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Hidden complexity in Life-like rules

Miguel Melgarejo * and Marco Alzate †

Laboratory for Automation and Computational Intelligence, Faculty of Engineering,
Universidad Distrital Francisco José de Caldas, Bogotá DC, Colombia

Nelson Obregon‡

Water Institute, Pontifical Xaverian University, Bogotá DC, Colombia

(Received 9 July 2019; published 22 November 2019)

An alternative way to study the rules of life-like cellular automata is presented. The proposed perspective
studies some multifractal and informational properties of Boolean functions behind these rules. Results from
this approach challenge the traditional argument about the simplicity of Lifelike rules.
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I. INTRODUCTION

The famous cellular automaton called Life introduced by
J. H. Conway as a zero-player game game was described by
M. Gardner in 1970 [1]. Through the years this game has
fascinated a wide and diverse audience, which has found in it a
motivating example of what a complex system can be. Usually
it is pointed out that this automaton is capable of producing
global interesting behaviors from local interactions governed
by a simple deterministic rule [2–4].

A big part of the study around this automaton has focused
on the design of special initial conditions and to run long-
time simulations in order to characterize resulting dynamics
and patterns [5]. A lot has been learned from the automaton
following this way, motivating us to study other automata
whose rules are expressed in a similar manner, e.g., Life-like
(LL) [6] and Larger-than-Life (LtL) automata [7].

This paper approaches the study of LL rules from a differ-
ent perspective, which does not appeal to simulate the automa-
ton evolution but to explore the local informational behavior
at the core of the rule which is a Boolean function [8,9]. Our
findings from this approach suggest LL rules hide interesting
phenomena. Exploring the informational behavior of LL rules
makes sense because partial differential equations or Boolean
delay equations models of complex systems find common
ground with cellular automata at microscopic scales [10].

The paper is organized as follows: Section II summarizes
some concepts and definitions regarding LL and LtL rules.
Section III describes the proposed study approach. Section IV
presents our results and findings. Finally, we discuss and draw
some conclusions in Sec. V.

II. LL AND LTL CELLULAR AUTOMATA

A cellular automaton is a model of a complex system that
contains a large number of identical components with local
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interactions. The automaton consists of a lattice, where each
location has a finite set of possible values. Such values evolve
synchronously in discrete steps according to identical rules.
The next value of a location is a function of the current and
previous values of a neighborhood around it. Thus, cellular
automata can be classified as discrete dynamical systems
[11].

In some cases, evolution of cellular automata is irreversible
and characterized by exhibiting self-organization from arbi-
trary initial states without structure. In others, this evolution
resembles the dynamics of certain chaotic systems that pro-
duce patterns with fractal structure [2,12]. From computer sci-
ence, it has been demonstrated that certain cellular automata
are capable of universal computing [13].

Within the universe of cellular automata, the subset called
LL is characterized for having properties inspired by Life and
the subset called LtL extends the properties of the famous
automaton. It has been noted that LL and LtL automata are
capable of producing an interesting set of behaviors such as
spatial oscillators, chaotic dynamics, and production of self-
organized spatial patterns that sustain over time and consistent
structures that move (i.e., gliders and spaceships) [6,14]. Par-
ticularly, simulations of Life show this automaton is charac-
terized by self-organized criticality [3] and its mean field ap-
proximation reveals it operates in the border of extinction [5].

According to Ref. [14] an LtL automaton is defined as
follows: Consider a bi-dimensional lattice Z2, where each
of its locations has two states, alive (1) or dead (0). The
neighborhood ϒx of a site x consists of (2ρ + 1) × (2ρ + 1)
surrounding locations, including the site itself. Each step of
time k are updated simultaneously according to a determinis-
tic rule �.

Let � be the rule that governs the cellular automaton. This
is � : {0, 1}Z2 → {0, 1}Z2

and ψx(k) ∈ {0, 1}, the status of the
site x ∈ Z2 at the instant k, so ψ (k) represents the status of all
sites in Z2 at instant k.

From these two definitions we can say that ψ�(k) =
�k (�) = �(t ), which means that starting from the configu-
ration ψ (0) = �, the set of occupied sites is reached after k
iterations of the � rule. Particularly in the case of an LtL rule,
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FIG. 1. An alternative study of an LL rule (B3S23). (a) Arrange-
ment of the Moore neighborhood as a binary tuple. (b) Truth table
of the rule. (c) Equivalent Boolean map obtained from natural binary
encoding. (d) Cumulative function of the map.

FIG. 2. Encoding used to characterize some properties of the LL
rule universe.

it is expressed as:

ψx(k + 1)=

⎧⎪⎨
⎪⎩

1 if ψx(k) = 0 and |ϒx
⋂

ψ (k)| ∈ [β1, β2]
or
if ψx(k) = 1 and |ϒx

⋂
ψ (k)| ∈ [δ1, δ2]

0 in other case

,

(1)

where β1, β2, δ1, and δ2 are natural numbers.
The above can be expressed in words such as:
(i) Born: A site that is dead at instant k will live at instant

k + 1 if and only if the number of live sites in its neighborhood
at instant k is in the closed interval [β1, β2].

(ii) Survive: A site that is alive at instant k will still alive
at instant k + 1 if and only if the number of live sites in its
neighborhood (including the same) at instant k is in the closed
interval [δ1, δ2].

(iii) Die: A site that is dead at time k and does not live at
instant k + 1 will still be dead at instant k + 1. A site that is
alive at instant k and does not live at instant k + 1 will die at
instant k + 1.

The � rule can be formally expressed as a tuple � =
{ρ, β1, β2, δ1, δ2}. For example, the rule of Life can be ex-
pressed in this format as �li f e = {1, 3, 3, 3, 4}, since the same
position is included where the rule is evaluated in the case of
surviving.

Now regarding a LL automaton [7], the neighborhood ϒx

is restricted to the traditional Moore neighborhood with ρ =
1, not including the site x. Therefore the � rule is expressed
as:

ψx(k + 1) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

if ψx(k) = 0 and
1 |ϒx

⋂
ψ (k)| ∈ {β1, . . . , βQ}

or
if ψx(k) = 1 and

0 |ϒx
⋂

ψ (k)| ∈ {δ1, . . . , δP}
in other case

, (2)

where 0 � Q � 8, 0 � P � 8, β j ∈ [0, 8], and δk ∈ [0, 8].
The LL rules can be expressed as an alphanumeric string

of the form “Bxxx . . . Syyy . . . .” The letter B indicates the
set of possibilities of active neighbors that give life to a site
{β1, β2, . . . }, which is expressed by the string xxx . . . . The
letter S indicates the set of possibilities of active neighbors
that allow a site to survive {δ1, δ2, . . . }, expressed by the
string yyy . . . ; for example, in the case of Life this string is
expressed as B3S23.

III. AN ALTERNATIVE APPROACH TO STUDY LL RULES

The traditional study of an LL rule is carried out by ob-
serving the dynamics of the automaton evolving from a given
initial condition. Initial conditions are modified and different
patterns might emerge during simulation [15]. In some cases
when different rules exhibit similar patterns and behaviors,
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FIG. 3. Cumulative functions of some LL rules obtained from
natural binary encoding (left column) and Gray encoding (right
column).

taxonomies are proposed to group these rules [6,7,13]. This
way has allowed to discover several interesting properties
about LL automata regarding their complexity and behavior
near critical states [5].

An LL rule is capable of producing diverse dynamics over
an automaton depending on initial conditions [2,7]. Besides,
it is well known that some rules produce more complex
dynamics than others [5,6,16]. However, LL rules are static
maps in their nature themselves. Thus the approach that will
be presented is focused on studying the properties of these
functions.

This work aims to understand the behavior of a rule itself
considered as a simple algorithm [17] or a Boolean map [16].
Our approach investigates the nature of these rules, not in
terms of the complexity footprint induced in the automaton
dynamics but in terms of possible nuances of complexity
that these rules might contain. Thus we take distance from
the algorithmic understanding of the rule to rather focus on
its logical-mathematical structure as a Boolean function [8].
The proposed method is illustrated over the B3S23 rule as
follows:

(i) Start arranging the traditional Moore neighborhood,
shown in Fig. 1(a), as a nine element binary tuple P =
p8 p7...p0. The central site of the neighborhood is chosen as
the most significant position p8. The remaining positions can
be arranged in the tuple arbitrarily without loss of generality.
This is possible since LL rules are outer-totallistic, and thus
they are independent from the particular spatial arrangement
of neighbors [5].

(ii) Consider this tuple as the input argument of a logic
expression in the disjunctive normal form Q = �(P). Apply
the LL rule over each case of the tuple and construct the
truth table with 29 cases that describe the entire � function,
as shown in Fig. 1(b) for some cases of the B3S23 rule.

(iii) Order the cases according to an encoding V (P) and
represent Q as an integer function of this order. Figure 1(c)
presents the result when natural binary encoding is used.

(iv) Finally, compute the cumulative function of Q as

WL =
L−1∑
j=0

Qj (3)

for L = 1 · · · 29, as shown in Fig. 1(d).

IV. RESULTS AND FINDINGS

Two ways are considered to study the behavior of LL
rules from the alternative approach proposed in this work.

FIG. 4. Histograms of D1 over the LL universe for (a) natural binary encoding, (b) Gray encoding, and (c) random encoding.
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TABLE I. Distribution moments for D1 and D2 over the LL
universe considering three encodings.

D1 D2

Coding H̃ Mean Std Mean Std

Gray 1.0 0.8314 0.0136 0.7 0.0083
Natural 1.97 0.8277 0.0172 0.7 0.0116
Random 4.51 0.8272 0.0082 0.7 0.001

The former attempts to characterize the self-similarity of
cumulative functions W (Q), whereas the latter measures some
informational features of the discrete map Q.

The LL rule universe is explored by using a rule-expression
format adapted from Ref. [5], as shown in Fig. 2. In this
example, the rule B3S23 is expressed as the pair of integers
(Be, Se) = (32, 96). According to the string format of LL
rules, each part of the string (i.e., Bxxx.. and Syyy..) might
have the combination of nine integer literals [0,8]. Thus 29

cases per part are produced, which sets the size of the LL
universe in 218 rules. Strings filled with zeros are ignored so
that 210 − 1 rules are not considered in the analysis.

A. Multifractal properties

The cumulative functions WL of some representative LL
rules [7] are presented in Fig. 3 for two encodings: natural
binary and Gray [18]. In the natural binary encoding, each
case of P produces an integer according to V (P) = ∑8

i=0 2i pi.
The order induced by this encoding corresponds to the natural
order of integers. On the other hand, Gray encoding orders
codes by guarantying that two successive cases of P only
differ in one position.

The shape of cumulative functions obtained by means of
these two encodings does not go unnoticed, since at first
glance it appears the functions would have self-similar be-
havior. In addition, it also draws attention the resemblance
of these functions with Devil’s staircases, which are known
to have fractal properties [19]. Devil’s staircases appear in
various natural processes and can be explained from the
theory of nonlinear dynamic systems [20]. However, these
functions can also be generated by means of mathematical
maps of the type [0, 1] → [0, 1] [21].

The apparent self-similarity observed in cumulative func-
tions is tested by means of a multifractal analysis [19] over
the LL universe. The cumulative function of each rule is
generated by means of binary natural, Gray, and random
encodings. The multifractal analysis of each cumulative func-
tion is summarized in its information D1 and correlation D2

dimensions. Regarding the random encoding, dimensions are
averaged over 33 independent random permutations of the
natural binary code.

Results of the multifractal analysis are presented in Fig. 4.
An interesting similarity between the histograms of D1 over
the LL universe for the three encodings can be noted. This
particularity is also reflected in the closeness of the first dis-
tribution moment, as presented in Table I. This result suggests
that the multifractal properties of cumulative functions would
be preserved over three different representations. The attribute

TABLE II. Information dimension D1 obtained from cumulative
functions and cumulative dynamics of automata for some LL rules.

Rule Automaton Gray Natural Random

B36S125 0.7620 0.8340 0.8165 0.8229
B25S4 0.7633 0.8252 0.8193 0.8200
B36S23 0.7621 0.8058 0.8248 0.8202
B34S34 0.7620 0.8073 0.8272 0.8276
B3S23 (Life) 0.7615 0.7849 0.8085 0.8155

to differentiate the encodings is the average hamming distance
between successive codes H̃ , which exhibits a significant
increment from one encoding to the other.

In addition, dimensions of the five rules considered in
Fig. 3 were compared with dimensions obtained from cumu-
lative dynamics in the corresponding cellular automata. The
cumulative dynamics is the accumulation of values produced
in each location of the automaton during M iterations. In
this case, 30 × 30 automata were configured so that 900 cu-
mulative dynamics were analyzed. Dimensions are averaged
over the locations of 66 independent automata with random
initialization and M = 512 iterations.

Results are presented in Table II and Table III. It can be
noted that multifractal attributes of the cumulative dynamics
do not overpass those detected in cumulative functions no
matter the encoding used to construct them. Life reported
the smallest values in D1 for all encodings as well as in
the cumulative dynamics of the automaton. In addition, these
values are the closest ones among explored rules.

B. Informational properties

The Boolean map Q [Fig. 1(c)] is also studied in terms
of its structure and some informational properties inspired by
Ref. [22]. Four indices are proposed to support this study:

(i) Structural burden (SB): Structural burden is the number
of nine-variable logic terms required (without optimization) to
implement the rule as a sum of products (disjunctive normal
form). This is the number of ones No found in the map Q. S is
the normalization of this number computed as:

SB = No

29
. (4)

(ii) Information (I): Information is the Shannon entropy of
a binary string. It represents how much variety is found in the
string, computed as:

I = −p(0) log2 p(0) − p(1) log2 p(1), (5)

TABLE III. Correlation dimension D2 obtained from cumulative
functions and cumulative dynamics of automata for some LL rules.

Rule Automaton Gray Natural Random

B36S125 0.5648 0.7001 0.6994 0.7016
B25S4 0.5525 0.7001 0.7028 0.7023
B36S23 0.5459 0.6866 0.7146 0.7016
B34S34 0.5498 0.6887 0.7050 0.7016
B3S23 (Life) 0.5586 0.6737 0.7073 0.7015
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FIG. 5. Histograms of the informational properties over the LL rules universe: (a) complexity, (b) information, and (c) structural burden.

where p(0) and p(1) are the estimated probabilities of finding
“0” and “1” in the string, respectively. Here the string is Q
ordered by V (P) as depicted in Fig. 1(c).

(iii) Organization (O): Organization represents how much
order the string contains. It measures information increase or
reduction as:

O = 1 − I. (6)

(iv) Complexity (C): This is the balance between variety
and order computed as:

C = kIO = kI (1 − I ) (7)

with k = 4, and C is bounded in [0,1].
Histograms of informational properties are depicted in

Fig. 5. The structural burden histogram reveals that rules
tending to be equiprobable [i.e., p(0) = p(1) = 0.5] are the
most frequent ones, which can also be noted as the high
number of rules that report information I close to 1. Because
of the symmetry in the SB histogram, the amount of rules with
p(1) = p∗ is similar to that of rules with p(0) = p∗, where
p∗ is a real value in [0,1]. In addition, it can be inferred
that most frequent rules report lower complexities. On the
other hand, rules with maximum complexity are rare. Among
detailed rules, B34S34 is an example of a frequent rule with
low complexity, whereas Life is a rule with a medium level of
complexity that does not abound.

FIG. 6. Characterization of the LL universe in terms of informa-
tion, structural burden, and complexity. The point corresponding to
Life is highlighted.

Informational characterization of the LL universe is pre-
sented in Fig. 6. It can be notice that the LL universe does not
span uniformly over the feature space (C, I, SB). This partic-
ularity is given by the dependency among these variables. By
looking at Eq. (4), the structural burden is equivalent to the
estimated probability of finding a “1” in the string Q, used to
compute I in Eq. (5). Also note the resulting map described by
Eq. (7), where SB → I → C, is not entirely sampled by the LL
universe. Attributes of rules considered in Fig. 3 are presented
in Table IV. Life rule reports the highest complexity among
detailed rules; however, it does not reach the maximum value.
In fact, there are other rules that exhibit higher complexity in
the sense of Eq. (7).

Maximum complexity is achieved at two points of struc-
tural burden that produce the same information. It would be
interesting to characterize which and how many rules accom-
plish with this condition. Note that informational properties
C, I, SB depend statistically on the output Q of rules. Order
induced in the output string does not influence these results
so that informational properties of Q are not dependent of
encoding.

Figure 7 depicts a representation of the rule encoding as a
Cartesian product of pairs (Be, Se). Over this product, rules
that have the same properties of those detailed in Fig. 3
are highlighted. It can be observed that these rules cluster
symmetrically in two opposing regions. If one region is
similar to a simple rectangle, then the other one seems like
the intersection of two orthogonal rectangles. Clusters share
common structure composed of near rules that form diagonal
triplets, duets, and single points. As a particular case, Life is a
single point that shares its informational properties with other
160 rules.

TABLE IV. Informational properties of some LL rules.

Rule SB I O C

B36S125 0.3438 0.9284 0.0716 0.2660
B25S4 0.3007 0.8822 0.1178 0.4156
B36S23 0.3281 0.9130 0.0870 0.3177
B34S34 0.4921 0.9998 0.0002 0.0007
B3S23 (Life) 0.2734 0.8464 0.1536 0.5202
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FIG. 7. Clusters of rules that share the same informational prop-
erties of rules detailed in Fig. 3.

V. DISCUSSION

To validate whether the cumulative functions obtained
from LL rules are devil staircases is a problem that will be
left open in this work. A formal response to this concern
would indicate that LL rules, which are expressed and under-
stood in a simple way, actually hide an interesting footprint
of complexity that can be noted through the multifractal-

informational analysis. If the hypothesis of devil’s staircases is
tested true, then it would be a case of these functions emerging
from algorithms such as LL rules.

The experimental evidence presented in this work pointed
out that multifractal properties were preserved over three dif-
ferent encodings of the Moore neighborhood used to compute
cumulative functions. Thus self-similarity of these functions
would not be an attribute of a particular representation. To
show whether the self-similarity is preserved over the en-
tire LL universe independent from the enconding is a key
question, perhaps similar to the problem of testing whether
a theory works independently from the selection of a particu-
lar coordinate system. Regarding the implications of partial
results concerning automata evolution, it is suggested that
multifractal properties of cumulative functions may act as
superior limits of the properties of the average cumulative
dynamics.

Informational properties of equivalent Boolean maps of LL
rules are independent from encoding. The approach followed
in this work would be limiting the complexity panorama
regarding the local behavior of the rules. However, it pointed
out that the feature space composed by (C, I, SB) is char-
acterized by a nonuniform distribution of these properties
over the LL universe. Besides, it suggested that Life exhibits
interesting local informational properties that are shared with
other rules; however, there exist rules that can produce higher
local complexity with smaller structural burden.
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