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Ensemble inequivalence in the Blume-Emery-Griffiths model near a fourth-order critical point
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The canonical phase diagram of the Blume-Emery-Griffiths model with infinite-range interactions is known to
exhibit a fourth-order critical point at some negative value of the biquadratic interaction K < 0. Here we study
the microcanonical phase diagram of this model for K < 0, extending previous studies which were restricted to
positive K . A fourth-order critical point is found to exist at coupling parameters which are different from those of
the canonical ensemble. The microcanonical phase diagram of the model close to the fourth-order critical point
is studied in detail revealing some distinct features from the canonical counterpart.
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I. INTRODUCTION

Long-range interacting systems have gained considerable
attention, due to their unusual characteristics when compared
with the widely studied systems with short-range interactions
[1,2]. By long-range interacting systems, one refers to cases
where the two-body interaction potential between degrees of
freedom decays algebraically with the distance r as 1/rd+σ ,
where d is the spatial dimension and σ � 0. Such systems,
for which the energy and other thermodynamic potentials
are nonadditive, are rather widely spread in nature, including
self-gravitating systems (d = 3, σ = −2) [3,4], interacting
geophysical vortices (d = 2 and logarithmic interaction) [3],
dipolar interactions in ferroelectrics and ferromagnets(d = 3,
σ = 0) [5], and plasmas [6] to name a few. The case σ = −d
corresponds to infinite-range, mean-field interaction, which
has conveniently been used to study various features of long-
range interacting systems.

The nonadditive nature of thermodynamic quantities in
long-range systems makes them rather different from the
more commonly studied systems with short-range interac-
tions, resulting in a number of nontrivial features such as
inequivalence of different ensembles [7,8]. For example, one
finds that in these systems the entropy need not be a concave
function of energy, which implies a negative specific heat
in the microcanonical ensemble. This is in contrast with
what is obtained in the canonical ensemble. In addition at
first-order phase transitions the temperature displays a dis-
continuity in the microcanonical ensemble, a feature which
is clearly absent in the canonical ensemble. Similar features
are found when grand-canonical and canonical ensembles are
compared [9]. The lack of additivity results in the presence of
nonconvex domains in the parameter space of accessible ther-
modynamic variables and in breaking of ergodicity [10,11].
Various other interesting effects have been predicted in the
relaxation of certain long-range systems to their final equilib-
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rium state, where the system approaches intermediate long-
lived “quasistationary states” before reaching equilibrium
[12–15].

A simple paradigmatic model in which properties of sys-
tems with long-range interactions have been studied and en-
semble inequivalence has been demonstrated is the Blume-
Emery-Griffiths (BEG) model, introduced to study the phase
separation and transition to superfluidity in He3 − He4 mix-
tures [16], which was later generalized and used for studying
generic two-component fluid mixtures [17,18]. This is a spin-
1 lattice model with both bilinear and biquadratic spin-spin
interactions. In the case of infinite-range interactions, where
every spin interacts with every other spin with the same
coupling constants (σ = −d), the Hamiltonian of the model
can be represented as

H = �

N∑
i=1

S2
i − J

2N

(
N∑

i=1

Si

)2

− K

2N

(
N∑

i=1

S2
i

)2

, (1)

where each spin Si takes one of the values {−1, 0, 1}. The
parameter � controls the energy difference between the fer-
romagnetic (Si = ±1) and the paramagnetic (Si = 0) states,
J > 0 is a ferromagnetic coupling and K is a biquadratic
coupling which could have either sign. Even though each
spin interacts with every other spin, the scaling J/N and K/N
makes the energy extensive (although not additive). Without
loss of generality one may take J = 1.

The canonical phase diagram of the model (1) has been
shown to display unique features at different domains of
model parameters [16–20]. For fixed K � 0 the (�, T ) phase
diagram exhibits a ferromagnetic ordered phase at small
values of T and � and a paramagnetic disordered phase
otherwise. However, some qualitative features of the phase
diagram are modified as K increases, as shown in Fig. 1. At
small K the transition line between the two phases changes
character from continuous (solid black) to first-order (dashed
red) at a tricritical point (green dot). At higher values of K
[21], another first-order line emerges, separating two disor-
dered phases. The two first-order lines meet at a triple point
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FIG. 1. Schematic plot showing the canonical phase diagram in
the (�, T ) plane for different domains of K � 0. Plot (a) corresponds
to the range 0 < K < K1 ≈ 2.775, where the transition line separat-
ing the ferromagnetic (ordered, m �= 0 [see Eq. (3) for the definition
of m]) and paramagnetic (disordered, m = 0) phase is composed of
continuous (solid black) and first-order (dashed red) line segments
meeting at the tricritical point (green dot). Plot (b) is for 2.775 ≈
K1 < K < K2 ≈ 3.801, where in addition to the features described
for K < K1, the first-order line branches at a triple point into the
disordered phase, indicating a transition between two disordered
phases with different quadrupole moment. This branch terminates
at a critical point (black dot). Plot (c) is for K > K2, where the
second- and first-order lines join at a critical end point rather than
at a tricritical one.

where the two disordered phases coexist with the ordered one
[see Fig. 1(b)]. For even larger K values, the tricritical point
becomes a critical end point [see Fig. 1(c)] and the continuous
branch of the transition line terminates at the intersection with
the first-order line.

The canonical phase diagram for K < 0 has also been
addressed [18,20]. It has been shown that while at small K
the phase diagram is qualitatively similar to the K = 0 one
(with first and second-order lines joining at a tricritical point),
at some particular value of K the tricritical point becomes
a fourth-order one. Beyond that value, the phase diagram
becomes rather different from that of positive K . While the
second-order line terminates at the first-order one at a critical
end point (as in the K > 0 regime), the first-order line enters
into the ordered phase separating two distinct ferromagneti-
cally ordered phases (see Fig. 2). This phase diagram holds,
schematically, for a range of values of negative K .

The microcanonical phase diagram was studied for the
model for K = 0 [22] and for K > 0 [21], illustrating the
inequivalence between the two ensembles. It has been demon-
strated that while the two ensembles have a common critical
line at small values of K , the two ensembles yield distinct
phase diagrams in the region where the canonical transition
is first-order. In particular the microcanonical tricritical point
is located at a different point in the phase space of the model.
Detailed studies of the phase diagram in the vicinity of the
tricritical point show that the microcanonical first-order line
does not coincide with its canonical counterpart, and that it
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FIG. 2. The canonical phase diagram in the (�, T ) plane for
K = −0.4. Here the continuous transition line (solid blue) meets
the first-order line (dashed red) at a critical end point denoted by
PC

2 (� ≈ 0.2972, T ≈ 0.1412). The first-order line extends into the
ordered phase, where it marks a transition between two ordered
phases with different values of m and q, and terminates at the
critical point PC

3 (� ≈ 0.29873, T ≈ 0.1544). The zoomed-in phase
diagram close to this transition is plotted in the inset.

involves temperature discontinuity, which is of course missing
in the canonical treatment. Furthermore, analysis of large
positive values of K reveals a wealth of different features in
the phase diagrams of the two ensembles [21].

In the present paper we extend the study of the micro-
canonical phase diagram of the infinite range BEG model
to negative values of the parameter K where a fourth-order
critical point has been found in the canonical phase diagram.
As is usually the case, a high-order critical point determines
the topological features of the phase diagram around it and
the way the various phase transition manifolds join together.
These topological features tend to persist in quite a broad
range of the model parameters, making a study of this point of
particular interest. The fact that the canonical phase diagram
of this model exhibits a fourth-order critical point at some
negative value of K suggests that such a point may also exist
in the microcanonical phase diagram as well, which would
enable one to make a detailed comparison between the phase
diagrams of the model obtained in the two ensembles. We
find that indeed the microcanonical phase diagram exhibits a
fourth-order critical point at negative K , located at a different
point in phase space as compared with the canonical one.
We analyze the global features of the microcanonical phase
diagram and discuss the way the inequivalence between the
two ensembles is manifested in this parameter region.

The rest of the paper is as follows: A brief outline of the
analysis of BEG model in the canonical ensemble is presented
in Sec. II, which allows us to display the phase diagram in
the relevant region of the parameter space. The analysis is
carried out for K < 0, for which the fourth-order transition
point is present. In Sec. III the microcanonical analysis of
the model is presented, and the fourth-order point in this
ensemble is identified. In Sec. IV we discuss in detail the
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microcanonical phase diagram around the fourth-order critical
point. Concluding remarks are given in Sec. V.

II. CANONICAL PHASE DIAGRAM

In the following, we briefly outline the derivation of the
canonical phase diagram for negative K , where a fourth-order
critical point is found to be present. Note that in nonadditive
systems, such as the one considered in this paper, the canoni-
cal ensemble cannot be simply derived from the microcanon-
ical one. For a discussion of this point see Refs. [23,24]. Here
we consider the partition function of the system,

Z (β = 1/T, N ) =
∑
{Si}

e−βH , (2)

where H is as given in Eq. (1), with the Boltzmann constant
kB = 1. Let

m =
N∑

i=1

Si/N and q =
N∑

i=1

S2
i /N (3)

be the magnetization m and quadrupole moment q order
parameters, respectively. The partition function can be cal-
culated by converting the right-hand side of Eq. (2) into
an integral using the Hubbard-Stratonovich transformation.
Making use of the Gaussian identity,

eab2 =
√ |a|

π

∫ ∞

−∞
dx e−|a|x2+2sabx (4)

where s = 1 for a > 0 and s = i (the imaginary unit) for a <

0, one can represent the partition function as

Z (β, N ) = Nβ
√−K

2π

∑
{Si}

e−βN�q

×
∫ ∞

−∞

∫ ∞

−∞
dx dy e− βN

2 x2+ βNK
2 y2+βNmx+βNKqiy, (5)

where x and y are the corresponding auxiliary fields. We
point out that in this paper we are considering only pos-
itive temperatures, although this model, where the energy
is upper bounded, allows also negative temperatures in the
microcanonical ensemble [21]. Therefore in the following it
is always β > 0.

Performing the sum over {Si} results in

Z (β, N )= Nβ
√−K

2π

∫ ∞

−∞

∫ ∞

−∞
dx dye−βN f̃ (β,x,y), (6)

where

β f̃ (β, x, y) = β

2
(x2 − Ky2) − ln[1 + 2e−β�+βKiy cosh(βx)].

(7)

The integration can be done using a saddle point analysis in
terms of the variables x and y. Note that the values x and iy
which minimize β f̃ (β, x, y) correspond respectively to the
equilibrium magnetization m and the quadrupole moment q,
where the minimizing value of y is purely imaginary. At the

saddle point one obtains

x = 2 sinh βx

eβ�−iβKy + 2 cosh βx
, (8)

iy = 2 cosh βx

eβ�−iβKy + 2 cosh βx
. (9)

Furthermore, for a nonzero magnetization (which corresponds
to x �= 0) the above relations also lead to the expression

iy = x coth βx. (10)

One will find these relations to be useful when characterizing
the phase diagram, as explained below.

To obtain the critical line one expresses y in terms of x
using Eq. (10) and expands the free energy f̃ (β, x, y) about
the paramagnetic solution x = 0 and iy = 1/β [see Eqs. (8)
and (10)] in powers of x,

β f (β, x, y(x)) = β fo + Acx2 + Bcx4 + Ccx6 + Dcx8 · · · ,

(11)

where f0 is the free energy value at x = 0,

Ac = β(3 + 2K )

6

[
1 − 2β

2 + eβ�−K

]
, (12)

and Bc,Cc, and Dc are given by more complicated expressions
of β,�, and K which are not displayed here. The critical
surface is obtained at Ac = 0, yielding

β = 1 + 1
2 eβ�−K . (13)

The critical surface represents a locally stable solution as
long as Bc is positive. On the critical surface [Eq. (13)] the
coefficient Bc takes the form

Bc = β2

72
(2K + 3)[(2K + 3) − β(2K + 1)]. (14)

Considering K > −0.5, the region where the fourth-order
critical point is located, the critical surface is stable for
(3 + 2K )/(1 + 2K ) > β, and it terminates on a tricritical line
obtained at Bc = 0, namely, at

β = 3 + 2K

1 + 2K
. (15)

Equations (13) and (15) thus yield the tricritical line in the
three-dimensional space spanned by (T,�, K ). This line is
stable as long as Cc > 0, and it terminates at a fourth-order
critical point at which Cc = 0. On the tricritical line, where
Ac = Bc = 0, Cc takes the form

Cc = β5

1620(β − 1)2
(9 + 2β − β2). (16)

It vanishes at β2 − 2β − 9 = 0. This equation, together with
(13) and (15), yields the fourth-order critical point

T ∗ = (1 +
√

10)−1 ≈ 0.2402,

K∗ = (3T ∗ − 1)/[2(1 − T ∗)] ≈ −0.1838,

�∗ = T ∗
{

K∗ + ln

[
2(1 − T ∗)

T ∗

]}
≈ 0.399. (17)

In order to complete the phase diagram one has to find the
global minimum of the free energy f̃ (β, x, y), which is done
numerically. In Fig. 2 the phase diagram in the (�, T ) plane
for fixed K < K∗ is displayed. One finds in the figure both
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ordered and disordered phases separated by continuous (solid)
and first-order transition (dashed) lines. The critical line termi-
nates on the first-order surface at a critical end point denoted
by PC

2 . The first-order line is composed of two segments,
one separating a paramagnetic from a ferromagnetic phase,
and the other separating two magnetically ordered phases m1

and m2, with m1 �= m2. This segment terminates at a critical
point, labeled as PC

3 . The two magnetically ordered phases
are characterized also by different quadrupole moments q.
This can be seen from Eq. (10) (recall that at the minimum
of the free energy, x and iy correspond to the equilibrium
magnetization and quadrupole moment, respectively): at given
β, a jump in x implies a jump in y.

III. MICROCANONICAL ANALYSIS

In order to analyze the phase diagram of the model within
the microcanonical ensemble we note that the energy of any
microscopic configuration can be expressed in terms of only
two parameters: the total number of up-spins N+ and total
number of down-spins N−. The number of spins taking the
value S = 0, N0, is simply related to N+ and N− by N+ +
N− + N0 = N . The energy (1) is thus given by

E = �Q − 1

2N
M2 − K

2N
Q2, (18)

where M = N+ − N− and Q = N+ + N−, which are the mag-
netic and quadrupole moments, respectively. To calculate the
entropy associated with the macroscopic state defined by
M and Q, one has to enumerate the possible microscopic
configurations W specified by the values of N+, N−, and N0.
This is given by

W = N!

N+!N−!N0!
. (19)

In the large N limit the entropy S = ln W is

S = −N[(1 − q) ln(1 − q) + 1
2 (q + m) ln(q + m)

+ 1
2 (q − m) ln(q − m) − q ln 2], (20)

where m = M/N and q = Q/N are the single-site magnetic
and quadrupole moments, respectively. The entropy at equi-
librium can now be obtained by maximizing Eq. (20) at a fixed
energy value E .

Expressing the single site energy ε = E/N in terms of the
single-site macroscopic quantities m and q, Eq. (18) becomes

q2 − 2
�

K
q + 2ε

K
+ m2

K
= 0. (21)

This allows a solution for q in terms of m and ε:

q± = �

K
±

√(
�

K

)2

− 2ε

K
− m2

K
. (22)

For given values of the parameters � and K and of the
magnetization m, the energy ε must be in a range such that
the expression under square root is not negative. For K < 0,
the only acceptable solution is q+, since q− is negative. Sub-
stituting the solution for q+ in the expression for the entropy
(20), one obtains the single-site entropy S/N = s̃+(ε, m) as
a function of ε and m. The equilibrium entropy corresponds

to the global maximum of s̃+(ε, m) as a function of m, i.e.,
s+(ε) = maxm[s̃+(ε, m)].

In order to find the critical and multicritical surfaces of
the phase diagram we expand the entropy s̃+(ε, m) around the
paramagnetic phase m = 0. The expansion takes the form

s̃+(ε, m) = s0 + Amm2 + Bmm4 + Cmm6

+ Dmm8 + O(m10) + · · · , (23)

where s0 is the zero magnetization entropy:

s0 = −(1 − z+) ln(1 − z+) − z+ ln z+ + z+ ln 2 (24)

with z+ = q+(m = 0). The expansion coefficients are given
by

Am = −a ln
2(1 − z+)

z+
− 1

2z+
,

Bm = −Ka3 ln
2(1 − z+)

z+
− a2

2z+(1 − z+)
− a

2z2+
− 1

12z3+
,

Cm = −2K2a5 ln
2(1 − z+)

z+
− Ka4

z+(1 − z+)

+ a3(2z+ − 1)

6z2+(1 − z+)2
− Ka3

2z2+
− a2

2z3+
− a

4z4+
− 1

30z5+
,

Dm = −5K3a7 ln
2(1 − z+)

z+
− 5K2a6

2z+(1 − z+)

+ Ka5(2z+ − 1)

2z2+(1 − z+)2
− a4(1 − 3z+ + 3z2

+)

12z3+(1 − z+)3
− K2a5

z2+

− Ka4

z3+
− a3

2z4+
− Ka3

4z4+
− a2

2z5+
− a

6z6+
− 1

56z7+
, (25)

where the subscript m denotes the microcanonical coefficients
and

a = sgn(K )(4�2 − 8Kε)−
1
2 . (26)

The critical surface in the (ε,�, K ) space is obtained at
Am = 0 with Bm < 0. To obtain the expression giving Am = 0
we start from the microcanonical inverse temperature, given
by

β = ∂ s̃+
∂ε

= ln

⎡
⎣ 2(1 − q+)√

q2+ − m2

⎤
⎦∂q+

∂ε
, (27)

where m takes the value which maximizes s̃+(ε, m). On the
critical line, where m = 0, this expression becomes

β = ∂s0

∂ε
= −2a ln

2(1 − z+)

z+
. (28)

Substituting this equation in Am = 0 one obtains z+ = 1/β.
Inserting this into Eq. (28) we have β = 1

2 e− β

2a + 1. On the
other hand, from the definition of a given in Eq. (26) we obtain
β/(2a) = K − β�. So at the end Am = 0 is expressed by

β = 1
2 exp[β� − K] + 1, (29)

Note that the expression of the critical surface is the same
as the one obtained for the canonical ensemble, as expected
[7,22].

Similarly the tricritical line marking the termination of the
critical surface, is obtained at Am = Bm = 0, with Cm < 0.
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FIG. 3. The tricritical line obtained from the microcanonical analysis by solving for Am = Bm = 0 [see Eq. (23)], plotted in both the
(ε, K ) plane (a) and (ε,�) plane (b). Solutions for the fourth-order critical points, ε∗

1 ≈ 0.0835 and ε∗
2 ≈ 0.1313, are indicated by black

dots.

These equations can be solved, and the tricritical line in the
(ε, �, K ) space can be expressed in terms of the parameter β

as

K (β ) = 3 − β

2β − 2
,

�(β ) = [K (β ) + ln(2β − 2)]β−1,

ε(β ) = �(β )

2β
+ ln(2β − 2)

β2�(β )
. (30)

In Fig. 3 we represent the tricritical line by plotting K
[Fig. 3(a)] and � [Fig. 3(b)] as a function of ε.

The tricritical line terminates at the fourth-order critical
point which is obtained at Am = Bm = Cm = 0 with Dm < 0.
The three constraints yield a point in the parameter space. To
find the solution to these equations we plot (Fig. 4) the coeffi-
cients Cm and Dm as a function of ε, along the tricritical line.
One can see that there are two solutions corresponding to two
energy values, ε∗

1 ≈ 0.0835 and ε∗
2 ≈ 0.1313, at which the

0.06 0.08 0.10 0.12 0.14
ε

−2

−1

0

1

2

ε∗1 ε∗2

Dm

Cm

FIG. 4. The values of the coefficients Cm and Dm [see Eq.
(23)], plotted as a function of the energy per particle ε, for the
parameter values corresponding to the tricritical line (Am = Bm = 0).
The fourth-order critical points can be read out from the figure,
corresponding to Cm = 0 and Dm < 0, with values ε∗

1 ≈ 0.0835 and
ε∗

2 ≈ 0.1313.

sixth-order coefficient Cm in the expansion vanishes. At both
solutions the eighth-order coefficient is Dm < 0 indicating that
both are locally stable solutions. We will see below that the
only solution which corresponds to a global maximum of the
entropy is ε∗

2 . The other solution is preempted by a global
maximum away from m = 0. Thus the fourth-order critical
point of the microcanonical ensemble takes place at

ε∗
2 ≈ 0.1313, �∗

2 ≈ 0.4369, K∗
2 ≈ −0.0828, (31)

which corresponds to T ∗ ≈ 0.2924. Comparing these values
with the fourth-order point found from the canonical calcula-
tion (17) shows that that the two differ from each other.

To complete the phase diagram one has to determine the
first-order surfaces of the model. This is done by numerically
finding the global maximum of the entropy. Before analyzing
the detailed phase diagram near the fourth-order critical point,
which will be presented in the next section, let us display
the global features of the phase diagram. A schematic phase
diagram in the (�, ε) plane for some values of K is given
in Fig. 5. For K > K∗

2 , the phase diagram consists of a
transition line from a paramagnetic to a ferromagnetically
ordered phase, which changes character from second-order
to first-order at a tricritical point. At K = K∗

2 the tricritical
point becomes a fourth-order point, and for K < K∗

2 the
first-order line extends into the magnetically ordered phase,
indicating a transition between two ordered phases, and the
second-order line terminates at a critical end point. Also in
the microcanonical ensemble, the two ordered phases between
which a first-order transition takes place are characterized by
different magnetization and a different quadrupole moment.
This can be seen from Eq. (22): at given ε, a jump in m
implies a jump in q+. It is evident that the microcanonical
(�, ε) phase diagram is qualitatively similar to the canonical
(�, T ) as discussed in the preceding section. In particular,
the qualitative features of the canonical (�, T ) phase diagram
for K larger, equal, and smaller than K∗ are, respectively,
similar to those shown in Fig. 5 concerning the (�, ε) phase
diagram for K larger, equal, and smaller than K∗

2 . In the
next section we consider the detailed microcanonical phase
diagram near the fourth-order critical point and present it in
the (T,�, K ) space, where the comparison with the canonical
phase diagram reveals the inequivalence between the two
ensembles.
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FIG. 5. Schematic microcanonical phase diagram near to the
fourth-order critical point. The panels show the phase diagrams in
the (�, ε) plane for fixed K values. Panel (a) displays a K > K∗

2

plane where the ordered phase (m �= 0) and the disordered phase
(m = 0) are separated by two transition line segments: a continuous
(solid) and a first-order (dashed) transition line that merge at the
tricritical point. Panel (b) corresponds to K = K∗

2 . It is similar to
panel (a); however, the two segments of the transition line join at
a fourth-order point rather than a tricritical one. In panel (c), which
corresponds to K < K∗

2 the two segments of the transition line join
at a critical end point. The first-order transition line extends into the
ordered phase indicating transitions between two different ordered
phases with magnetization values m1 and m2.

IV. MICROCANONICAL PHASE DIAGRAM
NEAR THE FOURTH-ORDER POINT

In this section, we consider the microcanonical phase dia-
gram near to the fourth-order point. In particular we discuss
the phase diagram for K = −0.4 < K∗

2 first in the (�, ε)
plane, and then in the (�, T ) plane. The detailed (�, ε) phase
diagram is plotted in Fig. 6. It shows a first-order line which
extends into the magnetically ordered phase and a critical
line terminating at a critical end point, as discussed in the
preceding section. The inset of Fig. 6, which zooms onto the
region where the two lines meet, shows that the first-order
line curves backward, resulting in reentrant transitions as the
energy is increased for some narrow range of �. This will
result in some interesting features of the phase diagram when
plotted in the (�, T ) plane.

In order to compare the phase diagrams of the two en-
sembles we now replot the (�, ε) phase diagram of Fig. 6
in the (�, T ) plane. Since some of the interesting features
of the phase diagram show up in a rather narrow range of
the parameters, we first plot in Fig. 7(a) a schematic phase
diagram on a broader scale. A zoomed-in nonschematic plot
focused on the more interesting region of the phase diagram
is given in Fig. 7(b). In the microcanonical ensemble, a first-
order transition is characterized by a temperature discontinu-
ity. Thus in the figure one notices that the first-order transition
is represented by two lines which give the two temperature
values at the transition.

0.08 0.16 0.24 0.32Δ

0.02

0.06

0.10

0.14

ε

P ε
2

Pε
3

K = −0.4 m = 0

m �= 0

m1

m2

0.293 0.300Δ

0.01

0.06

ε P ε
2

P ε
3m1 m2

m �= 0
m = 0

FIG. 6. The microcanonical phase diagrams in the (�, ε) plane
for a fixed value of K = −0.4. The locus of continuous transition
points in the plane is plotted as a solid line (in blue) and the
first-order locus with dashed line (in red). The first-order transition
line is seen to extend into the ordered phase, indicating a transition
between two ordered phases. The continuous transition line termi-
nates at Pε

2 (� ≈ 0.2966, ε ≈ 0.0459). The critical point Pε
3 (� ≈

0.2987, ε ≈ 0.075) marks the termination of the first-order line in
the ordered phase. The inset shows a zoomed-in plot near the region
in the phase diagram close to the first-order transition, indicating the
reentrant behavior in the ordered phase, as the energy is varied at
fixed �.

To get some insight into the phase diagram it is convenient
to consider the caloric curve and plot the temperature as a
function of ε at fixed �. This is done for two representative
values of �: (1) � = 0.2972, for which two first-order transi-
tions and one second-order transition take place, and (2) � =
0.2964, where the second-order transition is absent. The first-
order transitions have to do with the curved (reentrant) shape
of the first-order line in the (�, T ) plane. The plots, Figs. 8(a)
and 8(b), show T (ε) for the two respective values of �.

Consider first Fig. 8(a). At low energy (and low temper-
ature) the T (ε) curve corresponds to a magnetically ordered
state. As the energy increases the temperature undergoes
a first-order transition into a paramagnetic phase in which
the temperature drops discontinuously from a1 to a2. At a
higher value of the energy a second-order transition takes
place at T = a3, where the system becomes magnetically
ordered again. By increasing the energy even further, the other
first-order transition into a magnetically ordered state with a
different magnetization is reached, in which the temperature
drops from T = a4 to T = a5. In Fig. 8(b) the corresponding
behavior for the lower value of � is displayed. Here no
second-order transition takes place, and there are two first-
order transitions: one is a transition from the magnetically
ordered state to the paramagnetic state at a low temperature,
followed by a reentrant transition from the paramagnetic state
to the magnetically ordered one at a higher temperature.
The corresponding temperature drops are from b1 to b2 and
from b3 to b4, respectively. By considering similar curves at
other values of � one finds that for � corresponding to the
point PMC

1 (� ≈ 0.2961, T ≈ 0.1244) in Fig. 7(b) the two
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3

Δ 0.296 0.297 0.298 0.299
Δ
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a5
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2

PMC
3

m = 0
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(b)

FIG. 7. (a) Schematic phase diagram in the (�, T ) parameter space with fixed value of K < K∗
2 to show the relevant region in the plane

where the transition is observed. (b) The nonschematic phase diagram is plotted for K = −0.4; this is an enlarged version of a section of the
phase diagram [specified by the gray dashed square displayed in panel (a)]. In both plots, the continuous transition line is shown as a solid
curve and the first-order transition lines as dashed curves. The label PMC

1 denotes the point in the parameter space, where the discontinuity in
temperature vanishes. Furthermore, PMC

2 represents the point at which the continuous transition line joins the first-order line, and PMC
3 is the

critical point, where the first-order line terminates. The two vertical lines in panel (b) indicate fixed � lines, � = 0.2972 (red dotted line) and
� = 0.2964 (blue dotted line) along which the temperature profile is plotted as a function of ε in Fig. 8. The labels {ai} and {bi} correspond
to the various transition points along the respective lines.

first-order transitions merge into a single continuous transition
where no discontinuity takes place. At a higher value of �,
corresponding to that of PMC

3 (� ≈ 0.29871, T ≈ 0.1540) in
Fig. 7(b), the first-order transition between the two ordered
phases terminates at a critical point, and no such transition
exists at higher values of �.

To compare the canonical and microcanonical phase dia-
grams, we superimpose in Fig. 9 the two (�, T ) phase dia-
grams for K = −0.4. As is clear from the figure the canonical
continuous transition line from the disordered phase coincide
with the microcanonical one. The first-order lines separating
the disordered and the ordered phases are different in the two
ensembles, but they remain close to each other. The critical
end points in the two phase diagrams are distinct, with (� ≈
0.2966, T ≈ 0.1419) at the canonical point PC

2 , and (� ≈
0.2972, T ≈ 0.1412) at the microcanonical one PMC

2 . The
two points are very close to each other. Note that in the micro-
canonical case the first-order line exhibits a discontinuity in its
slope at the critical end point, a feature which is absent in the
canonical line, whose slope is continuous at the corresponding
critical end point. The zoomed-in plot on the transition lines
within the ordered phase shows that the canonical first-order
line terminates at a critical point PC

3 with (� ≈ 0.29873, T ≈
0.1544) which is close to but distinct from the microcanonical
one PMC

3 located at (� ≈ 0.29871, T ≈ 0.1540).
The different phases that we observe along the caloric

curve (see Fig. 8) correspond to the values of m at which the
entropy function s̃+(ε, m) is maximized. This is illustrated
by plotting s̃+(ε, m) as a function of m for given values
of � as ε is changed. In Fig. 10 we show the plots for
s̃+(ε, m) for the same values of � considered earlier. Due
to symmetry between m and −m, it is sufficient to consider
the positive domain of m. The left panels of Fig. 10 are for
� = 0.2972. As also denoted in Fig. 8(a), for small values
of ε, s̃+(ε, m) maximizes at nonzero m. At higher values of
ε the maximum changes discontinuously to m = 0 [indicated
by the discontinuity in T in Fig. 8(a)] corresponding to the
intermediate disordered phase. As ε is increased to larger
values, a continuous transition to an ordered phase (denoted

by m2) takes place, followed by a first-order transition to
a different magnetically ordered phase (denoted by m1). A
closely similar profile is observed for � = 0.2964 as seen in
the right panels of Fig. 10. However, it lacks the continuous
transition for intermediate values of ε but displays only two
first-order transitions [also shown in Fig. 8(b)].

V. CONCLUSIONS

In this paper we studied the microcanonical phase diagram
of the infinite range Blume-Emery-Griffiths model for nega-
tive biquadratic exchange K < 0, where the canonical phase
diagram has been shown to exhibit a fourth-order critical
point. Studying the phase diagram of a model near its higher-
order critical point is of particular interest since, as usual, each
type of high-order critical point displays distinct characteristic
features of the phase diagram around it. These features tend to
persist in quite a broad range of the model parameter space.
The study of the high-order critical point of a model thus
provides valuable information about its global phase diagram.

We find that like the canonical phase diagram, the mi-
crocanonical phase diagram exhibits a fourth-order critical
point at different coordinates (T,�, K) compared with the
canonical one. This enables one to compare the two phase
diagrams around this point, as is seen in Fig. 2 and Fig. 7.
In the vicinity of the microcanonical fourth-order point the
transition from the paramagnetic to the ferromagnetic phase
can be either continuous or first-order. The first-order transi-
tion extends into the ferromagnetic phase, thus separating two
different magnetically ordered phases. This transition surface
is curved and leads to reentrant transitions as the energy is
varied keeping the parameters of the model (�, K ) fixed. For
example, depending on these parameters, as one increases the
energy, one may find a sequence of three phase transitions:
a first-order transition from m �= 0 to m = 0, followed by a
continuous transition to a phase with m �= 0 and then followed
by another transition separating two magnetically ordered
phases. For certain other parameter values the continuous
transition is absent, and one encounters a sequence of two
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(a)

0.02 0.04 0.06

0.11

0.15
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b4

m = 0

m = 0

m = 0

Δ = 0.2964

(b)

2

1

FIG. 8. The temperature profile (caloric curve) for fixed values of
K = −0.4 for (a) � = 0.2972 and (b) � = 0.2964 as a function of ε.
In panel (a), the discontinuities marked by a1a2 and a4a5 correspond
to first-order transitions and a3 to the continuous transition point. The
labels m1 and m2 correspond to two values of the magnetization order
parameter. In panel (b), the discontinuities b1b2 and b3b4 correspond
to first-order transitions. Equivalent points in the T − � phase dia-
gram [Fig. 7(b)] are marked by the same label for comparison.

first-order transitions. At the first-order transitions the tem-
perature changes discontinuously. This rich phase diagram is
quite different from its canonical counterpart, including the
presence of singular points of first-order transition without a
temperature discontinuity.

The difference in the location of the fourth-order critical
point between the two ensembles, in particular with K∗

2 ≈
−0.0828 in the microcanonical case and K∗ ≈ −0.1838 in
the canonical case, has the consequence that the (�, T )
[or (�, ε)] phase diagram for a K value between K∗ and
K∗

2 presents a tricritical point in the canonical ensemble,
while it has a critical end point, together with two differ-
ent magnetically ordered phases, in the microcanonical en-
semble. This is another marked manifestation of ensemble
inequivalence.

A closely related model to (1) has been studied in Ref. [20]
where the BEG model with nearest-neighbor couplings (both
J and K) has been considered within the mean-field ap-
proximation in the canonical ensemble. While for positive
biquadratic exchange K > 0 the model is equivalent to the
model considered in the present study and yields the same
phase diagram as that of (1), for K < 0 the model exhibits
other types of order besides the ferromagnetic one.

0.296 0.299Δ
0.01

0.06

0.11

0.16

T
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2

0.29844 0.29864
Δ

0.152

0.154

T

PC
3

PMC
3

FIG. 9. The canonical and microcanonical (�, T ) for K =
−0.4 < K∗

2 superimposed. The canonical first-order line is shown as
dot-dashed (red) while the corresponding microcanonical transition
is represented by dashed lines. The continuous transition line (solid
blue line) terminates at PC

2 (canonical) and at PMC
2 (microcanonical)

in the two ensembles. The inset shows the enlarged version of the
region (dotted square in the main plot) where the first-order transition
terminates within the ordered phase at a critical point. In the inset the
microcanonical and canonical critical points are labeled as PMC

3 and
PC

3 , respectively.
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FIG. 10. The entropy function s̃+(ε, m) plotted as a function of
m for K = −0.4 and for � = 0.2972 (left panels) and � = 0.2964
(right panels), for different values of ε. In the left (right) panels
each plot represents the profile of s̃+(ε, m) in the different phases
highlighted in Fig. 8(a) [(b)] as one varies ε at fixed values of
� = 0.2972 [� = 0.2964]. In the plots, the maxima of the finite m
branch (the branch on the right) in s̃+(ε, m) are not visible but can be
seen as we zoom in.
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In particular, for negative and large K , other phases with
ferrimagnetic or antiquadrupolar order have been observed.
The phase diagram in this domain becomes rather complex
with a variety of transitions between the different ordered
phases. It would be of interest to extend the present study of
the microcanonical phase diagram in the large and negative K
regime of the model studied in Ref. [20] and compare it with
the canonical one.
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