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Model of magnetic friction obeying the Dieterich-Ruina law in the steady state
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We propose a model of magnetic friction and investigate the relation between the frictional force and the
relative velocity of surfaces in the steady state. The model comprises two square lattices adjacent to each other,
the upper of which is subjected to an external force, and the magnetic interaction acts as a kind of potential
barrier that prevents the upper lattice from moving. We consider two surface types for the upper lattice: smooth
and rough. The behavior of this model is classified into two domains, which we refer to as domains I and II. In
domain II, the external force is dominant compared with other forces, whereas in domain I, the velocity of the
lattice is suppressed by the magnetic interaction and obeys the Dieterich-Ruina law. This characteristic property
can be observed regardless of whether the surface is smooth or rough.
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I. INTRODUCTION

Friction is a very familiar phenomenon, and there have
been many studies aimed at revealing its microscopic mech-
anisms [1,2]. Such studies have considered the friction due
to various factors such as lattice vibration and the motion
of electrons [3–7]. In particular, magnetic friction, which is
the frictional force due to the magnetic interaction between
spin variables, has been the subject of much interest [8–10],
and several statistical mechanical models of magnetic friction
have been proposed to date [11–23]. In those studies, the
relation between the frictional force and the relative surface
velocity depends on the choice of model. In some cases, the
relation is the Amontons-Coulomb law [11–14], in others it
is the Stokes law [21,22], while in others the relation shows a
crossover between these two laws [23]. Those studies aimed at
not only explaining the properties of magnetic friction but also
revealing the microscopic mechanisms of friction, which are
not restricted to the case of magnetic materials. It is therefore
important to study whether the properties of other materials
can be reproduced in magnetic systems.

It is widely known that the friction between solid surfaces
obeys the Amontons-Coulomb law, the law that the frictional
force F is independent of the relative velocity v. However,
Coulomb himself found that actual materials violate this
law slightly [24]. Empirical modification of the Amontons-
Coulomb law was studied several decades ago and established
as the Dieterich-Ruina law [1,2,25–29]. In the steady state,
this law is expressed as

F = A log v + B, (1)

where A and B are constants. For a phenomenological deriva-
tion of the Dieterich-Ruina law, see Ref. [28], for example.
Such discussions suggest that a potential barrier preventing
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the relative surface motion is important in forming the v-F
relation of Eq. (1).

In this study, we propose a model of magnetic friction in
which the structure of the spin variables prevents the relative
surface motion. Here, the structure of the spin variables be-
haves as a potential barrier, from which we expect violation of
the Amontons-Coulomb law. To consider the effect of surface
roughness, we investigate lattices with either smooth or rough
surfaces and compare the results. The outline of this paper is
as follows. We introduce the model and how it evolves with
time in Sec. II, investigate the model by numerical simulation
in Sec. III, and summarize the study in Sec. IV.

II. MODEL

We begin by preparing two Lx × Ly/2 square lattices that
are contiguous with each other, and we allow the upper one to
move in the x direction relative to the lower one as in Fig. 1.
The lattice constant is normalized as the unit length. Each
lattice point i = (ix, iy) has the Ising spin σi. To consider the
effect of surface roughness, we remove some lattice points
from the surface of the upper lattice so that this lattice lacks b
lattice points after every a points at y = Ly/2 + 1 as in Fig. 2.
In short, the lattice point i is removed when χa(ix ) = 0, and
iy = Ly/2 + 1, where the function χa(n) is defined as

χa(n) =
{

1 if n ≡ 0, 1, . . . , a − 1 [mod(a + b)]

0 otherwise
. (2)

In this study, we let a = 20 and consider two types of upper
lattice, namely, a smooth lattice (type A) with b = 0 and a
rough lattice (type B) with b = 20.

The Hamiltonian of this system is given as

H = −J
∑
〈i, j〉

σiσ j − J
Lx∑

n=1

{(1 − r)σ(n+[δx],Ly/2)

+ rσ(n+[δx]+1,Ly/2)}σ(n,Ly/2+1)χa(n), (3)

2470-0045/2019/100(5)/052130(5) 052130-1 ©2019 American Physical Society

https://orcid.org/0000-0003-4719-7085
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.100.052130&domain=pdf&date_stamp=2019-11-21
https://doi.org/10.1103/PhysRevE.100.052130


HISATO KOMATSU PHYSICAL REVIEW E 100, 052130 (2019)

FIG. 1. Lattice arrangement considered in this study.

where δx is the shift of the upper lattice, [δx] is the largest
integer less than or equal to δx, and r ≡ δx − [δx] is the
fractional part of δx. The bracket 〈i, j〉 means the pair of ad-
jacent spins i and j belonging to the same lattice. The second
term in Eq. (3) expresses the interaction between the spins of
different lattices at their boundary. Here, the spin σ(n,Ly/2+1) of
the upper lattice interacts with the two nearest spins of the
lower lattice, namely, σ(n+[δx],Ly/2) and σ(n+[δx]+1,Ly/2), as in
Fig. 3. The form of Eq. (3) shows that the coupling constant
between σ(n,Ly/2+1) and σ(m,Ly/2) becomes its maximum J
when n + δx = m, then decreases linearly with |n + δx − m|,
and finally disappears when |n + δx − m| � 1. The ground
state of the bulk is ferromagnetic when the coupling constant
J is positive and antiferromagnetic when it is negative. Given
that the shift of the upper lattice makes the structure of the
antiferromagnetic order energetically unstable, we anticipate
that the upper lattice would be difficult to move when J is
negative. This effect can be regarded as a kind of potential
barrier. In this paper, we let J = −1 to compare the effect of
this potential barrier on the magnetic friction with that on the
friction of usual solid surfaces.

We impose the periodic boundary condition in the x direc-
tion and the open boundary condition in the y direction. The
upper lattice is subjected to an external force F in the x direc-
tion. In the steady state, this force balances the frictional force.
We let δx obey the overdamped Langevin equation under a
given temperature T . In this paper, we adjust the unit of the
temperature so that the Boltzmann constant kB is normalized
as one. Assuming that the viscous and random forces are
imposed only on the boundary lattice points adjacent to the
lower lattice and any elastic deformation of the lattices can be

FIG. 2. Lattice shape: the upper lattice lacks b lattice points
after every a points. A smooth surface (type-A lattice) corresponds
to b = 0.

FIG. 3. Interaction between two different lattices.

ignored, the Langevin equation for δx is written as

0 = −γ L′
x

d (δx)

dt
+ F − ∂H

∂ (δx)
+ √

2γ T L′
xR(t ), (4)

where R is the white Gaussian noise fulfilling 〈R(t )R(t ′)〉 =
δ(t − t ′), and L′

x is the number of the lattice points of upper
lattice adjacent to the lower lattice, namely

L′
x = a

a + b
Lx. (5)

Note that all lattice points of the upper lattice move simulta-
neously because we ignore the elastic deformation. Using the
external force per one lattice point f ≡ F/L′

x, we transform
Eq. (4) as

d (δx)

dt
= f

γ
+ 1

γ L′
x

(
− ∂H

∂ (δx)
+ √

2γ T L′
xR(t )

)
. (6)

We define the dynamics of spin variables σi as updating
using the Metropolis method, and we define the unit of time
as one Monte Carlo step (MCS). The candidate for updating
is chosen randomly at each step. For simplicity, in the actual
calculation of type-B lattice, 1 MCS is defined as LxLy steps of
the updating, and we put dummy spin variable σi = 0, which
does not interact with other variables if i lacks the lattice point.
The updating of δx is done after every �t MCSs (= LxLy�t
steps) by applying the stochastic Heun method to Eq. (6).

In this paper, we let γ = 1, and �t = 0.01; thus, δx is
updated after every LxLy/100 steps of updating the spin
variables. The velocity v of the upper lattice is defined as the
change in δx per MCS.

Previous studies have already proposed models in which
two lattices interact with each other [11–18]. However, in
our model the shift of the upper lattice δx changes according
to Eq. (6) under a given external force F . This is the main
difference from previous studies in which δx has discrete
values and increases according to a given constant velocity.
These velocity-fixing models often show the saturation of
energy-dissipation rate in the large-velocity limit [11]. As a
result, the frictional force of them converges to zero in this
limit. This phenomenon is observed not only in the case of the
magnetic friction between two lattices, but also in the case of
that between a lattice and a small tip [19,20]. This fact makes
the relation between frictional force and velocity complicated
and is thought to be obstructive if we try to consider the slight
violation of the Amontons-Coulomb law. Our choice of model
is motivated by wanting to avoid this difficulty and observe
more clearly how the potential barrier prevents the motion. In
the case of Eq. (6), in the large- f limit, the first term f /γ is
thought to be dominant over the other terms of the right-hand
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FIG. 4. The f dependence of the velocity for type-A lattice
at T = 2.0. The symbols correspond to the data for Lx = 80 (red
squares), 160 (blue open circles), 240 (green closed circles), and
320 (purple triangles), while the heavy black dotted line corresponds
to the Stokes law v = f /γ . The light dotted line drawn between
domains indicate the threshold value fc, which we will define later.

side and the velocity is thought to be proportional to f . Hence
our model is expected not to show such complicated behavior.

III. SIMULATION

The numerical simulation begins from the perfect antifer-
romagnetic state with δx = 0, and f is increased gradually.
At each value of f , the first 2.0 × 105 MCSs are used for
relaxation and next 8.0 × 105 MCSs for measurement. We
take average over 96 independent trials to obtain the data with
error bars. The aspect ratio of the lattice is fixed as Lx/Ly = 8.
We first investigate the f dependence of the velocity v at
T = 2.0 of the type-A lattice, and the results are shown in
Figs. 4 and 5.

In Fig. 4, the v- f curves have two domains, which we refer
to as domains I and II. In domain I, the motion of the upper
lattice is suppressed by the potential barrier. By contrast, in
domain II the external force dominates the other forces that
appear in the right-hand side of Eq. (6) as we anticipated in the
previous section, and the v- f curves approach the Stokes law
v = f /γ asymptotically with increasing f . From the semilog-
arithmic graphs of the v- f curves in Fig. 5, log v seems to
be a linear function of f in domain I. This relationship is
consistent with the Dieterich-Ruina law in the steady state,
namely Eq. (1). A similar investigation of the type-B lattice is
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FIG. 5. The f dependence of the velocity for type-A lattice at
T = 2.0, plotted semilogarithmically. The symbols have the same
meanings as in Fig. 4, and the broken lines are to guide the eye.
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FIG. 6. The f dependence of the velocity for type-B lattice at
T = 2.0, plotted semilogarithmically. The symbols have the same
meanings as in Figs. 4 and 5, and the broken lines are to guide the
eye.

shown in Fig. 6, according to which the relation between log v

and f in domain I appears to be linear even when the surface
of the upper lattice is rough.

To compare these graphs with Eq. (1), we estimate the
v-F relation of the present model by a discussion similar to
that of Ref. [28], and rescale the graph using the estimated
relation. The magnetic interaction between the two lattices
causes the effective potential U (δx), which affects the shift of
upper lattice δx. Considering the effect of the external force,
the potential felt by the upper lattice, Ū (δx), is expressed as

Ū (δx) = −Fδx + U (δx). (7)

Taking the arguments of the local minimum and the maximum
of Ū as δxmin and δxmax, respectively, the height of the
potential barrier is expressed as

Ū (δxmax) − Ū (δxmin) = −αF + L′
xu0. (8)

Here, α and u0 are defined as

α = δxmax − δxmin, (9)

u0 = U (δxmax) − U (δxmin)

L′
x

. (10)

From the definition of U (δx), this function is thought to
be proportional to L′

x. We therefore infer that u0 defined by
Eq. (10) is independent of L′

x.
The velocity v is thought to be proportional to the prob-

ability that the upper lattice acquires the sufficient energy to
penetrate the potential barrier expressed by Eq. (8), hence we
have that

v = exp

(
c − −αF + L′

xu0

T

)
, (11)

where, c is a constant. This relation can be transformed as

log v = αF − L′
xu0

T
+ c = α′F ′ + c, (12)

where α′ = α
T and

F ′ = F − L′
xu0

α
= L′

x

(
f − u0

α

)
. (13)

If Eq. (12) is right, v depends on f only by the factor F ′.
Hence, to investigate whether Eq. (12) holds for this model,
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FIG. 7. Rescaled v- f relation for both lattice types at T = 1.5
[graph (A-a) for type A and (B-a) for type B], 2.0 [graph (A-b) for
type A and (B-b) for type B], and 2.5 [graph (A-c) for type A and
(B-c) for type B] plotted semi-logarithmically. The symbols have the
same meanings as in previous figures, and the broken lines are the
fits of each curve in domain II.

we rescale f by this factor in the v- f relation at several
temperatures for both lattice types. The constants α′, c, and
u0 are determined by the least-squares fitting in which we
use data points that satisfy Lx � 160 and 10−6 � v � 10−1.
The results are plotted in Fig. 7, in which the fitted curves are
drawn as the broken lines.

According to these figures, the rescaled graphs for different
system sizes overlap for Lx � 160. This means that Eq. (12)
surely holds for this model. This equation is equivalent to the
Dieterich-Ruina law, namely, Eq. (1), with

A = T

α
, B = L′

xu0 − cT

α
. (14)

Consequently, our model obeys the Dieterich-Ruina law in
the steady state. Judging from the fact that f is scaled by
F ′ defined in Eq. (13), the v- f curve is thought to have a
discontinuous jump at a critical force fc ≡ u0

α
in the thermody-

namic limit. Hence, we regard fc as the threshold value, which
divides domains I and II. The temperature dependence of fc is
plotted in Fig. 8. According to this figure, both of type-A and
-B lattices show the similar behavior of fc.

Note that fc has the nonzero value even when T = 2.5, the
higher temperature than the equilibrium transition tempera-
ture of the two-dimensional antiferromagnetic Ising model,
Tc � 2.27. This means that the crossover or transition of the
v-F ′ curve from the Dieterich-Ruina law to the Stokes law is
observed no matter whether the temperature is higher or lower
than Tc. This is because the force between the two surfaces
does not depend on the long-range order itself.

0.5

1.0

1.5

2.0

1.5 2.0 2.5

Type-A
Type-B

FIG. 8. The temperature dependence of the threshold value fc.
The symbols correspond to the data for type-A (red squares) and
type-B (blue circles) lattice.

Considering that the Dieterich-Ruina law is the modifi-
cation of the Amontons-Coulomb law, our model seems to
resemble the model of Ref. [23] in the point that both of
them show the change of v- f relation from the Stokes law
to the naive or modified Amontons-Coulomb law. However,
the mechanisms why this change occurs are different. In our
model, this change is caused by whether the external force f
is dominant over or comparable to other forces shown in the
right-hand side of Eq. (6). On the other hand, that of Ref. [23]
is caused by whether the time scale of the relaxation of spins is
faster or slower than that of the motion of the tip. Furthermore,
the condition in which these two models obey the Stokes law
is different from each other. The model of Ref. [23] obeys it
when v is small, unlike our model obeying it when v is large.

IV. SUMMARY

In this study, we introduced a model of magnetic friction,
which includes a kind of potential barrier, and investigated the
relation between the frictional force and the relative velocity
v between two surfaces in the steady state, in which the
frictional force balances the external force f . According to the
results of the numerical simulation, the upper surface moves
following the Stokes law when f is sufficiently strong (do-
main II). In contrast, the surface velocity is suppressed by the
potential barrier made by the magnetic interaction, and obeys
the Dieterich-Ruina law regardless of whether the surface of
the upper lattice is smooth (type-A lattice) or rough (type-B
lattice) when f is weak (domain I). The behavior of our model
is similar to the depinning transition of domain walls in the
point that the energy barrier has the dominant role in the
velocity v of the upper lattice or the domain wall [30,31]. In
the case of the depinning transition, as far as the external force
is weaker than a certain threshold value, the velocity v of the
domain wall is proportional to the probability that the wall
acquires the sufficient energy to penetrate the energy barrier
�E , i.e., v ∝ e−�E/T . This mechanism resembles that of our
discussion that derives Eq. (11).

However, many points remain unclear at present in order
to discuss how our results relate to the friction of usual solids.
For example, the original form of the Dieterich-Ruina law
is not restricted to the steady state, whereas our result is.
Furthermore, both of the coefficients A and B in Eq. (1) are
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constants for usual solids, whereas B depends on the system
size by L′

x in Eq. (14). However, we cannot identify what
causes this difference by this study alone.

The relation between the long-range order and the v- f
curve when the system contains long-range interaction also
remains unclear. In the previous section, we pointed out that
the qualitative behavior of the v- f curve is not affected by
whether the long-range order exists or not. However, in the
case that the model contains the long-range interaction such

as the dipolar interaction, the force between the two surfaces
is thought to be more closely related with the long-range order.
We intend to study these problems in future work.
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