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Induced correlations and rupture of molecular chaos by anisotropic dissipative Janus hard disks
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A system of smooth “frozen” Janus-type disks is studied. Such disks cannot rotate and are divided by their
diameter into two sides of different inelasticities. Taking as a reference a system of colored elastic disks, we find
differences in the behavior of the collisions once the anisotropy is included. A homogeneous state, akin to the
homogeneous cooling state of granular gases, is seen to arise and the singular behavior of both the collisions and
the precollisional correlations are highlighted.
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I. INTRODUCTION

Janus particles are characterized by presenting two or more
different properties on their surfaces. Due to the fact that
such properties allow them to have different composition and
functionality [1], Janus particles offer a variety of potential
applications such as drug design, biomarkers, bactericides
and many others [2]. During the past few years, theoretical
and experimental studies on Janus particles, as well as on
their synthesis, have represented a major challenge for the
scientific community (see, for instance, Refs. [3–8]). Most
studies have focused their attention on equilibrium systems
and the study of their phase behavior [9]. On the other hand,
from a nonequilibrium perspective, only colloidal particles
interacting in a solvent have been considered, thus accounting
for hydrodynamic interactions but neglecting the particles’
inertia [3,5–8].

It is interesting to point out that, with the proper adjustment
of the parameters, a system of Janus particles embodies analo-
gies with the so-called microswimmers, which are the proto-
type systems of active matter [9,10]. These swimmers, which
constitute presently a “hot” and highly attractive research
topic within statistical physics, are capable of self-propelling
without any external energy input. Janus particles may also be
employed to investigate melting and appearance of nematic
phases in disks with simple inhomogeneous properties as is
the case of the discotic liquid crystals [11]. The previous
background serves as a motivation for the present study.
Our aim is to consider a dilute or moderately dilute fluid of
two-dimensional (2D) Janus particles (disks) in which these
collide obeying a collision rule that reflects their asymmetry,
namely, a rule in which nonhomogeneous restitution coeffi-
cients are incorporated.

Among the tools that are available to study the physical
properties of fluid systems, computational simulation tech-
niques occupy a prominent place [12,13]. Perhaps one of
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the most popular ones is molecular dynamics (MD) and,
in the case of the less dense systems, Monte Carlo (MC)
simulations of either the corresponding Boltzmann or Enskog
equation. Such techniques have proven to be useful not only
in the analysis of a variety of transport problems in classical
fluids [12–14] but also in the successful description of the
behavior of complex fluid systems and granular media [12,15–
21]. In the context of this paper, a granular medium should
be understood as a system composed of a huge number
of particles of mesoscopic size that have mutual inelastic
collisions. That is, the particles lose kinetic energy when
they collide [22,23]. This loss of kinetic energy is in turn
absorbed by the internal degrees of freedom of the particles of
the material medium, such degrees of freedom being totally
uncoupled to the dynamics of the mesoscopic particles. Given
the intrinsic characteristics of these systems, a convenient way
to study their physical behavior is through MD simulations,
in which the (event-driven) algorithms [24] are adjusted to
account for the fact that the collisions are inelastic. With
such an approach, it has been possible to correctly describe
laminar flow problems, instabilities, phase transitions, statisti-
cal correlations, diffusion, segregation, and other phenomena
occurring in granular media [21–23,25]. Furthermore, in the
case of low and moderate densities, a number of papers have
demonstrated that the single-particle time-dependent velocity
distribution function obeys either the Boltzmann or Enskog
kinetic equations [22]. The fundamental ingredient behind
both equations is the stosszahlansatz or molecular chaos as-
sumption. It should be stressed that kinetic theory has proven
to be a very accurate and powerful tool to investigate dilute
granular gases made of isotropic particles [26,27]. Moreover,
the use of the direct MC simulation (DSMC) method has
also been successfully applied in the case of granular media
[22,23,28,29]. In fact, two of us have contributed [25,30,31] to
the simulation, using either MD or DSMC, of some transport
problems in dilute granular gases, including the segregation
of granular intruders immersed in a granular gas of rough
spheres [25], a system which has received substantial recent
attention in the literature [32–34]. The aim of this paper is to
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FIG. 1. Schematic representation of the collision between two
Janus particles in a dilute fluid; different halves are color coded
as “black” and “white.” Vectors s1 and s2 are perpendicular to the
diameter defining both sides.

profit from the analogies between granular media and media
composed by anisotropic Janus-like particles and the com-
putational techniques that have been employed to describe
the physical properties of the former to study a dilute gas of
Janus-like granular disks.

The paper is organized as follows. In order to have a proper
perspective, in Sec. II we provide a brief description of the
main results stemming out of the kinetic theory of a dilute gas
of inelastic isotropic granular disks, including the so-called
homogeneous cooling state (HCS). In Sec. III we characterize

FIG. 2. Temperature vs. number of collisions per particle, τ , for
αBB = 0.9 (top) and αBB = 0.98 (bottom) for different values of αWW

in the interval [0.65, 1.0].

FIG. 3. Haff’s law for systems with αBB = 0.9 and different
values of αWW . The slopes of the straight lines decrease as αWW

increases.

our system and the collision rule for Janus-like granular
disks, where we consider varying values of the coefficients
of restitution corresponding to both sides of the 2D particles
and, in Sec. IV, we report our findings from numerical exper-
iments, involving velocity distribution functions, energy time
evolution, cooling rates and kurtosis. We close the paper in
Sec. V with some concluding remarks.

II. THE HOMOGENEOUS COOLING STATE OF A DILUTE
GAS OF ISOTROPIC GRANULAR DISKS

We begin by considering a system of N smooth inelastic
hard disks, of mass m = 1 and diameter σ = 1. The interac-
tion between disks is characterized by the rule:

v∗
i = vi − 1 + α

2
(g · σ̂ )̂σ,

v∗
j = v j + 1 + α

2
(g · σ̂ )̂σ, (1)
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FIG. 4. Values of the total cooling rates for αBB = 0.9 and
0.65 � αWW � 1.0 (open red circles), along with their confidence
limits, compared with the Gaussian approximation (continuous line)
as well as with the slopes of the straight lines in Fig. 3 (open magenta
squares).
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FIG. 5. Values of the fraction of collisions of each type vs. the
difference αWW − αBB. Note the collapse into a single curve for
varying values of αBB. The curve with positive slope corresponds to
that of BB type.

where we have introduced the constant coefficient of normal
restitution α, the asterisks denoting velocities after the col-
lision, g = vi − v j being the relative velocity, and σ̂ a unit
vector joining the centers of particles i and j at contact.

The appearance of the restitution coefficient α accounts for
the loss of energy of particles i, j after the collision. Note that
α � 1, and that the value α = 1 would correspond to elastic
collisions.

The equation that properly describes this system is the
Boltzmann equation of a system of freely evolving hard disks,
which reads [35,36](

∂

∂t
+ v · ∇

)
f (r, v, t ) = CB[r, v| f (r, v, t )], (2)

FIG. 6. Values of the temperatures of each type vs the number of
collisions per particle and in a range of these between 0 and 20 for an
easy visualization of the difference for αWW = 0.65 and αBB = 0.98.
Note the appearance of three “temperatures” in this case. In the inset,
the corresponding value of the ratio TW /TB between the temperatures
of each kind as a function of the number of collisions per particle is
shown. As pointed out in the text, this value is a constant.
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FIG. 7. Value of the ratio between the temperatures of each kind
as a function of the difference αWW − αBB. Note again the collapse
of the curves.

with f (r, v, t ) denoting the single-disk velocity distribution
function and CB the inelastic Boltzmann collision operator,
namely

CB[r, v| f (r, v, t )]

=
∫

dv1

∫
d σ̂ θ (g · σ̂ )(g · σ̂)

×(α−2b−1 − 1) f (r, v, t ) f (r, v1, t ), (3)

θ is the Heaviside step function and b−1 an operator trans-
forming velocities v and v1 to its right into their precollisional
values. As it occurs in the purely elastic case, the derivation
of this equation is based on the molecular chaos hypothe-
sis. This means that the two-disks distribution function may
be factorized in the precollisional disks as f (2)(x1, x2, t ) =
f (x1, t ) f (x2, t ), where xi ≡ {ri, vi}.

It is well known that when a system of inelastic particles
such as the one described above is allowed to evolve freely,
it reaches a homogeneous state with no fluxes or gradients,
namely, the homogeneous cooling state. Such state is charac-
terized by a single macroscopic variable, specifically the tem-
perature T (t ), defined as proportional to the average kinetic
energy. This variable evolves according to the so-called Haff’s
law [37],

T (t ) = T (0)(
1 + t

t0

)2 , (4)

where t0 is the time characterizing the energy decay.
In the HCS, the Boltzmann equation admits a solution

f (v, t ) that obeys the scaling law [35,36,38]

f (v, t ) = nH

v0(t )2
�

[
v

v0(t )

]
, (5)

where nH is the homogeneous density and v0 = √
2kBT is

the thermal velocity of the system, kB being the Boltzmann
constant. Note that for the time evolution of the system,
the relevant hydrodynamic field is the temperature, which
corresponds to the second moment of the velocity, namely
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FIG. 8. Distribution function f of the x component of the ve-
locity, Cx (top), and the −log{−log[ f (Cx )]} vs. log(|Cx|) (bottom)
for αBB = 0.9 and 0.65 � αWW � 1.0. The magenta solid line is the
Maxwell-Boltzmann distribution. The linear region in the bottom
panel has a slope of −1.7668, as provided by least squares.

〈v2〉. On the other hand the function � , which follows from
the Boltzmann equation, is given by

� (c) = πe−c2
∑
j�0

a jS
( j)(c2), c = v

v0
, (6)

where S( j) are the Sonine polynomials, whose expressions can
be found in Ref. [38].

In our case, the relevant coefficient is a2, which is related to
the kurtosis of the velocity distribution function and is given
by [36,39]

a2 = 1
2 [〈c4〉 − 2]. (7)

It should be stressed that a2 is very small, which means that
the function � is very close to the Gaussian distribution [35].
The non-Gaussianity is reflected in the exponential tails.

The expression for t0 may be obtained from the Boltzmann
equation [40], and reads:

t−1
0 � 1

2 (1 − α2)[kBπT (0)]1/2nH . (8)

FIG. 9. Tails of the velocity distribution functions divided by the
Gaussian distribution for αBB = 0.9 and 0.65 � αWW � 1.0.

To close this section, and for later purposes, it is convenient
to express Haff’s law in terms of the average number of
collisions per particle, τ , that is,

T (τ ) = T (0)e−(1−α2 )τ , (9)

which, interestingly, states that the kinetic energy decays
exponentially with the number of collisions.

III. THE ANISOTROPIC JANUS-LIKE DISKS CASE

Let us consider now a set of N smooth anisotropic disks.
Each disk comprises two parts of equal size on each side
of its diameter, which are characterized by a value of the
coefficient of restitution. Such values may be the same or
different for both sides and either equal to one, less than one
or greater than one. The disks may collide with one another
in three different forms depending on which side of each disk
takes part in the collision. A schematic representation of the
collision is depicted in Fig. 1 and the applicable collision rule
is the following:

v′
1 = v1 + 1 + α1(s1, s2)

2
σ̂(g · σ̂),

v′
2 = v2 + 1 + α2(s1, s2)

2
σ̂(g · σ̂). (10)

Here v′
i indicates postcollisional velocities, g = v1 − v2, σ̂ =

r1−r2
|r1−r2| , and α1(s1, s2) and α2(s1, s2) are the coefficients of
restitution which, as stated above, depend on the orientation
of the particles at the time of the collision as given by the
vectors s1 and s2. Such vectors are assigned to each of the N
particles in a direction randomly distributed and perpendicular
to the diameter delimiting the two (different) sides.

The dependence on αi(s1, s2) may be parameterized by
labeling with colors, W and B, the “white” and “black” sides,
respectively, as follows:

s1 · σ̂ � 0 → disk 1 side W, (11)

s1 · σ̂ < 0 → disk 1 side B, (12)
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FIG. 10. Values of the cooling rates considering the collisions of
types WW , BB, and two color, for αBB = 0.9 (top) and αBB = 0.98
(bottom) and for 0.65 � αWW � 1.0; the straight lines correspond to
the Gaussian approximation for equal fractions of collisions. Curves
for BB collisions are flat since αBB is kept fixed in the simulations.

s2 · σ̂ < 0 → disk 2 side W, (13)

s2 · σ̂ � 0 → disk 2 side B, (14)

An “event-driven” molecular dynamics algorithm has been
developed to analyze the time evolution of such a system.
We have taken a square box with N disks, whose diameter
is σ , and a given number density ρ, which determines the
size of the box. We have considered N = k2 for some k ∈ N
and divided the box into N square cells, so that there is one
cell for each disk. Initially, the disks are centrally placed in
the cells and are assigned a random velocity that follows
a Maxwell-Boltzmann distribution; then they are made to
elastically collide with each other until an equilibrium state
is reached. After such a transient period, an anisotropy vector
si, whose direction is distributed uniformly in the interval
[0, 2π ), is assigned to each disk. Once this has been done,
the disks start to collide following the collision rules (10).
Of course, the coefficients of restitution αBB, αWW , αBW , and
αW B, where the subindices state the sides at contact during the
collision, may be freely chosen. In particular, we have defined
αW B = αBW = αBB+αWW

2 .
The outcome of our simulations comprises the measure-

ment of the velocity distribution functions for the particles, the

FIG. 11. Kurtosis of the velocity distribution for the collision
types WW (solid circles) and BB (open squares). These values have
been measured for αBB = 0.90 (top panel) and αBB = 0.98 (bottom
panel), whereas αWW ranges from 0.65 to 1.

time evolution of the energy and the kurtosis. Furthermore, we
are also able to evaluate the fraction of each type of collision
(and hence measure the precollisional correlations), the time
evolution of the different temperatures present in the system
and the cooling rates for each type of collision.

IV. RESULTS

For the sake of having some reference values for later
comparison with the collisional dynamics of our system of
interest, and since, to the best of our knowledge, there are
no previous studies in the literature of elastic colored disks,
we begin with the fully elastic case. In this instance we have
considered a system of 1225 disks with a number density of
0.01 and taken an average over 180 trajectories. We have taken
systems with a fixed value of the coefficient of restitution αBB

(namely, αBB = 0.9 and αBB = 0.98) and for such systems
then we have varied the value of αWW in the range [0.65, 1.0].
In Fig. 2 we display the time evolution of the system tem-
perature, time being measured as collisions per particle. In
this figure, averages over the particles and trajectories have
been performed. The system obeys Haff’s law, as seen from
the exponential decay.

This fact is more evident in Fig. 3, where straight lines of
the form T (t ) = T (0)(1 + t

t0
)−2 are obtained for αBB = 0.90

and different values of αWW . In Fig. 4 we present the values
of t−1

0 derived from the fit of the lines in Fig. 3 together with
the cooling rates that have been measured directly and the
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FIG. 12. Values of the conditional probabilities for the particles
that, having experienced a collision of a given type (WW , W B, BB,
or BW ) will later undergo a WW collision. Here the coefficients
of restitutions are αBB = 0.9 and 0.98, whereas 0.65 � αWW � 1.0.
The lines are drawn as a benchmark at the heights provided by the
simulation of the completely elastic system, i.e., for αWW = αBB = 1.

Gaussian approximation for the value of t−1
0 . As it can be seen,

there is an excellent agreement between the observed cooling
rates for αWW > 0.7 and the value −2/t0 derived from Haff’s
law.

A remarkable feature present in our system is the fact that,
when it comes to collisions of sides of the same color, there
are more collisions of one color than of the other. In order
to quantify this effect, we have measured the fraction of each
type of single-color collision with respect to the total number
of collisions that occur in the system all along its evolution.
We find that the more inelastic one color is the more collisions
of this type take place. Further, this number depends only on
the difference between the elasticities of the sides, as observed
in Fig. 5. This leads us to suggest that different temperatures
of the disks in our system may arise depending on the color
of their previous collision. Also, one can see that once a disk
has undergone a collision with one of its colored sides, the
probability that it will collide with the opposite side (different
color) is greater than the one that it will do it with the same
side. This is due to the fact that such probability of collision
is proportional to the relative velocities and these vectors are
directed with more probability to the side opposite to the one
the collision took place with.

If we measure time by collisions per particle, at any tempo-
ral point we can consider the particles that have collided either
with one side (color) or with the other and investigate two
additional “temperatures,” TW and TB, each one corresponding
to one color. In Fig. 6 it can be immediately seen that the
particles that have collided with the black side have a greater
temperature than those that have collided with the white side.
This is not surprising since the white side has a coefficient
of restitution αW < αB. On the other hand, we also find that

the ratio between both temperatures TW and TB is a constant
(cf. inset in Fig. 6) and that it depends only on the difference
αWW − αBB (cf. Fig. 7).

This phenomenon can be related to that occurring in binary
mixtures of hard isotropic grains that are either freely cooling
[41] or subject to a vibration [42,43]. In these situations, a
breakdown of energy equipartition has been observed, with
species involved in the experiments exhibiting different partial
temperatures but equal cooling rates. However, in our system
the two distinct temperatures are observed in two collections
of (anisotropic) particles with identical material properties but
having undergone different previous collisions.

The velocity distribution functions corresponding to αBB =
0.9 for the x component of the scaled velocity, Cx, are shown
in Fig. 8. To a good approximation, they may be taken as
Gaussian distributions. Also, the tails of the scaled distribu-
tions are displayed in Fig. 9. All these curves are similar to
the ones obtained in isotropic granular media [35,36,44].

We further analyzed the cooling rates corresponding to the
different types of collisions: single color (WW and BB) or two
color (either W B or BW ). These have been measured directly
from the dissipated energy at given time intervals for αBB =
0.9 and αBB = 0.98 and varying αWW between 0.65 and 1.0.
The results are displayed in Fig. 10; note that the top panel of
this figure corresponds to the data reported in Fig. 4. At the
values where αBB = αWW the cooling rate for the two-color
case is exactly two times that of the single-color one (i.e., WW
or BB), as it is accounting for two types of collisions (W B and
BW ).

We have also measured the kurtosis of the collisions of
types BB and WW for the same collection of values of the
parameters αWW and αBB as in Fig. 10. We observe that
distinct coefficients of restitution lead to different kurtosis, as
shown in Fig. 11, and that these outcomes are also close to
the Gaussian distribution. Again, the results in Figs. 10 and
11 are found to be qualitatively similar to those reported in
Refs. [35,36].

Once the existence of a difference between the fraction of
collisions of each type, the cooling rates and the temperatures
has been noticed, the next natural step is to consider the
precollisional correlations. The idea behind this analysis is to
investigate whether the consideration of anisotropic disks may
produce an effect on the dynamics of the collisions.

We have measured the precollisional correlations for the
four kinds of collision and taken as the reference system the
one of colored but elastic disks. To that end, a numeric label,
1, 2, 3, or 4, is assigned to each disk after it collides, to
account for the sides at contact. This label is checked against
the value it had prior to collision, where we had made a
distinction between the four possible types. We have found
that there seems not to be a big effect as the values of the
inelasticities are varied in the interval [0.65, 1]. In fact, there is
only a small precollisional correlation of the colliding colors
related to them, as shown in Fig. 12. In this figure, we have
represented the conditional probabilities of having a WW
collision provided that the previous collision was of one of
the four alternatives.

It is clear that, as αWW increases, these conditional prob-
abilities tend to approach the values corresponding to the
completely elastic system, represented as straight lines in
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Fig. 12. The two distinct possible probabilities for each system
observed in this plot correspond to the situations of a disk
colliding with the same side as the one involved in the
previous collision (low values) or with the opposite side (high
values).

However, when αWW decreases toward 0, the probabilities
of undergoing a WW -type collision after one of type BB and
of type BW tend to progressively differ. The same effect is
observed for the conditional probabilities given that a WW or
W B collision has occurred. Moreover, when αWW approaches
0, the probabilities of a WW collision after one of type BB and
WW are close to 0.22 and 0.30, respectively.

Similar results are obtained for the other combinations, as
reported in Tables I–III of the Appendix, where each entry
in the “C.Prob.” columns provides the conditional probability
as the fraction of the corresponding collisions (for instance,
when the collision is of the type WW (1) and previously it has
been of the type WW (1), W B (2), BB (3), or BW (4), and
similarly for all suitable combinations).

V. CONCLUDING REMARKS

In this paper we have addressed a system of inelastic
Janus-like disks by means of extensive numerical experi-
ments. In particular we have measured different statistical
quantities, namely, temperature evolution, velocity distribu-
tion functions, kurtosis, and precollisional correlations. We
find that for this system a HCS also arises even in the presence
of correlations. In particular, a Haff’s law is obeyed by the
temperature irrespective of the fact that the molecular chaos
assumption does not hold here. As far as we are aware, this
is the first time that such a system, along with some of
its features, has been reported. This opens new avenues for
research including, for instance, stationary states sustained by
injection of energy, rough disks, smooth or rough spheres and
the analysis of problems like segregation [45,46], memory
effects [30,31,47–53], and shear states [14,54]. Of particular
interest are the studies of the clustering formation processes
and the phase transitions that may arise as the density is
increased. We plan to examine some of these problems in the
near future.
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APPENDIX

For completeness, we assemble in this Appendix the condi-
tional probabilities of a collision of type 1, 2, 3, or 4, provided
that the preceding collision was of one of these four types, for
different values of αBB and αWW .

TABLE I. Precollisional correlations for αBB = 0.9 and 0.98 and
for αWW = 0.65, 0.7, and 0.75.

αBB αWW Type C.Prob. αBB αWW Type C.Prob.

1 → 1 0.2100 1 → 1 0.2126
2 → 1 0.1912 2 → 1 0.1889
3 → 1 0.2941 3 → 1 0.2928
4 → 1 0.3047 4 → 1 0.3057
1 → 2 0.2043 1 → 2 0.2062
2 → 2 0.1943 2 → 2 0.1921
3 → 2 0.2957 3 → 2 0.2947
4 → 2 0.3057 4 → 2 0.3070

0.65 1 → 3 0.3194 0.65 1 → 3 0.3244
2 → 3 0.3110 2 → 3 0.3136
3 → 3 0.1800 3 → 3 0.1747
4 → 3 0.1896 4 → 3 0.1872
1 → 4 0.3190 1 → 4 0.3235
2 → 4 0.3091 2 → 4 0.3118
3 → 4 0.1774 3 → 4 0.1725
4 → 4 0.1945 4 → 4 0.1921

1 → 1 0.2053 1 → 1 0.2072
2 → 1 0.1898 2 → 1 0.1879
3 → 1 0.2984 3 → 1 0.2969
4 → 1 0.3065 4 → 1 0.3078
1 → 2 0.1999 1 → 2 0.2013
2 → 2 0.1930 2 → 2 0.1908
3 → 2 0.2999 3 → 2 0.2988
4 → 2 0.3073 4 → 2 0.3090

0.9 0.7 1 → 3 0.3179 0.98 0.7 1 → 3 0.3231
2 → 3 0.3117 2 → 3 0.3144
3 → 3 0.1817 3 → 3 0.1762
4 → 3 0.1887 4 → 3 0.1861
1 → 4 0.3177 1 → 4 0.3223
2 → 4 0.3099 2 → 4 0.3127
3 → 4 0.1791 3 → 4 0.1739
4 → 4 0.1932 4 → 4 0.1909

1 → 1 0.2007 1 → 1 0.1971
2 → 1 0.1881 2 → 1 0.1841
3 → 1 0.3027 3 → 1 0.3031
4 → 1 0.3084 4 → 1 0.3119
1 → 2 0.1956 1 → 2 0.1921
2 → 2 0.1916 2 → 2 0.1872
3 → 2 0.3040 3 → 2 0.3045
4 → 2 0.3088 4 → 2 0.3124

0.75 1 → 3 0.3168 0.75 1 → 3 0.3184
2 → 3 0.3122 2 → 3 0.3134
3 → 3 0.1834 3 → 3 0.1785
4 → 3 0.1875 4 → 3 0.1845
1 → 4 0.3164 1 → 4 0.3207
2 → 4 0.3111 2 → 4 0.3149
3 → 4 0.1807 3 → 4 0.1771
4 → 4 0.1919 4 → 4 0.1889
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TABLE II. Precollisional correlations for αBB = 0.9 and 0.98 and
for αWW = 0.8, 0.85, and 0.9.

αBB αWW Type C.Prob. αBB αWW Type C.Prob.

1 → 1 0.1959 1 → 1 0.1984
2 → 1 0.1872 2 → 1 0.1852
3 → 1 0.3066 3 → 1 0.3049
4 → 1 0.3103 4 → 1 0.3114
1 → 2 0.1917 1 → 2 0.1933
2 → 2 0.1904 2 → 2 0.1886
3 → 2 0.3072 3 → 2 0.3063
4 → 2 0.3107 4 → 2 0.3118

0.8 1 → 3 0.3157 0.8 1 → 3 0.3205
2 → 3 0.3129 2 → 3 0.3154
3 → 3 0.1850 3 → 3 0.1798
4 → 3 0.1863 4 → 3 0.1843
1 → 4 0.3156 1 → 4 0.3202
2 → 4 0.3120 2 → 4 0.3144
3 → 4 0.1818 3 → 4 0.1770
4 → 4 0.1907 4 → 4 0.1885

1 → 1 0.1918 1 → 1 0.1945
2 → 1 0.1858 2 → 1 0.1840
3 → 1 0.3101 3 → 1 0.3083
4 → 1 0.3122 4 → 1 0.3131
1 → 2 0.1876 1 → 2 0.1898
2 → 2 0.1893 2 → 2 0.1875
3 → 2 0.3106 3 → 2 0.3094
4 → 2 0.3125 4 → 2 0.3132

0.9 0.85 1 → 3 0.3146 0.98 0.85 1 → 3 0.3195
2 → 3 0.3136 2 → 3 0.3160
3 → 3 0.1866 3 → 3 0.1810
4 → 3 0.1851 4 → 3 0.1834
1 → 4 0.3149 1 → 4 0.3190
2 → 4 0.3126 2 → 4 0.3153
3 → 4 0.1832 3 → 4 0.1778
4 → 4 0.1894 4 → 4 0.1878

1 → 1 0.1880 1 → 1 0.1904
2 → 1 0.1844 2 → 1 0.1833
3 → 1 0.3136 3 → 1 0.3115
4 → 1 0.3139 4 → 1 0.3147
1 → 2 0.1844 1 → 2 0.1862
2 → 2 0.1882 2 → 2 0.1863
3 → 2 0.3137 3 → 2 0.3125
4 → 2 0.3136 4 → 2 0.3149

0.9 1 → 3 0.3136 0.9 1 → 3 0.3182
2 → 3 0.3140 2 → 3 0.3168
3 → 3 0.1879 3 → 3 0.1824
4 → 3 0.1846 4 → 3 0.1826
1 → 4 0.3140 1 → 4 0.3185
2 → 4 0.3135 2 → 4 0.3156
3 → 4 0.1845 3 → 4 0.1792
4 → 4 0.1880 4 → 4 0.1866

TABLE III. Precollisional correlations for αBB = 0.9 and 0.98
and for αWW = 0.92, 0.95, and 1.

αBB αWW Type C.Prob. αBB αWW Type C.Prob.

1 → 1 0.1866 1 → 1 0.1889
2 → 1 0.1838 2 → 1 0.1824
3 → 1 0.3149 3 → 1 0.3131
4 → 1 0.3146 4 → 1 0.3155
1 → 2 0.1829 1 → 2 0.1847
2 → 2 0.1881 2 → 2 0.1862
3 → 2 0.3147 3 → 2 0.3135
4 → 2 0.3142 4 → 2 0.3155

0.92 1 → 3 0.3130 0.92 1 → 3 0.3177
2 → 3 0.3141 2 → 3 0.3169
3 → 3 0.1888 3 → 3 0.1832
4 → 3 0.1840 4 → 3 0.1821
1 → 4 0.3134 1 → 4 0.3179
2 → 4 0.3138 2 → 4 0.3162
3 → 4 0.1848 3 → 4 0.1797
4 → 4 0.1879 4 → 4 0.1862

1 → 1 0.1845 1 → 1 0.1854
2 → 1 0.1832 2 → 1 0.1806
3 → 1 0.3166 3 → 1 0.3132
4 → 1 0.3156 4 → 1 0.3169
1 → 2 0.1811 1 → 2 0.1817
2 → 2 0.1870 2 → 2 0.1842
3 → 2 0.3170 3 → 2 0.3136
4 → 2 0.3148 4 → 2 0.3167

0.9 0.95 1 → 3 0.3124 0.98 0.95 1 → 3 0.3154
2 → 3 0.3145 2 → 3 0.3150
3 → 3 0.1896 3 → 3 0.1827
4 → 3 0.1834 4 → 3 0.1819
1 → 4 0.3129 1 → 4 0.3181
2 → 4 0.3141 2 → 4 0.3171
3 → 4 0.1859 3 → 4 0.1807
4 → 4 0.1870 4 → 4 0.1858

1 → 1 0.1812 1 → 1 0.1836
2 → 1 0.1819 2 → 1 0.1809
3 → 1 0.3196 3 → 1 0.3179
4 → 1 0.3171 4 → 1 0.3175
1 → 2 0.1781 1 → 2 0.1799
2 → 2 0.1862 2 → 2 0.1845
3 → 2 0.3194 3 → 2 0.3185
4 → 2 0.3162 4 → 2 0.3171

1 1 → 3 0.3117 1 1 → 3 0.3169
2 → 3 0.3149 2 → 3 0.3170
3 → 3 0.1909 3 → 3 0.1855
4 → 3 0.1825 4 → 3 0.1806
1 → 4 0.3122 1 → 4 0.3172
2 → 4 0.3150 2 → 4 0.3167
3 → 4 0.1866 3 → 4 0.1814
4 → 4 0.1861 4 → 4 0.1846
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