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Structural behavior of fluids from the vapor and liquid region to the supercritical phase
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A metric (χ ) is introduced to quantify the relative proportion of particles having a specified number of near
neighbors that are characteristic of liquid-phase properties. It can be used as a simple alternative to other methods
for the investigation of some aspects of percolation behavior. Values of χ are obtained from molecular-dynamics
simulations spanning the heterogeneous vapor and liquid region and the supercritical phase of the Lennard-Jones
fluid. The supercritical phase can be delineated into regions of different structural properties. At different
isochoric subcritical conditions, the temperature versus χ behavior shows evidence of inflections, which are
associated with the onset of transitions from the vapor and liquid region to the supercritical phase. The analysis
suggests a phenomenological requirement for the critical point in terms of a near-equal proportion of near
neighbors with gaslike and liquidlike characteristics.
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I. INTRODUCTION

The phase diagram of a pure fluid [1] delineates regions
of both homogeneous and heterogeneous phases. At temper-
atures (T ) below the triple point, vapor- and liquid phases
coexist together. At higher T and densities (ρ), many fluids
exhibit two-phase coexistence between solid and liquid phases
that extend to high pressures (p), providing a demarcation
between single liquid and solid phases. The unique character-
istic of real fluids is the vapor-liquid critical point [2], which
marks the termination of vapor-liquid equilibria (VLE) and
the commencement of the supercritical phase.

The supercritical phase can exhibit some remarkable fea-
tures [3]. For example, the supercritical phase of water [4]
has enhanced solvating properties that are unexpected for the
range of ρ and T . At moderate to high T [5–7], the isochoric
(Cv) and isobaric heat capacities (Cp) display maximum values
and there is evidence from theoretical studies [7–9] that
both Cv and Cp may have minimum values. Over a narrow
range of slightly supercritical T , the T -p coordinates of the
maximum value of different thermodynamic functions merge
onto a common curve, known as the Widom line [10,11].
The properties of the supercritical phase can be subdivided
[11–13] based on dynamical properties, such as the speed of
sound, resulting in the Frenkel line [14]. It is been proposed
that fluids form clusters [15,16] at supercritical conditions,
which may help explain some of its properties particularly
in the context of percolation [17]. Diffraction studies for
water [17,18] have defined a percolation threshold as the
demarcation line between gaslike and liquidlike supercritical
states.

Previous work [10–14,19–26] on the structural properties
of the supercritical phase has largely focused on a narrow
range of conditions that are typically close to either the
Widom [10] or Frenkel [14] lines. Nishikawa et al. [19]
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observed supercritical density fluctuations in van der Waals
fluids and small-angle neutron-scattering measurements [20]
distinguished between gaslike and liquidlike properties in
supercritical carbon dioxide. It has been reported [21] that the
Widom line has a role in demarcating supercritical phenom-
ena of different structure. Velocity autocorrelation function
molecular-dynamics calculations [23] indicate hydrodynamic
anomalies. Transitions between gaslike and solidlike struc-
tures have also been investigated [24,25] in the context of a
Frenkel [14] line.

The aim of this work is to examine the transition from
the vapor and liquid region to the supercritical state from the
perspective of the change of the structural properties of the
fluid. It is of interest to examine the changes of near neighbors
between particles in the vapor, liquid, and supercritical states.
Molecular-dynamics (MD) data for a near-neighbor metric
are reported at state points spanning both the subcritical and
supercritical regions. In contrast to previous studies [19–26],
the nature of the transition between vapor and liquid is studied
over a very wide range of conditions, covering both one-phase
and two-phase subcritical regions and the supercritical phase.

II. METHODS

A. Molecular simulation details

MD microcanonical ensemble simulations [27] were per-
formed for N = 2000 Lennard-Jones (LJ) particles [28] to
obtain data for the number of near neighbors. The LJ potential
[u(r)] is

u(r) = 4ε

[(σ

r

)12
−

(σ

r

)6
]
, (1)

where r is the interparticle separation, ε is the minimum well
depth, and σ is the distance at which u(r) = 0. The particles
were initially placed on a face-centered-cubic lattice and the
equations of motion were integrated using a five-value Gear
predictor-corrector algorithm [27,29] with a reduced time step
of 0.003. The cutoff distance was half of the box length
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FIG. 1. Comparison of the (a) Stillinger and (b) TWF approaches
for determining near neighbors. The colored circles represent parti-
cles at a given instance of time. In (a) the solid gray reference particle
(i) has five neighbors inside the threshold distance of rS and the
four red particles (outside of the dashed circle) are not counted as
neighbors. In (b), the i particle has the same five neighbors but only
the green particle ( j) has five neighbors within its own rS radius,
which now involves two of the red particles excluded in (a).

and long-range corrections [27] were applied. The equili-
bration period was 5 × 105 time-steps and a further 1 × 106

time-steps were used to accumulate ensemble averages. The
statistical uncertainties were close to the symbol size used to
represent the data and error bars are omitted from the figures.
The temperature (T ∗ = kT/ε, k is Boltzmann’s constant) and
density (ρ∗ = ρσ 3) are reported in dimensionless units and
the asterisk superscript is hereafter omitted.

B. Near-neighbor counting algorithms

Studying the structure of heterogeneous fluids requires
techniques that typically involve classifying properties based
on the number of near neighbors [16,30]. We implemented
two simple alternatives, namely the Stillinger [15] approach
and its modification by ten Wolde and Frenkel (TWF) [31].

The Stillinger approach [Fig. 1(a)] defines a neighbor as
any particle that is contained within a specified radial distance
(rS = 1.5σ ), which is typically within the first coordination
shell. This method is both simple and intuitive but some
limitations have been documented for particle clusters. For
example, at any given time step, a particle within the rS

threshold could have a high velocity relative to the reference
particle, which would leave it outside of rS at the next time
step.

The TWF approach [see Fig. 1(b)] requires all neighbor
particles to also have at least five neighbors within rS . This
additional requirement removes some of the overcounting of
incidental surface particles. At high densities, the Stillinger
and TWF counting approaches are expected to converge to
the same values because the majority of the particles are
located within 1.5σ . At low densities, the TWF approach
could undercount neighbors by omitting small clusters and
surface neighbors. The vapor phase typically has four or fewer
neighbors, providing a convenient heuristic for identifying the
characteristics of gaslike and liquidlike properties.

Rather than discussing the absolute number of particles
with i near neighbors in the fluid, it is both more convenient
and meaningful to report the fraction of particles (χ ) that
have i > 4 near neighbors, i.e., the fraction of particles with
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FIG. 2. Comparison of the fraction of N = 2000 LJ particles
with respect to the number of near neighbors obtained from the (a)
Stillinger and (b) TWF methods at T = 1.65 and from left to right
ρ = 0.3 (blue line), 0.4 (orange line), 0.5 (green line), and 0.6 (red
line). The vertical dashed line represents the division between gaslike
(�4 neighbors) and liquidlike (>4 neighbors) properties.

liquidlike characteristics

χ = ni>4

N
. (2)

In Eq. (2), ni>4 is the total number of particles with liquidlike
coordination. The values of χ range between 0 (no particles
with liquidlike coordination) to 1 (all particles have liquidlike
coordination). There is no unique definition of a nearest
neighbor and using a value of 4 is a somewhat arbitrary value
that is nonetheless commonly used.

Using a Voronoi construction [32] is a possible alternative,
which is based on geometry and is parameter-free. However,
it is both computationally expensive and prone to thermal
fluctuations. These two disadvantages are overcome by the
solid-angle-based nearest-neighbor (SANN) algorithm [33],
which has its own unique definition of nearest neighbors. It
is more computationally expensive than either the Stillinger
or TWF approaches because it involves sorting all possible
neighbors by distances and an iterative process starting with
three minimum neighbors. Van Meel et al. [33] concluded
that the SAAN algorithm yields results of similar reliability
to cutoff-based approaches for the two-phase vapor-liquid
equilibria of Lennard-Jones fluids. The simpler Stillinger and
TWF approaches are appropriate for the calculation of χ .

III. RESULTS AND DISCUSSION

The differences in the distribution of χ values with re-
spect to the number of near neighbors for the two methods
were evaluated at different values of ρ in the supercritical
phase (Fig. 2). The Stillinger method results in a bell-shape
distribution, centered on the mean number of neighbors. The
peak heights for the Stillinger method at different values of ρ

are relatively uniform, whereas the TWF method generates a
bimodal distribution with a peak for 0 neighbors that increases
in height with decreasing ρ. The peak at 0 is a consequence of
including particles that fall outside of the scope of the neigh-
bor criterion such as particles associating in small clusters or
on the surface of a cluster.
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FIG. 3. Comparison of Stillinger (upper blue circles) and TWF
(lower orange circles) χ values for 2000 LJ particles as a function of
ρ for a liquidlike state (>4 near neighbors) at T = 1.65.

Figure 3 compares χ as a function of ρ in the supercritical
phase at T = 1.65 for liquidlike states using the two methods.
There is good agreement between the alternative procedures
for ρ > 0.55, whereas the values of χ diverge considerably at
lower ρ. At low ρ, the proportion of particles in the liquidlike
state predicted by the TWF approach is considerably lower
than that obtained for the Stillinger approach. The main
differences between the alternative approaches are likely to
become most apparent at low ρ.

Figure 4 compares T as a function of χ using either the
(a) Stillinger or (b) TWF near-neighbor counting methods
for ρ from 0.3 to 0.75, which are likely to have liquidlike
character at some values of T . Figure 4 also includes the T-χ
coordinates of the supercritical maximum (minimum) Cv and
Cp data. The Stillinger and TWF approaches yield outcomes
that are qualitatively identical. The main quantitative differ-
ence between the two approaches is that the Stillinger results

FIG. 4. The behavior of T with respect to χ at different isochores
using the (a) Stillinger and (b) TWF methods. The different circles
represent from left to right ρ = 0.3 (blue), 0.316 (orange), 0.35
(green), 0.4 (red), 0.5 (purple), and 0.75 (brown, very close to the
χ = 1 region) isochores. The horizontal dashed line represents Tc =
1.312 [34]. The squares are the supercritical maximum (minimum)
values [8] of Cv (lower aquamarine squares) and Cp (upper brown
squares), with the extremum for these properties given by the dia-
mond of the same color.

FIG. 5. χ -ρ behavior at critical (Tc = 1.312) and supercritical
(T > 1.312) values of T the (a) Stillinger and (b) TWF methods.
The different circles represent from left to right T = 1.312 (green),
1.5 (blue), 2.0 (purple), 2.5 (lime), 3.0 (black), and 3.5 (gray).
The values corresponding to the minimum (maximum) [8] of both
Cv (aquamarine squares) and Cp (red squares) are illustrated. The
vertical dashed line represents ρc = 0.316.

[Fig. 4(a)] are restricted to a narrower range of values than the
TWF [Fig. 4(b)] values. This is consistent with Fig. 3, which
showed a larger spread of values across the range of liquid ρ.

At ρ = 0.75, the LJ fluid has liquid-density-like character-
istics at all T , including in the two-phase liquid-vapor region;
therefore, it is unsurprising that the T vs χ behavior is almost
vertical [Figs. 5(a) and 5(b)]. The behavior at ρ = 0.5 is of
interest because it spans both liquidlike and gaslike properties.
Commencing at T values in the subcritical (T < 1.312) [34]
vapor-liquid region, liquidlike values of χ decline before
abruptly halting and thereafter falling within a narrow range
up to high T .

For ρ � 0.4, the transition to lower χ values initially
occurs much more gradually, passing through a region of
near-constant gradient before rapidly turning upward to high
T . The relative flatness of the T values close to the increase in
gradient strongly suggests that the data may go through a point
of inflection, i.e., ∂T/∂χ = ∂2T/∂χ2 = 0 and ∂3T/∂χ3 �= 0.
In effect, it is a structural analog of the point of inflection that
characterizes the pressure-volume relationship of a pure fluid
along the critical isotherm. It is impossible to reliably evaluate
these criteria from the simulations and the evidence for in-
flection is entirely phenomenological. Therefore, although we
will denote this phenomenon as an inflection, it is important
to be mindful of the above caveats.

The inflection-point χ value decreases with decreasing
values of ρ. For all values of ρ, the corresponding transition
towards the inflection T commences over range of values
below the VLE coexistence curve. The data are not suffi-
ciently precise to accurately assign exact numerical values
for the ρ, χ , or T at the inflection points. The inflection
T probably occurs either at or slightly above the spinodal
curve that separates metastable and nonstable regions of vapor
and liquid coexistence. For the critical isochore (ρc = 0.316)
[34], the inflection probably occurs at Tc = 1.316 because
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both the spinodal and VLE curves meet at the critical point.
It is important not to overemphasize the implications for
real fluid behavior because the LJ potential is an approx-
imate model that will deviate from the properties of real
fluids and the near-critical region is particularly problematic
[29,35–37].

The supercritical phase of the LJ fluid [8] exhibits both
maximum and minimum values of Cv and Cp. These data
appear to obey the laws applying to critical exponents, merg-
ing at distinct extremum points (ρE , TE ). We analyzed these
data to determine the corresponding T -χ behavior. That is,
for each reported T and ρ values, simulations were performed
to determine the corresponding χ (see Fig. 4) from both the
Stillinger and TWF methods. It is apparent that the isochores
intersect both the Cv and Cp data. The points of intersection
occur on both the Cv maximum and Cv minimum parts of
the curves, i.e., at χ values both below and above that of
the extremum point (χE ). This indicates that the supercritical
minimum in Cv is the result of liquidlike properties (high
χ values) whereas the corresponding maximum values are
associated with gaslike properties (low χ values). In contrast,
the intersections with the Cp data occur exclusively before
χE , i.e., on the maximum Cp part of the curve. Therefore,
maximum Cp values occur for a wide range of fluid properties,
whereas the Cp minimum is confined to a narrow range of
liquidlike behavior.

The χ -ρ behavior at different constant values of T for the
(a) Stillinger and (b) TWF approaches is illustrated in Fig. 5.
The two approaches yield qualitatively similar results with the
Stillinger χ values decaying to 0 slightly more slowly than the
TWF values. This means that at Tc = 1.312, ρc = 0.316, χc ≈
0.5 or 0.3 for the Stillinger and TWF approaches, respectively.
The Stillinger analysis provides the convenient phenomeno-
logical insight that the vapor-liquid critical transition occurs
when close to half of the LJ particles have liquidlike coordina-
tion. In view of the bimodal distribution observed [Fig. 2(b)]
for the TWF, it is likely that the results for the Stillinger
method more accurately reflect the true situation.

Another insight from either Figs. 5(a) or 5(b) is that for any
given value of ρ the Tc = 1.312 isotherm yields the maximum
value of χ . The comparison also includes the corresponding
χ and ρ values for the supercritical maximum (minimum) of
Cp and Cv . These values closely coincide with values obtained
from the critical isotherm, particularly for the Stillinger anal-
ysis [Fig. 5(a)].

We observe that some of the general features of the be-
havior in Fig. 5 are superficially similar to aspects of per-
colation fraction behavior [37]. Percolation phenomena and
structural properties are certainly related, which is apparent
from theoretical work [39] involving squares and cubes. Other
workers [37–39] have discussed the concept of percolation
as a useful framework for identifying like-like clustering.
In this context, the χ > 4 criterion developed here could
arguably be equivalent to whether or not a site is occupied. As
such, it could also prove useful in identifying the percolation
threshold in a much more computationally efficient way than
alternative models. Unlike previous approaches, it is apparent
that χ both extends in to the subcritical region and under-
goes an inflection prior to reaching the critical temperature
(see Fig. 4).
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FIG. 6. T -ρ behavior of the LJ fluid at constant values of χ

obtained for the (a) Stillinger and (b) TWF methods. Results are
illustrated from left to right for χ = 0.2 (blue line), 0.5 (aquamarine
line), 0.8 (orange line), and 0.95 (brown line). Also illustrated are
VLE (upper black dashed line) and spinodal (lower dashed red
line) boundaries calculated from the Johnson et al. [40] equation of
state; the critical point (black circle); and the supercritical maximum
(minimum) values [8] of Cv (lower aquamarine squares) and Cp

(upper brown squares), with the extremum for these properties given
by the diamond of the same color.

The simulation data can be transformed to a conventional
T-ρ projection (Fig. 6). The values of constant χ lines were
obtained by interpolating between simulated state points using
a radial basis function [41] that calculates a weighted sum
from N data points based on a distance metric. In Fig. 6,
lines of constant χ are overlaid on both the VLE and spinodal
curves calculated for the Johnson et al. [40] LJ equation of
state using the techniques described elsewhere [42–44].

The behaviors of the Stillinger and TWF constant χ lines
are qualitatively similar in the supercritical region; the χ lines
are broadly straight and parallel to each other. In all cases, the
lines turn noticeably to lower ρ as the VLE line is approached,
continuing to much lower ρ values in the vapor-liquid region.
The χ = 0.5 line approximately passes through ρc, which is
also consistent with the analysis illustrated in Figs. 4 and 5.

IV. CONCLUSIONS

The near-neighbor fraction, χ , provides a useful metric
for quantifying the structural characteristics of fluids that can
be applied without any conceptual difficulty to both homoge-
neous and heterogeneous regions. It is also a computationally
efficient method for the investigation of some features of
percolation phenomena.

The MD data provide evidence of an inflection in T with
respect to χ near the onset of the transition from two-phase
vapor and liquid coexistence to supercritical behavior. This
provides an insight into the role of cohesion, as represented
by changes of near neighbors, on this important transition.
For most values of ρ, the inflection T for the LJ fluid probably
occurs either at or in the near vicinity of the T for the spinodal
curve. For the critical isochore, the inflection point occurs
at Tc.
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The analysis of χ data provides a possible phenomeno-
logical requirement for the critical point of the LJ fluid.
That is, the critical point requires that half of the particles
have gaslike properties generally resulting in four or fewer
neighbors.

Extending the calculation of χ into the supercritical phase
clearly delineates regions of gaslike and liquidlike behavior.
Comparison with MD data for the maximum (minimum) for
Cv and Cp in the supercritical phase indicates that the maxi-
mum values for Cv are associated with gaslike near neighbors,
whereas the minimum values coincide with liquidlike neigh-

bors. In contrast, Cp maximum values are associated with
a wide range of fluid properties with supercritical Cp mini-
mum values confined to a narrow range of highly liquidlike
behavior.
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