approximation is valid, in principle, for high-dimensional
random Hamiltonian models and for any value of the in-
verse of temperature, β. In the denominator of Eq. (A1), we
have used also that 〈〈〈〈Z0(E)〉〉E,θ〉〉Ẽ,θ̃ = 〈Z0(E)〉E. Further
assuming that the joint distributions approximately factorize
as independent functions of the eigenlevels and eigenvectors,
viz.viz., P(E, θ) ≈ P(E)P(θ) and P̃(Ẽ, θ̃) ≈ P̃(Ẽ)P̃(θ̃), it is
easy to rearrange the expression in Eq. (A1) to obtain the
expression in Eq. (13).

APPENDIX B: PROBABILITY OF WORK
IN GAUSSIAN ENSEMBLES

In this Appendix we obtain the results of [54] for Gaussian
ensembles, but using Eq. (13). For N � 1, the density of
levels of Hamiltonians from the Gaussian ensembles follows
the semicircle law [60,61]:

ρE (E ) ≈ ρN�1(x) =
{

2N
πa

√
1 − (

x
a

)2
,

|x|
a � 1

0 ,
|x|
a > 1,

(B1)

with x = E − Ē and a = 2Ns̄/π . The parameter Ē is the
mean value of the Gaussian distributions of the independent
random diagonal entries of the Hamiltonian matrices of the
ensemble. Therefore, it fixes the center of the random matrix
spectrum. The semicircle behavior for large dimensions im-
plies that the level spacing, s̄, is almost constant for a large
portion of the spectrum, being almost equal to its value in the
center:

s̄ ≈ 1

ρN�1(0)
= πσ

√
βe

2N
. (B2)

The parameter σ 2 is the variance of the diagonal as well as
of the real and imaginary parts of the off-diagonal random
elements Gaussian distributed [61], setting the energy scale of
the ensemble. The constant βe assumes the values 1, 2 for the
GOE and GUE, respectively, and βe = 4 for the GSE.

For large dimensions we have

〈〈|〈ψ̃ (w + E , θ̃)|ψ (E , θ)〉|2〉θ〉θ̃ ≈ 1

aβe N
. (B3)

The parameter aβe is related to the degree of degeneracy of the
ensembles, assuming the values aβe = 1 for βe = 1 and 2, and
aβe = 2 for βe = 4. That is, while the GOE and GUE have

no degeneracies, the GSE spectrum is doubly degenerated.
Substituting Eqs. (B1) and (B3) in Eq. (15), we obtain

SFγ ,EA(w + E ) ≈ ρ̃N�1(w + E )

N
, (B4)

where we recall that the sums over α and γ run over the
degeneracies (until aβe ). The EA of the partition function can
be obtained from Z0,EA := ∫ ∞

−∞ dE g(E )e−βE ρE (E ) by using
Eq. (B1) and recalling that g(E ) = aβe for every E :

Z0,EA ≈ aβe

∫ ∞

−∞
dE e−βEρN�1(E )

= 2aβe e
−β〈E〉 I1(2N〈s〉β/π )

2〈s〉β/π
, (B5)

with In(x) being the modified Bessel function of first kind.
Thus, we finally obtain the EA of the work pdf:

PGE
EA (w) = aβe

NZ0,EA

∫ ∞

−∞
dE ρN�1(E )ρ̃N�1(w + E )e−βE ,

(B6)

where ρN�1 and ρ̃N�1 are given by Eq. (B1) and Z0,EA is
given by Eq. (B5). The expression for PGE

EA (w) in Eq. (B6)
is recovered from the inverse Fourier transform of the EA of
characteristic function, viz., 〈G(u)〉, given by Eq. (17) of [54].

Therefore, for Gaussian ensembles of large dimension,
the EA of the work pdf for sudden quenches, PGE

EA (w), is
simply given by the thermal average of the convolution of
the level densities of the two random spectra. It is completely
characterized by the average level spacings, s̄ and ¯̃s, through
Eq. (B2), and by the averages of the eigenlevels, Ē and ¯̃E ,
corresponding to the center of the initial and final spectra,
respectively.
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