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Nonequilibrium chemical potentials of steady-state lattice gas models in contact:
A large-deviation approach
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We introduce a general framework to describe the stationary state of two driven systems exchanging particles
or mass through a contact, in a slow exchange limit. The definition of chemical potentials for the systems in
contact requires that the large-deviation function describing the repartition of mass between the two systems is
additive, in the sense of being a sum of contributions from each system. We show that this additivity property
does not hold for an arbitrary contact dynamics, but is satisfied on condition that a macroscopic detailed
balance condition holds at contact, and that the coarse-grained contact dynamics satisfies a factorization property.
However, the nonequilibrium chemical potentials of the systems in contact keep track of the contact dynamics,
and thus do not obey an equation of state. These nonequilibrium chemical potentials can be related either to
the equilibrium chemical potential, or to the nonequilibrium chemical potential of the isolated systems. Results
are applied both to an exactly solvable driven lattice gas model and to the Katz-Lebowitz-Spohn model using a
numerical procedure to evaluate the chemical potential. The breaking of the additivity property is also illustrated
on the exactly solvable model.
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I. INTRODUCTION

The notion of intensive parameters conjugated to con-
served quantities like energy, volume, or number of particles
lies at the very heart of equilibrium thermodynamics, yielding
the key notions of temperature, pressure, and chemical po-
tentials that take equal values when two systems are put into
contact. A key issue in order to generalize thermodynamics to
nonequilibrium steady states is to be able to define tempera-
ture, pressure, and chemical potentials [1,2]. In spite of many
attempts, the notion of temperature in driven steady-state
systems has eluded a thermodynamically consistent definition
due to the lack of energy conservation [3–7]. However, conser-
vation laws may still hold for volume and number of particles,
so that it is natural to ask whether nonequilibrium pressure
and chemical potential could be meaningfully defined in such
systems. A key feature such parameters should obey is that
they should equalize when two systems in contact are able to
exchange a globally conserved quantity like volume or par-
ticles. Nonequilibrium intensive thermodynamic parameters
are also expected to fulfill a generalization of the zeroth law of
thermodynamics. This means that if two systems have reached
a steady state when separately put in contact with a third one,
then they are also in steady state when brought into contact.
A related, but different, issue is that the thermodynamic
parameters would be expected not to depend on the detailed
way the two systems are put into contact, but only on bulk
properties of each system. If this is the case, an equation of
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state holds. Although equations of state are generally present
in equilibrium systems, their existence in steady-state driven
systems is not granted, as shown by the generic lack of an
equation of state for the mechanical pressure of gases of
active particles [8]. For such systems, an equation of state is
recovered, though, if specific symmetries are present [9].

In the framework of lattice models of interacting driven
particles, a nonequilibrium chemical potential has been de-
fined under the hypothesis that an additivity condition is
fulfilled [10,11]. This condition, not to be confused with the
additivity condition used to evaluate the current fluctuations
in boundary driven systems [12], states that if the system is
decomposed into two subsystems A and B, the large-deviation
function I (ρA) of the number NA of particles in subsystem A
can be written as a sum of two contributions, one depending
only on NA, and the other depending only on NB:

P(NA|N ) ∼ e−V [IA(ρA )+IB (ρB )], (1)

where V is the volume of the system, and N = NA + NB is the
fixed total number of particles; ρα = Nα/Vα is the density in
subsystem α = A, B. This property has already been consid-
ered some time ago in the context of the generic derivation of
nonequilibrium hydrodynamic equations beyond local equi-
librium for driven diffusive systems [13]. Later, this additivity
relation has been shown to be satisfied for models like the zero
range process [14] and its continuous mass generalizations
[15], where the N-body distribution factorizes in steady state.
Yet, even if a chemical potential can be defined in a single
system by considering virtual partitions into subsystems, an
important issue is whether this chemical potential predicts
the steady-state density reached in two different systems in
contact. Numerical simulations of lattice particle models like
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the Katz-Lebowitz-Spohn (KLS) model [16–18] as well as
a lattice gas with nearest-neighbor exclusion [18,19] showed
that depending on the dynamics of the contact, the steady-state
density may or may not be correctly predicted. The validity
of a nonequilibrium generalization of the zeroth law of ther-
modynamics has been verified numerically with a reasonable
accuracy, but visible deviations have been reported [16,17].
The consequences of these results for the very existence of the
notion of phase coexistence in nonequilibrium steady states
have been emphasized [20]. The major role played by the dy-
namics of the contact has also been outlined using theoretical
arguments or exact solutions of stochastic models [11,17,21].
To circumvent this difficulty, Sasa and Tasaki (ST) [2] have
proposed to use a specific type of contact dynamics modeling
a high energy barrier between the two systems. This physical
picture implies both a small exchange rate, thus implementing
in practice the slow exchange concept in a nonequilibrium
situation, and transfer rates from one system to the other that
depend only on the configuration of the system from which
particles are transferred. This class of transfer rates has been
argued to play a key role in the phenomenological definition
of chemical potentials proposed in [2]; the consistency of this
definition has been validated numerically in lattice particle
models [18]. Note also that it has been proposed recently to
define a subclass of contact dynamics for which the zeroth
law remains valid by construction [21]. However, the corre-
sponding condition is not fulfilled in most realistic situations
where the drive modifies the statistics of configurations in the
system.

This paper aims at answering the following open main
questions: (i) Can one link the phenomenological definition
of chemical potential proposed by ST [2] to the additivity
condition of the large-deviation function of the number of
particles in one system [10,11,16,17,21,22]? (ii) Can one
identify, going beyond the previously studied lattice particle
models, the class of contact dynamics providing a consistent
definition of chemical potential based on the additivity con-
dition? (iii) Does this chemical potential obey the zeroth law,
and does it satisfy an equation of state? Focusing on the small
exchange-rate limit, we show that the additivity condition can
be satisfied for a class of contact dynamics that is broader than
the ST class, on condition that a macroscopic detailed balance
relation holds. We discuss the issue of whether the chemical
potential defined in systems in contact obeys an equation of
state, and under which condition does the zeroth law hold.
Note that a short and partial account of the present results has
been published in [23].

The paper is organized as follows. Section II introduces
the general framework of stochastic particle models in slow
exchange limit at contact and the coarse-grained dynamics
of densities. Section III provides a large-deviation analysis
of this coarse-grained density dynamics, and introduces the
notion of macroscopic detailed balance. Section IV then dis-
cusses sufficient conditions for the large-deviation function of
densities to be additive, thus allowing for the definition of
nonequilibrium chemical potentials. The role of the contact
dynamics in the properties of the chemical potentials is em-
phasized. These definitions and properties are then illustrated
in Sec. V on the explicit example of an exactly solvable
lattice gas model. A numerical determination of the chemical

potential in the (nonsolvable) KLS model is also presented.
Finally, Sec. VI discusses how the present results may shed
light on previously reported (and sometimes puzzling) results.

II. GENERAL FRAMEWORK

A. Stochastic driven lattice models

We begin with the general definition of the models con-
sidered. Stochastic lattice gases and mass transport models
are formally continuous time stochastic Markovian systems
defined on lattice [24,25] composed of interacting particles
that jump from site to site. One can describe microscopic state
or configuration by the occupation number in each site x of the
lattice.

Examples of such lattice models are the well known asym-
metric simple exclusion process (ASEP) as well as its variants
[25–27], the Katz-Lebowitz-Spohn (KLS) model [28,29], the
zero range process [14,30], as well as its numerous variants
[15,31–33], etc.

For one system, we note � ⊂ Zd the space grid (d being
the space dimension), V = |�| the number of sites, N the
number of particles and C = {nx}x∈� a configuration of the
system, nx ∈ [0, nmax] being the number of particles at site
x (nmax can be finite or infinite). The local configuration nx

is generically an integer for most models, but it can be a
real variable nx � 0 in some models where it has been called
a “continuous mass” [15,31–33]. We point out that periodic
boundary conditions are assumed at least in the drive direction
(details are given below).

The dynamics is entirely prescribed by the transition rates
T (C ′|C) to jump from a configuration C to another one C ′. For
instance, for stochastic lattice gases, C ′ corresponds to a single
move of one particle from a site to another. As these simple
models intend to be mesoscopic modelings of the dynamics of
particles, one imposes the local detailed balance [28,34,35]
condition which restricts the class of systems that can be
modeled by Markov processes. It states that

T (C ′|C)

T (C|C ′)
= exp{−β[E (C ′) − E (C) − W (C, C ′)]}, (2)

where E (C) is the energy of the configuration C and W (C, C ′)
refers to the nonconservative work associated with the drive.
Physically, the local detailed balance assumption means that
the underlying heat bath stays in equilibrium at inverse tem-
perature β despite the force applied on the particles (see
Introduction of [36]).

The energy E is generically prescribed by a given in-
teraction potential sometimes supplemented by an external
potential. The nonconservative work W depends on the drive
but we will mostly consider a constant driving force f (‖f‖ =
f ) for which

W (C, C ′) = f · j(C, C ′),

j(C, C ′) being the total current flowing in the system for the
transition C → C ′ (the latter is thus generally localized if
only one particle jumps at a time). We note that the explicit
functional form of transition rates T (C ′|C) is not completely
specified by the local detailed balance property. We will
consider in specific examples below some common choices
obeying local detailed balance such as the exponential rule,
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the Kawasaki rule, the Metropolis rule, or the Sasa-Tasaki
rule [37].

B. Contact dynamics between two systems

We define in this section the contact dynamics between
two systems A and B defined by their own Hamiltonians
EA(CA), EB(CB) and their own driving force fA, fB. One
calls �k the space grid of system k, Vk = |�k| the number
of sites of system k, and Nk = N (Ck ) the actual number of
particles in system k, k = A, B. One sets γA = VA/V and
γB = VB/V (γA + γB = 1) the relative sizes of system A and
B with respect to the total volume V = VA + VB. The contact
dynamics is defined through a transition rate Tc(C ′

A, C ′
B|CA, CB)

obeying local detailed balance as well. The total number of
particles N = N (CA) + N (CB) is assumed to be fixed. We
assume in the following that both A and B are in contact with
heat baths at the same inverse temperature β. One should
note, however, that taking into account different heat baths
at different (inverse) temperatures βA and βB is feasible in
general (see Sec. IV A 2 for some more details).

As mentioned in the Introduction, our main goal is to inves-
tigate the situation of two uniform nonequilibrium systems in
contact. Since we have chosen to look at the simple situation
of externally driven systems for which periodic boundary
conditions along the driving forces are necessary, the natural
contact geometry one can think of is an orthogonal contact
to the driving forces fA and fB. Hence, microscopic transition
rates at contact Tc are assumed not to depend on driving forces
fA, fB. The case with an additional dependence on the forcing
at contact will be briefly discussed later in Sec. IV D.

The dynamics of the whole system composed of systems
A and B is thus prescribed by transition rates in the bulk as
well as the contact ones. The stochastic process is a Poisson
Markov jump process and the probability to observe a con-
figuration C = (CA, CB) at time t , Pt (C), obeys the following
master equation:

dPt

dt
(CA, CB)

=
∑
C ′

A �=CA

TA(CA|C ′
A)Pt (C ′

A, CB) − λA(CA)Pt (CA, CB)

+
∑
C ′

B �=CB

TB(CB|C ′
B)Pt (CA, C ′

B) − λB(CB)Pt (CA, CB)

+
∑

C ′
A �= CA

C ′
B �= CB

Tc(CA, CB|C ′
A, C ′

B)Pt (C ′
A, C ′

B)

−λc(CA, CB)Pt (CA, CB) (3)

with λk (C) = ∑
C ′ �=C Tk (C ′|C) the escape rates associated with

the configuration C, k = A, B, or c.

C. Coarse-grained dynamics of the densities

Our goal is to compute the stationary distribution of the
number of particles in each system, knowing the total number
of particles N = NA + NB or rather the density ρ̄ = γAρA +
γBρB. If microscopic detailed balance holds, one can solve
straightforwardly the stationary master equation (3) and thus

derive directly the distribution of densities ρA, ρB in each
system. However, since both systems are out of equilibrium,
detailed balance does not hold. The strategy is then to derive
an evolution equation on the probability distribution on ρA.

One can easily derive an evolution equation on the prob-
ability Pt (ρA|ρ̄) to observe a density ρA = NA/VA [and ρB =
γ −1

B (ρ̄ − γAρA) since mass is conserved], by summing over all
the microstates C = (CA, CB) corresponding to the given den-
sity in (3). Since the dynamics in the bulks of A and B conserve
the number of particles in each system, the coarse-grained
master equation over (ρA, ρB) only involves the dynamics at
contact encoded in Tc. It yields

dPt

dt
(ρA|ρ̄)

=
∑

ρ ′
A �=ρA

πρ̄, t (ρA|ρ ′
A)Pt (ρ

′
A|ρ̄) − πρ̄, t (ρ

′
A|ρA)Pt (ρA|ρ̄ ).

(4)

The quantity πρ̄, t (ρ ′
A|ρA) refers to the coarse-grained transi-

tion rate associated with the coarse-grained transition ρA →
ρ ′

A = ρA − 	NA/VA. It reads as

πρ̄, t (ρ
′
A|ρA)

=
∑(	NA )

c
C ′

A,C ′
B

∑(0)

c
CA,CB

Tc(C ′
A, C ′

B|CA, CB)Pt (CA, CB|ρA, ρ̄ )

(5)

with
∑(	NA )

c referring to the sum over configurations
C ′

A, C ′
B that, respectively, contain N (C ′

A) = ρAVA + 	NA and
N (C ′

B) = ρBVB − 	NA particles (the second sum being ex-
actly the same with 	NA = 0).

The knowledge of the coarse-grained transition rates thus
rests upon the knowledge of the conditional probability distri-
butions Pt (CA, CB|ρA, ρ̄ ) whose coupled evolutions can be ob-
tained from the microscopic dynamics (3). However, the latter
is not tractable in general. We identify in the next subsections
a limit in which the probability distribution Pt (CA, CB|ρA, ρ̄ )
can be evaluated, in order to determine the coarse-grained
transition rate πρ̄, t (ρ ′

A|ρA).
But, before that, one first needs to deal with another

limit, namely, the thermodynamic limit, and thus to specify
the volume dependence of the coarse-grained transition rates
πρ̄, t (ρ ′

A|ρA) defined in (5).

D. Volume dependence of the macroscopic transition rates
at contact

The transition rate πρ̄,t (ρ ′
A|ρA) is associated with the fol-

lowing transition:

ρA = NA

VA
→ ρ ′

A = NA + 	NA

VA
,

(6)

ρB = NB

VB
→ ρ ′

B = NB − 	NA

VB
.

In all this work we naturally assume that the number of
particles that can be exchanged per unit time (during a single
transition) is bounded and does not scale with the volume of
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the system. We then define

πρ̄,t (ρ
′
A|ρA) ≡ ν(V )ϕV,t (ρA, ρB; 	NA), (7)

where we have explicitly introduced the ρB dependence as
well as the volume V which refers to the possible volume
dependence of the transition rate (according to notations
introduced before, VA = γAV and VB = γBV , with γA, γB kept
finite at the thermodynamic limit). The V dependence of the
transition rate is potentially twofold. The first contribution,
encoded in the factor ν(V ), models the contact area and
how it grows as V → ∞. The second contribution, which
has to be considered case by case, may appear through the
probability distribution Pt (CA, CB|ρA, ρB) as a potential finite-
size effect. If the number of sites that connect both systems
is fixed, then ϕV,t is not proportional to V and ν(V ) = ν.
The remaining V dependence in ϕV,t is expected to vanish
as V → ∞ so that limV →∞ ϕV,t exists. In this case, the
dynamics for a large system size is slower than the one at
small system size, and this V dependence may be absorbed
in the timescale, as discussed below. However, if the contact
area grows with volume, the frequency factor ν(V ) is expected
to be proportional to V α , α � 1 (for instance, if the contact
is proportional to the external area, then α = 1 − 1/d , d
being the space dimension), in addition to potential finite-size
contributions. This V dependence will be discussed explicitly
in specific systems, but we assume in what follows that the
main dependence on the volume V is included in the factor
ν(V ), and that ϕ = limV →∞ ϕV,t is well defined.

III. LARGE-DEVIATION ANALYSIS OF THE
DENSITY DYNAMICS

The study of the thermodynamic limit V → ∞ for a jump
stochastic processes is reminiscent of the expansion of the
master equation popularized by Van Kampen [38]. Neverthe-
less, as stressed in the Introduction, a thermodynamic analysis
based on stochastic dynamics requires a large-deviation anal-
ysis that is not captured by the Van Kampen expansion (at
least when truncating the expansion at a finite order). Even if
we are not interested in rare events per se, the large-deviation
framework is the relevant one to study the dominant extensive
contribution to the probability distribution of density ρA (and
ρB), exactly as it is for equilibrium statistical mechanics (see
for instance [39]). One should note that this large-deviation
analysis, on the same kind of master equations as considered
by Van Kampen, was first considered, with a somewhat dif-
ferent emphasis, in [40] (see also [41]). Also, even if the work
presented here has been developed independently, we should
mention the recent study of Ge and Qian [42] which deals
with the same kind of large-deviation analysis in the context
of chemical reactions.

The simplest way (even though not rigorous) to look at
a large-deviation scaling is to introduce the large-deviation
ansatz directly in the nonhomogeneous master equation (4).
To treat systems A and B on the same footing, we introduce

Pt (ρA|ρ̄) = Pt (ρA, ρB|ρ̄) � e−VIt (ρA,ρB|ρ̄ ), (8)

where � refers to a logarithmic equivalence1 for large V =
VA + VB. It yields

V
dIt

dt
(ρA, ρB|ρ̄ )

= ν(V )
∑
	NA

ϕV,t (ρA, ρB; 	NA)

×
[

exp

{
	NA

(
γ −1

A

∂It

∂ρA
− γ −1

B

∂It

∂ρB

)}
− 1

]
+O(V −1). (9)

To go further, one needs to specify the time dependence of
the coarse-grained transition rates ϕV,t (ρA, ρB; 	NA) in order
to take the thermodynamic limit V → ∞.

A. Slow exchange limit at contact

As stressed before, this time dependence of the coarse-
grained transition rates refers in fact to the relaxation of the
conditional probability distributions Pt (CA, CB|ρA, ρ̄ ). Let us
introduce τc ∼ V ν(V )−1ε−1, where [ν(V )ε]−1 is the typical
timescale between two jumps of particles across the contact,
ε being the typical value of the rates Tc(C ′

A, C ′
B|CA, CB). To

make this scaling even more explicit, we rewrite Tc → εTc

where Tc is now of order 1. The second timescale, called
τb(V ), is the one at which the bulks of each systems relax,
which generally depends on the volumes. If both timescales
are not separated, the contact does induce a perturbation, at
least locally, in each system, at odds with equilibrium systems
where the detailed balance condition ensures the absence of
perturbation. In driven systems, long-range correlations along
the flux are rather ubiquitous [43–46], and a local perturbation
may even produce long-range effects [47], leading to a strong
coupling between systems. Even if these long-range effects
are less expected to happen when the contact is local and
the extension in the directions perpendicular to the driving
forces is large enough, this coupling remains too difficult to be
studied in a general setting. Following the phenomenological
study of [2], as well as their detailed study on the KLS model
[2,48], we will then focus on the simpler situation for which
the dynamics at contact is much slower than the dynamics
in the bulk, meaning that τc is much larger than τb. We will
see that this limiting case is also the more likely to enable
a thermodynamic structure since the stationary probability
density happens to be almost factorized.

From a physical viewpoint, this low frequency exchange
limit can be reached either by a high energy barrier that
screens the interactions between both systems at contact,
or by a low opening rate of a gate or strong conformation
selection of particles that decreases the attempt rate of jumps
without screening the interactions between systems in contact.
Whatever the situation, one will consider in the following
that the contact and the bulk timescales are well separated,
meaning τc � τb. One will thus enforce explicitly τb/τc ∼
τb(V )V −1ν(V )ε  1 by tuning ε accordingly. In particular,
in the V → ∞ limit, one will need ε to decrease faster

1Precisely, It = limV →∞ ln(Pt )/V .
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than V [τb(V )ν(V )]−1. Note that the relaxation time of the
perturbation in the bulk τb might actually not depend on V if
the effect of the perturbation is well localized, thus reducing
the threshold at which the small exchange rates limit tends
to be valid. In particular, if the width of the contact area is
fixed, ν(V ) = ν, and the timescale separation is satisfied when
ε is small enough, but independent of V . Hence, for ε small
enough, jumps of particles between A and B are typically
separated by large time intervals of typical length τc during
which the bulks are mostly in their stationary states. At a
resolution time very large compared to the bulk time τb (but
smaller than τc), the coarse-grained transition rate [Eq. (5)]
reads as, at zeroth order in ε,

ϕV (ρ ′
A|ρA)

=
∑(	NA )

c
C ′

A,C ′
B

∑(0)

c
CA,CB

Tc(C ′
A, C ′

B|CA, CB)

×PA(CA|ρA)PB(CB|ρB). (10)

One can recognize that the averaging is performed with
respect to the stationary solution of the master equation (3)
without contact, namely, Tc = 0. It is equal to the stationary
distribution one would reach if the systems were completely
isolated from each other, which is completely factorized:

P(CA, CB|ρA, ρ̄ ) = PA(CA|ρA)PB(CB|ρB). (11)

Several comments are in order here. First, note that micro-
scopic detailed balance can still be broken at contact even in
the low exchange-rate limit because the steady-state distribu-
tions of the two systems in contact are generically different
from the equilibrium ones when the drives are switched on.
Second, it is important to note that the factorization property
(11) of the joint distribution of microscopic configurations
is valid for distribution conditioned to a given density of
particles in each system: this property results from the as-
sumed timescale separation. The factorization property may
not be valid for the full (i.e., unconditioned) distribution of
microscopic configurations, that can be written in the form

P(CA, CB) =
∫

dρAP(ρA|ρ̄) PA(CA|ρA)PB(CB|ρB), (12)

where we have assumed the validity of Eq. (11). The den-
sity distribution P(ρA|ρ̄) may not be factorized with re-
spect to the two systems, even if the conditioned distri-
bution P(CA, CB|ρA, ρ̄ ) is factorized according to Eq. (11).
We show below that the distribution P(ρA|ρ̄ ) is determined
by the coarse-grained dynamics at contact, the latter being
determined under the factorization assumption (11). This is
a key difference with Ref. [21], where the unconditioned dis-
tribution of microscopic configurations P(CA, CB) is assumed
to take a factorized form, which straightforwardly implies a
factorized form of the density distribution P(ρA|ρ̄). As a last
remark, one should note that for finite ε, such that the typical
exchange time is of the order of the time for both systems to
relax to their respective steady state, one can intuitively guess
that an approximate description of the dynamics of densities
involves relaxation modes of the bulk dynamics [49,50]. This
much more complicated situation goes beyond the scope of
this work, and will not be considered in this paper.

B. Evolution equation of the large-deviation function of densities

Eventually, in the slow exchange limit detailed above, and
after having rescaled time t → V [εν(V )]−1t , one obtains an
equation on the large-deviation function It that reads as, in
the thermodynamic limit V → ∞,

dIt

dt
(ρA, ρB|ρ̄) =

∑
	NA

ϕ(ρA, ρB; 	NA)

×
[

exp

{
	NA

(
γ −1

A

∂It

∂ρA
− γ −1

B

∂It

∂ρB

)}
− 1

]
.

(13)

The latter equation generally bears the name of a Hamilton-
Jacobi equation [41]. In the absence of phase transition, the
large-deviation function I is expected to be convex and to
display only a single minimum characterized by the vanishing
of the derivative of I [39,51].

The introduction at this point of the explicit ρB dependence
allows one to see more clearly the dependence on the relative
sizes of the systems as well as the parallel with the situation
at equilibrium that we remind one of here very briefly. Indeed,
at equilibrium, the large-deviation function I is closely linked
to the free energies of both systems, up to a temperature factor
β. One has

Ieq(ρA, ρB|ρ̄ )

= βγA[ fA(ρA) − fA(ρ∗
A)] + βγB[ fB(ρB) − fB(ρ∗

B)],

(14)

where fk refers to the equilibrium free energies per unit
volume of system k and ρ∗

k the most probable density of
system k (which corresponds to the average density). The
most probable densities are fixed by the vanishing of the
derivative of I which reads as f ′

A(ρ∗
A) = f ′

B(ρ∗
B) (or, in other

words, that chemical potentials defined as the derivative of the
free energies, are equal).

Nevertheless, in order to lighten notations, we will come
back from now on to our former convention and omit the ρB

dependence, which will be implicitly assumed through mass
conservation, and simply write

It (ρA|ρ̄) = γ −1
A It (ρA, ρB|ρ̄) . (15)

This implies

I ′
t (ρA|ρ̄) = γ −1

A

∂It

∂ρA
− γ −1

B

∂It

∂ρB
, (16)

where the prime symbol indicates a derivative with respect to
ρA. In this way,

Pt (ρA|ρ̄) � e−VAIt (ρA|ρ̄). (17)

With this notation, the Hamilton-Jacobi equation (13) simply
reads as

dIt

dt
(ρA|ρ̄) =

∑
	NA �=0

ϕ(ρA; 	NA)[e	NAI ′
t (ρA|ρ̄ ) − 1]. (18)
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Assuming ergodicity, the stationary solution I = limt→∞ It

thus obeys, for all ρA,∑
	NA �=0

ϕ(ρA; 	NA)[e	NAI ′(ρA|ρ̄) − 1] = 0. (19)

In the following, we mostly use the notation I (ρA|ρ̄), but we
come back to the more explicit notation I (ρA, ρB|ρ̄) when
needed.

C. Macroscopic detailed balance

To start at a formal level, one can notice that the Hamilton-
Jacobi equation (19) can be easily solved if each term under
the rearranged sum cancels one by one for any ρA:∑

	NA �=0

ϕ(ρA,	NA)[e	NAI ′(ρA|ρ̄) − 1]

=
∑

	NA �=0

[ϕ(ρA,	NA)e	NAI ′(ρA|ρ̄ ) − ϕ(ρA,−	NA)]︸ ︷︷ ︸
=0 if detailed balance

= 0. (20)

One gets a generalized detailed balance condition, that we will
call macroscopic detailed balance in the following. It reads as

I ′(ρA|ρ̄) = 1

	NA
ln

ϕ(ρA,−	NA)

ϕ(ρA,	NA)
. (21)

Importantly, one can note that for most lattice gas models, that
deal with the dynamics of particles on lattice in continuous
time (and potentially more realistic systems), only one particle
can be exchanged at the same time. Thus, 	NA = ±1 at
most and one can easily check that the macroscopic detailed
balance condition is always verified. However, for more gen-
eral situations when several particles can be simultaneously
exchanged (or when 	NA corresponds to the exchange of a
continuous mass), the macroscopic detailed balance condition
is generically not fulfilled. This relation (21) has already
been considered in the literature discussing the existence of
nonequilibrium chemical potentials and especially in [21].
However, let us emphasize here that the spirit of our present
work is different from that of [21]. In the latter, conditions
that should be satisfied by the contact dynamics in order
for the large-deviation function I (ρA, ρB) to be additive are
identified. This defines how the contact dynamics should be
fine tuned when varying the drives so that additivity remains
satisfied. In contrast, we fix the contact dynamics by assuming
that it does not depend on the drive and satisfies micro-
scopic detailed balance at equilibrium, and we then check
whether the additivity property of I (ρA, ρB) still holds when
switching on the drives. In addition, we also emphasize that
this macroscopic detailed balance relation is not linked to
any microscopic detailed balance relation since the latter is
generally broken as soon as the stationary distributions of each
nonequilibrium isolated systems differ from the equilibrium
ones and as the dynamics at contact is orthogonal to the
driving forces. Also, the large-deviation function I (ρA|ρ̄ ) is
not directly attached to the distribution of the isolated systems
as it is in [21]. This natural connection only exists through
the transition rates ϕ(ρA,	NA) that involve the stationary
probability distributions of the isolated systems. Furthermore,
Eq. (21) is not restricted to short-range correlated systems.

The only assumption, shared with the study reported in [21],
is the slow exchange limit. Eventually, one should note that
this condition is an asymptotic consequence (in the thermody-
namic limit) of an underlying time-reversal symmetry of the
coarse-grained dynamics [42].

When the macroscopic detailed balance is broken, the
Hamilton-Jacobi equation (19) has to be solved as a whole
and finding a general solution is in general not reachable.
Nevertheless, one can always try to find its solution per-
turbatively with respect to a known reference solution, of-
ten the equilibrium one. This will be detailed in a future
publication [52].

D. Link between the I′(ρA|ρ̄) and the current J(ρA)

Assuming that there is only one stationary state in the
thermodynamic limit, the latter is naturally defined by the van-
ishing of the particle current J (ρ∗

A) = 0 through the contact.
This deterministic current is defined in the infinite volume
limit through the deterministic relaxation equation of the
density ρA which reads as

dρA(t )

dt
= J (ρA(t )) =

∑
	NA

ϕ(ρA,	NA) 	NA. (22)

Of course, the characterization of the stationary state by the
vanishing of the current should be consistent with the mini-
mization of the large-deviation function I (ρA|ρ̄) at ρA = ρ∗

A.
In other words, the property J (ρ∗

A) = 0 has to be equivalent to
I ′(ρA|ρ̄) = 0. This intuitive property can be shown by using
the Hamilton-Jacobi equation (19) [42]. We reproduce the
argument in Appendix A.

More interestingly, one can also show a link between the
current J (ρA) and the derivative of I , I ′(ρA|ρ̄ ), understood as
a thermodynamic force. To do so, one should first note that
any transition rate ϕ(ρA; 	NA) can be decomposed in terms of
a work (or thermodynamic force) F (ρA,	NA) to perform the
transition ρA → ρA + 	NA/VA, antisymmetric with respect
to 	NA, and a mobility factor a(ρA,	NA), symmetric with
respect to 	NA [53]:

ϕ(ρA,	NA) = a(ρA,	NA) e
1
2 F (ρA,	NA )

, (23)

where a(ρA,	NA) = a(ρA,−	NA) and F (ρA,	NA) =
−F (ρA,−	NA).

If macroscopic detailed balance holds, the work
F (ρA,	NA) = −I ′(ρA|ρ̄ )	NA and thus

dρA(t )

dt
= −2

∑
	NA>0

	NAa sinh

(
I ′	NA

2

)
. (24)

If macroscopic detailed balance does not hold, one can intro-
duce FA(ρA,	NA) such that F = −I ′	NA + FA. The current
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then reads as

dρA(t )

dt

= −2
∑

	NA>0

	NAa cosh

(
FA

2

)
sinh

(
I ′	NA

2

)

+ 2
∑

	NA>0

	NAa cosh

(
I ′	NA

2

)
sinh

(
FA

2

)
. (25)

The argument (ρA,	NA) in FA, I ′, and a has been implicitly
assumed in the two last equations.

Relations between currents and thermodynamic forces in
both equations (24) and (25) are the nonlinear analogs of
the linear flux and force relationship (linear response the-
ory) in near-equilibrium irreversible thermodynamics [54,55].
Note, however, that the entropy production at the thermo-
dynamic limit is still expressed as a product of a particle
flux and a thermodynamic force Ṡ = −JI ′ when FA = 0, i.e.,
when macroscopic detailed balance holds. More generally,
when FA �= 0, the total entropy production reads as Ṡ =∑

	NA
ϕ(ρA,	NA)F (ρA,	NA) [42].

IV. ADDITIVITY PROPERTY OF THE LARGE-DEVIATION
FUNCTION

We now address the issue of the additivity of the large-
deviation function I (ρA|ρ̄) for two systems in contact. This
additivity condition is reminiscent of the additivity of the
free energy for equilibrium systems interacting through short-
ranged potentials, recalled in Eq. (14). It reads as

I (ρA, ρB|ρ̄ ) ≡ γAI (ρA|ρ̄) = γAIA(ρA) + γBIB(ρB), (26)

where ρB = γ −1
B (ρ − γAρA). If such additivity condition

holds, the derivative of the large-deviation function reads as

I ′(ρA|ρ̄) = I ′
A(ρA) − I ′

B(ρB), (27)

and the steady-state densities ρ∗
A and ρ∗

B satisfy I ′
A(ρ∗

A) =
I ′
B(ρ∗

B). Hence, it offers the possibility to attach to each sys-
tem a quantity I ′

k (ρk ) (k = A , B), rather denoted as μk (ρk )
henceforth, that will be called generalized chemical potential
at contact.

In the following subsections, we first identify sufficient
conditions in order for the large-deviation function I (ρA|ρ̄)
to be additive. Then, assuming that the additivity condition
holds, we discuss expressions and properties of the chemical
potentials thus defined. In particular, we make connection
with chemical potentials of isolated systems and discuss the
zeroth law of thermodynamics.

When the identified conditions are not met, it is likely
that the additivity property of the large-deviation function
I (ρA|ρ̄ ) no longer holds. We will briefly discuss this absence
of additivity on particular cases in Sec. V.

A. Chemical potential of systems in contact

1. Factorization condition of the contact dynamics

When macroscopic detailed balance (21) holds, the additiv-
ity property of the large-deviation function I (ρA|ρ̄) should be

directly related to the coarse-grained transition rates ϕ. This
implies that the ratio ϕ(ρA,−	NA)/ϕ(ρA,	NA) should take
a factorized form with respect to systems A and B. A sufficient
condition for this factorization condition to hold is to assume
that the coarse-grained transition rate factorizes as

ϕ(ρA,	NA) = ν0φA(ρA,	NA)φB(ρB,	NB) (28)

with 	NB = −	NA and ν0 an arbitrary common frequency
scale. The macroscopic detailed balance (21) then enables one
to split the derivative of the large-deviation function into two
contributions that, respectively, depend on each system k =
A, B. It reads as

I ′(ρA|ρ̄) = μcont
A (ρA) − μcont

B (ρB), (29)

where the chemical potentials are given by

μcont
k (ρk ) ≡ ln

φk (ρk,−1)

φk (ρk, 1)
(30)

with k = A, B.2 One notes that we have set |	NA| = 1 since
the large-deviation function I (ρA|ρ̄) given by the macroscopic
detailed balance condition (21) does not depend on 	NA. At
the most probable values of the densities ρ∗

A, ρ∗
B [around which

the probability density P(ρA|ρ̄ ) is more and more peaked
when system sizes increase], I ′(ρ∗

A|ρ̄) = 0, resulting in the
equalization of the chemical potentials:

μcont
A (ρ∗

A) = μcont
B (ρ∗

B). (31)

The factorization condition (28) of the contact dynamics
is only a sufficient condition, and is a priori not neces-
sary. One could in principle imagine nonfactorized forms
of the coarse-grained rate ϕ(ρA,	NA) such that the ratio
ϕ(ρA,−	NA)/ϕ(ρA,	NA) is factorized. However, we will
see below that the factorized form (28) is particularly relevant
when trying to link the coarse-grained transition rates at
contact to the corresponding microscopic transition rates.

2. Microscopic transition rates: Factorization condition

We now relate the factorization assumption (28) of the
coarse-grained transition rates to the properties of the micro-
scopic transition rates Tc. As seen in Eq. (10), the transition
rates ϕ(ρA,	NA) are averages of the microscopic transition
rates over the product of stationary distributions of the isolated
systems. One can then observe that a sufficient condition
is simply that the microscopic transition rates factorize in a
similar way as the macroscopic ones

Tc(C ′
A, C ′

B|CA, CB) = ν0θA(CA, C ′
A)θB(CB, C ′

B). (32)

Quite importantly, the factorized form (28) of the coarse-
grained rates ϕ(ρA,	NA) is obtained from the correspond-
ing factorized form (32) of the microscopic transition rates
Tc(C ′

A, C ′
B|CA, CB) for any form of the steady-state distributions

2The expression (30) of the chemical potential may be reminiscent
of the interpretation, at equilibrium, of the fugacity ζ = eμ as the
“probability to escape” of a randomly chosen particle [[56], p. 77].
However, in out-of-equilibrium systems, the lack of microscopic
detailed balance is expected to break this escape probability inter-
pretation.
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PA(CA) and PB(CB). In contrast, the situation is different for
nonfactorized rates. Let us assume that we know microscopic
transition rates Tc(C ′

A, C ′
B|CA, CB) that do not factorize, but

are such that the ratio ϕ(ρA,−	NA)/ϕ(ρA,	NA) is factor-
ized for given steady-state distributions PA(CA) and PB(CB).
Then, changing these distributions PA(CA) and PB(CB) (by
considering different systems, or simply by changing the
value of the drive) generically breaks the factorization of
the ratio ϕ(ρA,−	NA)/ϕ(ρA,	NA), except if microscopic
detailed balance hold, as in [21]. The factorized rates (32)
thus appear much easier to handle, due to their robustness with
respect to coarse graining. In the following, we shall restrict
ourselves to the case of factorized rates when considering
additive large-deviation functions.

The local detailed balance assumption, discussed in the
Introduction, imposes a constraint on the ratio between tran-
sition rates of a transition C → C ′ and its time-reversed coun-
terpart C ′ → C: the logarithm of the latter ratio is related to (β
times) the energy supplied by the environment (from operator
and heat bath) to make the transition. Yet, the local detailed
balance hypothesis does not entirely define transition rates and
we assume more generally that the latter only depends on (β
times) the work necessary to make the transition. One notes
that this assumption is consistent with most of the common
choices of transition rates present in the literature [28,37]. It
reads as

Tc(C ′|C) = τ (βW (C, C ′))

= τ
(
βWA(CA, C ′

A) + βWB(CB, C ′
B)

+βW int
AB (CA, C ′

A ; CB, C ′
B)
)
, (33)

with W (C, C ′) the supplied work which has been split in sev-
eral contributions which depend on systems A and B as well
as their interactions. According to the local detailed balance
condition, the function τ (x) should satisfy τ (x) = exτ (−x).
Clearly, the presence of the interaction term which mixes A
and B configurations does not allow the above factorization
property to hold in general. One should thus assume that the
latter is negligible with respect to the other contributions.
Among the classical choices that satisfy local detailed balance
(e.g., the exponential rule, the Metropolis rule, the Kawasaki
(heat-bath) rule, and the Sasa-Tasaki rule, etc.), only two
of them verify the factorization condition (32), as discussed
below.

As a remark, we briefly discuss the case for which systems
A and B are in contact with independent thermostats at differ-
ent (inverse) temperatures βA and βB, respectively. First, we
note that such a change does not break the slow exchange limit
assumption: the stationary probability distributions of the
isolated systems PA(CA|ρA) and PB(CB|ρB) would just depend
on βA and βB, respectively. As for the contact dynamics,
this temperature inhomogeneity may be more challenging
to take into account since one needs to know with which
thermostat the energy is exchanged during the transition in
order to estimate the entropy flux from the system toward
the heat baths (local detailed balance assumption). If there
is no interaction term W int

AB , it appears natural to assume that
Tc(C ′|C) = τ (βAWA(CA, C ′

A) + βBWB(CB, C ′
B)). In this case, βA

and βB can be absorbed into a redefinition of the coupling
parameters of A and B, respectively.

3. Sasa-Tasaki dynamics

The first one, discussed in [[2], Appendix B], will be
called the Sasa-Tasaki rule.3 This rule is claimed to model
a high energy barrier separating systems A and B. If the
energy barrier is high, the transition rate takes an Arrhenius
expression

Tc(C ′
A, C ′

B|CA, CB) = ε

{
e−β	HA if 	NA = −1,

e−β	HB if 	NA = +1,
(34)

	Hk = Hk (C ′
k ) − Hk (Ck ) and 	NA = N (C ′

A) − N (CA), k =
A, B, HA,B being the respective energies of systems A and
B. We point out that mass conservation N (C ′

A) − N (CA) =
−[N (C ′

B) − N (CB)] is implicitly enforced in Eq. (34). Also,
ε = e−β	V where 	V is the height of the energy barrier
separating A and B. When the barrier is high, ε  1 and one
gets a natural realization of the low frequency exchange limit.

4. Exponential rule

Another classic rule for which the factorization condition
holds is when τ (x) = ex/2. It reads as

Tc(C ′
A, C ′

B|CA, CB) = ε e− β

2 	HA e− β

2 	HB , (35)

where one has used the same notations as for the Sasa-Tasaki
dynamics. This exponential rule could be relevant in the case
when interactions between A and B are negligible compared
to the interactions within each system but when the slow
exchange contact is generated by a conformation selection or
low frequency openings of a gate but not by any high energy
barrier.

Even if these two cases appear to be the most common
transition rates that satisfy the factorization property (32), one
could certainly imagine other rules that might be relevant.
That being said, we will nevertheless discuss the implication
of the factorization property (32) in its general formulation
without any reference to a specific choice, unless mentioned
otherwise.

B. Validity of the zeroth law of thermodynamics

The zeroth law lies at the heart of equilibrium thermody-
namics and deals with the issue of the contact between equi-
librium systems. It is sometimes referred to as a transitivity
property of equilibrium states, meaning that if two systems
A and B are in equilibrium with a third one C, they are in
equilibrium with each other. If it holds, it can serve as an
operational definition of the existence of intensive thermody-
namic parameters related to exchange of conserved quantities
through the contact, like temperature (for the exchange of
energy), pressure (for the exchange of volume), or chemical
potentials (for the exchange of particles), that equalize when
systems are in equilibrium with each other.

For contact between nonequilibrium driven systems in
steady state, one has seen the importance of the contact

3Nevertheless, this choice of dynamics has been considered for a
long time. According to [[56], p. 112], the latter has already been
considered in [57,58].
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dynamics as it exerts a strong influence on the stationary den-
sities in each system. In certain situations when macroscopic
detailed balance holds and when macroscopic transition rates
factorize, one can define intensive thermodynamic parame-
ters, namely, chemical potentials, that are associated with each
system and equalize when the stationary state is reached.
However, this does not necessarily lead to the zeroth law as
stated above since the chemical potential defined here may
depend on the specificity of the contact between systems. For
instance, if A and B are separately in contact with C through
different contact dynamics, it is not at all guaranteed that the
final stationary states of A and B (in contact with C) can still
be stationary states or, put differently, the final states of A and
B coexist when A and B are now brought into contact through
a certain contact dynamics. This issue has been addressed in
different papers [16,17,20,21].

The zeroth law of thermodynamics is not expected to
hold in full generality for driven systems. However, when
chemical potentials at contact can be defined (see Sec. IV A),
the contact dynamics is such that the macroscopic transition
rates factorize in terms of the φk . One can then attach to
each system k = A, B the corresponding factor φk (ρk,	Nk )
in the macroscopic transition rate. One then gets a class of
systems that satisfy the zeroth law with respect to each other.
Physically speaking, it corresponds to virtually associating
one half of the contact to each isolated system in order to
build the chemical potential at contact μcont

k . The chemical
potential μcont

k does generically depend on the local contact
dynamics and thus cannot be assigned to a purely isolated
system but only to the system together with part of the contact.
In other words, a nonequilibrium chemical potential at contact
does not generally obey an equation of state involving only
bulk quantities, as recently reported in the context of active
particles [59]. Recovering an equation of state would require
to tune the contact dynamics with the drive so that it fulfills
the condition discussed in Ref. [21].

C. Relationships between chemical potentials of systems in
contact and of isolated systems

1. General formula using detailed balance at contact

We discuss here the relationships between the chemical
potentials of systems in contact [see Eq. (30)] and those of
isolated systems.

First, one can notice that when macroscopic detailed bal-
ance condition (21) as well as the factorization condition (32)
hold, it is sufficient to compute quantities for 	NA = ±1 only
since

I ′(ρA|ρ̄ ) = 1

	NA
ln

ϕ(ρA,−	NA)

ϕ(ρA,	NA)
= ln

ϕ(ρA,−1)

ϕ(ρA,+1)

= ln
φA(ρA,−1)

φA(ρA,+1)
− ln

φB(ρB,−1)

φB(ρB,+1)
.

Assuming a factorization of the transition rates at the micro-
scopic level as in Eq. (32), the macroscopic transition rates
factorize as in (28) with the factors φk = limVk→∞ φVk , k that
stem from the finite volume exact expression which reads as

φVk , k (ρk,±1) =
∑(±1)

c
C ′

k

∑(0)

c
Ck

θk (C ′
k, Ck )PVk , k (Ck|ρk ). (36)

In order to get a more insightful expression for μcont
k =

ln [φk (ρk,−1)/φk (ρk,+1)], one should relate φk (ρk,−1) to
φk (ρk,+1). As a matter of fact, it is worth considering
φVk , k (−1, ρk + 1

Vk
) and then take the V → ∞ limit. Using

Eq. (36) and the microscopic detailed balance relation in terms
of the transition rate factors θk ,

θk (C ′
k, Ck ) = e−β[Hk (C ′

k )−Hk (Ck )]θk (Ck, C ′
k ), (37)

leads to

φVk , k
(
ρk + 1

Vk
,−1

)
=
∑(+1)

c
C ′

k

∑(0)

c
Ck

θk (C ′
k, Ck )eβ[Hk (C ′

k )−Hk (Ck )]

×PVk , k
(
C ′

k

∣∣ρk + 1
Vk

)
PVk , k (Ck|ρk )

× PVk , k (Ck|ρk ). (38)

To proceed further, one should insert in Eq. (38) explicit
expressions of the stationary probability distributions of sys-
tem k = A, B before taking the infinite volume limit. It is thus
necessary to specify the reference isolated states of systems
A and B. We discuss below two cases, on the one hand an
equilibrium reference state, and on the other hand the isolated
driven system as the reference state.

2. Relation between μcont and μ eq

If one takes the equilibrium state as the reference, PVk , k (Ck )
can be obtained from a perturbative expansion with respect
to the equilibrium distribution. This idea was first the one
of McLennan [60,61] who computed corrections due to the
driving force up to first order. Based on this idea to com-
pute perturbatively the nonequilibrium stationary distribu-
tion, extensive developments, based on dynamical fluctuations
studies, have been performed recently [53,62–68]. One can
generally write

PVk , k (Ck ) = 1

Zeq
k

e−βHk (Ck )+ϒ
eq
k (Ck ), (39)

which defines the supplemental term ϒ
eq
k (Ck ) that accounts

for the nonequilibrium correction to the Gibbs-Maxwell-
Boltzmann equilibrium probability distribution. Introduc-
ing this ansatz into Eq. (38) leads, in the thermodynamic
limit, to

φk (ρk,−1) = eμ
eq
k (ρk )

× lim
Vk→∞

∑(+1)

c
C ′

k

∑(0)

c
Ck

θk (C ′
k, Ck )eϒ

eq
k (C ′

k )−ϒ
eq
k (Ck )PVk , k (Ck|ρk ),

(40)

where μ
eq
k = − limVk→∞ 1

Vk
d ln Zeq

k /dρk .
One then notices that φk (ρk,−1) can be related to

φk (ρk,+1) through a biased transition rate factor. Indeed,

φk (ρk,−1) = eμ
eq
k (ρk )φk, 	ϒ

eq
k

(ρk,+1), (41)

with φk, 	ϒ
eq
k

(ρA,+1) the analog of φk (ρA,+1) where
θk (C ′

k, Ck ) has been biased by 	ϒ
eq
k = ϒ

eq
k (C ′

k ) − ϒ
eq
k (Ck ),

leading to θk (C ′
k, Ck )eϒ

eq
k (C ′

k )−ϒ
eq
k (Ck ).
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Eventually, according to Eqs. (30) and (41), the chemical
potential at contact μcont

k reads as

μcont
k (ρk ) = μ

eq
k (ρk ) + ln

φk, 	ϒ
eq
k

(ρk,+1)

φk (ρk,+1)
, (42)

where ln[φk,	ϒ
eq
k

(ρk,+1)/φk (ρk,+1)] can be interpreted
as an excess chemical potential with respect to the
equilibrium one.

One recovers μcont = μeq when the excess nonequilibrium
term ϒ

eq
k (Ck ) vanishes, meaning that the stationary distribu-

tion of the nonequilibrium isolated systems is the same as
the equilibrium one. Even though a drive dependence of the
stationary distribution is generically expected [47,62], one
can nevertheless find nonequilibrium models whose stationary
solution is not affected by the drive (and is thus equal to
the equilibrium one). This is, for instance, the case for the
asymmetric simple exclusion process (ASEP) on a ring in
one dimension [27], or for the zero range process [14]. For
this specific subclass of nonequilibrium systems, no shift
in stationary densities is expected to be observed when the
drives are switched on. Apart from this small subclass, a
shift in densities is generically expected when the drives are
switched on.

3. Relation between μcont and μiso

Rather than taking equilibrium as the reference situation,
one can also consider the out-of-equilibrium state on its own.
Indeed, even if a general procedure to define a nonequilibrium
free energy is not yet established, one can sometimes, but
rarely, directly compute the nonequilibrium stationary distri-
bution which brings directly an “out-of-equilibrium partition
function” different from the equilibrium one. Some examples
are the zero range process and its extensions [14,15,30,32,33],
the simple exclusion processes [26,27], etc.

To our knowledge, it does not exist any consensus on
a general definition of a genuine nonequilibrium partition
function Zk (ρ) for any general system. As already pointed
out, however, when correlations are short ranged, such a
nonequilibrium partition function can be computed by cutting
the isolated system into a small, local, macroscopic part, the
rest acting as a reservoir. In this case, the stationary probability
distribution of the configurations C� of this local part is
given by

P�
k (C�

k ) = Fk
(
C�

k

)
eμiso

k (ρk )N (C�
k ), (43)

with Fk the nonequilibrium weight. The chemical potential
μiso

k defined in that respect thus fixes the average number of
particles inside the isolated system k.

In any case, we postulate in the following, without proof,
that the stationary distribution Pk of the whole system k can
be written as

PVk , k (Ck|ρk ) = 1

Zneq
k (ρk )

e−βHk (Ck )+ϒ
neq
k (Ck ), (44)

where Zneq
k (ρk ) refers to a nonequilibrium partition function of

system k, different from the equilibrium one. As observed in
a simple but nontrivial nonequilibrium mass transport model
[69], a potential nonequilibrium partition function could be
defined such that ∂ ln Zneq/∂ f is equal to β times the average

current, as one would expect for a nonequilibrium general-
ization of the equilibrium free energy (see [2] for a very
detailed discussion on the phenomenological definition of a
genuine nonequilibrium free energy). One notices that this
expression of the stationary probability distribution can then
be obtained from the perturbative expansion (39) simply by
introducing the term e−βσ in (44) where σ refers (up to
a multiplicative constant length that one takes to be equal
to the lattice spacing) to the dissipated work f J when f ,
the nonconservative force, is homogeneous along the system
and J is the average current. In this case, ϒ

neq
k = ϒ

eq
k + βσ .

Assuming that the nonequilibrium partition function Zneq
k (ρk )

obeys a large-deviation principle with respect to ρk at the
thermodynamic limit, the same calculation as in Sec. IV C 2
leads to

φk (ρk,−1) = eμiso
k (ρk )

× lim
Vk→∞

∑(+1)

c
C ′

k

∑(0)

c
Ck

θ (C ′
k, Ck )eϒ

neq
k (C ′

k )−ϒ
neq
k (Ck )

× PVk , k (Ck|ρk ), (45)

which in turn gives

μcont
k (ρk ) = μiso

k (ρk ) + ln
φk, 	ϒ

neq
k

(ρk,+1)

φk (ρk,+1)
. (46)

This expression is almost identical to the previous one (42) for
which the reference situation was the equilibrium. Different
normalizations of the stationary probability distribution can
thus lead to different chemical potentials in excess with re-
spect to the chosen reference configuration.

4. Contact dependence of the excess chemical potential

In each case, one sees that the chemical potential at con-
tact μcont

k (ρk ) is equal to a chemical potential related to the
isolated system (either the equilibrium one or the stationary
nonequilibrium one) and an excess chemical potential which
generically reads as

ηk (ρk ) = ln
φk, ϒk (ρk,+1)

φk (ρk,+1)
. (47)

The excess chemical potential ηk clearly depends on 	ϒk that
has to be different from 0 to get ηk nonvanishing.

We should, however, recognize that one cannot avoid any
generic dependence on θk (C ′

k, Ck ) in the expression of ηk

as long as the steady-state measure of isolated systems is
affected by the drives. That is to say, the details of the
contact, which involve mobility (symmetric part) and force
(or bias) (antisymmetric part) of the contact, do contribute to
the chemical potential μcont

k . One cannot exclude as of now
that the chemical potential at contact μcont

k may depend on
the details of the contact dynamics, beyond the specificities of
stationary probability distributions of the isolated systems.

We thus confirm and significantly extend preliminary re-
sults obtained by Sasa, Hayashi, and Tasaki [2,48] on the
KLS model, although the latter results were not recognized
as resulting from a large-deviation analysis.
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D. Driven contact dynamics

1. Driven systems with a drive-dependent contact dynamics

Until now, we have considered a contact orthogonal to the
nonconservative driving forces, leading to transition rates at
contact independent of the driving forces of systems A and B
and verifying detailed balance with respect to the equilibrium
distributions. One can nevertheless wonder what happens
when microscopic transition rates at contact do depend on the
driving forces or when there is an extra work performed at
contact. In that respect, if one assumes that transition rates
at contact obey a local detailed balance with extra work in
addition to the local energy difference present at equilibrium,
the same reasoning still applies.

We assume that the microscopic transition rate at contact
Tc(C ′|C) obeys local detailed balance with additional work
wcont (C, C ′) that can depend on the driving forces themselves.
We consider also a possible extra influence of the driving
forces on the symmetric part of the transition rates a(C, C ′).
One then obtains

Tc(C ′|C) = aneq(C, C ′) e− β

2 [H (C ′ )−H (C)−wcont (C,C ′ )]
. (48)

Assuming that both the factorization condition (32) and
macroscopic detailed balance hold, the same calculation pre-
sented in Sec. IV C, valid at the vanishing exchange rate limit,
leads to

μcont
k (ρk ) ≡ ln

φk (ρk,−1)

φk (ρk,+1)

= μk (ρk ) + ln
φk, 	ϒk+wcont

k
(ρk,+1)

φk (ρk,+1)
. (49)

Not surprisingly, one can see that the excess chemical po-
tential due to the additional work wcont

k (resulting from the
splitting of wcont into two terms (k = A, B) from the factoriza-
tion condition (32) of the transition rate (48)) is added to the
out-of-equilibrium term 	ϒk [a term breaking microscopic
detailed balance by making P(Ck|ρ̄k ) different from the equi-
librium distribution].

It may happen that the presence of the additional work
wcont needed to realize the transition C → C ′ could break the
factorization property. If this is so, one has to come back to
the global expression of the derivative of the large-deviation
function which would thus be nonadditive. For situations
when this extra work is only exerted through the contact
by external agents and thus is not a function of energies or
applied work in each systems, in short, when wcont depends
neither on A nor on B, the splitting into two contributions to
get the factorization property could still be made, even though
perhaps in a quite arbitrary way, by considering the work
needed to move particles from A to B and conversely to move
a particle from B to A.

2. Equilibrium systems with an active contact

Even at equilibrium, the case where the microscopic tran-
sition rates involve an extra work is quite interesting. In par-
ticular, this situation happens in biological systems and more
specifically in cells. Indeed, let us consider two compartments
separated by a membrane punctuated by channels that allow
the transfer of particles (ions here) from one side to another.

Two types of channels have been observed [70,71]. The first
type concerns passive channel (called ion channel) that lets
the ions follow the local electrochemical potential gradient
(which basically embeds, if one neglects interactions between
ions, simple diffusion and possible complex electric potential
across the membrane). But, in several situations it is observed
that the transfer of particles is not passive and does not follow
the electrochemical potential gradient. At a microscopic level,
this is due to the fact that the channel is active and consumes
metabolic energy to transport ions. These are usually referred
to as ion transporters or ion pumps. Thus, this active transport
involves an extra work wcont which is localized in the channel.
If the frequency of exchange is very small and if one takes
for reference an equilibrium situation where in each system
k the stationary probability distribution reads as Peq

k (Ck|ρk ) =
e−βHk (Ck )/Zeq

k , one obtains

μcont
k (ρk ) = μ

eq
k (ρk ) + ln

φk, wcont
k

(ρk,+1)

φk (ρk,+1)
, (50)

if both macroscopic detailed balance and factorization condi-
tions hold. In the case where the active transport is switched
off, wcont

k vanishes, and one recovers the passive equilibrium
potentials μ

eq
k (ρk ).

E. Chemical potential and external potential

An operational way to define and measure a nonequilib-
rium chemical potential has been put forward in [2]. The
idea is to apply a potential energy difference 	U = UA − UB

between the two driven systems A and B in contact. According
to Sasa and Tasaki [2], the nonequilibrium chemical potentials
are the functions μA(ρA) and μB(ρB) that satisfy

μA(ρA) + UA = μB(ρB) + UB, (51)

where ρA and ρB are the steady-state densities measured in
systems A and B when the potential energy difference 	U is
switched on. Note that the functions μA(ρA) and μB(ρB) do
not depend explicitly on the applied potential difference 	U .

Our present general framework allows us to determine
the validity conditions of the phenomenologically postulated
Eq. (51). It is convenient to use the decomposition of the
coarse-grained transition rate ϕ	U (ρ,	N ) in terms of ther-
modynamic force and mobility [see Eq. (23)]

ϕ	U (ρ,	N ) = a	U (ρ,	N )e
1
2 F	U (ρ,	N ). (52)

It turns out that with our definition (30) of the chemi-
cal potential, Eq. (51) is valid only under the assumptions
that macroscopic detailed balance holds and that the coarse-
grained transition rate ϕ	U (ρ,	N ) has a specific dependence
on 	U , namely, (i) the symmetric part a	U (ρ,	N ) is inde-
pendent of 	U and (ii) the antisymmetric part F	U (ρ,	N )
is linear with 	U , i.e., F	U = F + 	U	N . For other forms
of the transition rates that do not satisfy the above conditions
(i) and (ii), Eq. (51) does not hold with our definition of the
chemical potential.
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V. EXPLICIT EXAMPLES OF LATTICE
GAS MODELS IN CONTACT

We now apply the general framework to lattice models in
contact, on the example of the model recently introduced in
[69]. This model has been chosen over more standard lattice
models [14,24,25,28,29] because its steady-state distribution
can be determined exactly and it depends on the nonequi-
librium driving force, a generic property according to, for
instance, the McLennan expansion [60]. In contrast, standard
models like the zero-range process (ZRP) [14,24,25] or the
asymmetric simple exclusion model (ASEP) [25,27] with
periodic boundary conditions have a steady-state distribution
that is independent of the drive. Other models, like the KLS
model [28,29], are expected to have a steady-state distribution
that depends on the drive, but this distribution is not known
exactly.

A. Exactly solvable driven lattice gas model

Definition and steady-state distribution

As for the ZRP, one considers a one-dimensional lattice �

of |�| sites. The number of sites is assumed to be even and
we write |�| = 2L with L an integer. Each site i is occupied
by ni � 0 particles that cannot exceed a maximum number
of nmax particles per site, that may be infinite. The dynamics
of this model is inspired by an equilibrium KCM (kinetically
constrained models) model [72] as well as by the ZRP [14].
Contrary to most of the standard mass transport models,
the dynamics is synchronous and involves two partitions
of the lattice, namely, P1 = {(2k, 2k + 1)}k∈[0,L] and P2 =
{(2k + 1, 2k + 2)}k∈[0,L] which gather alternate adjacent pairs
of sites. A partition is selected randomly between P1 and
P2 with equal probability. Once a partition P j has been
chosen, all links belonging to P j are updated in parallel and
independently, and a link (i, i + 1) is updated according to the
following transition probability:

T (n′
i+1, n′

i|ni+1, ni ) = K (d ′
i |n̄i )

= 1

Q(n̄i )
exp

{
−
[
ε

(
n̄i + d ′

i

2

)
+ ε

(
n̄i − d ′

i

2

)]
+ f

2 d ′
i

}
(53)

with n′
i+1 + n′

i = ni+1 + ni since particle number is conserved
(T = 0 otherwise). Notations d ′

i = n′
i+1 − n′

i and n̄i = (ni +
ni+1)/2 = (n′

i + n′
i+1)/2 have been introduced. The normal-

ization factor Q(n̄i ) is such that
∑

n′
1,n

′
2

T (n′
2, n′

1|n1, n2) =
1. We emphasize that the net transfer of particles 	ni =
(n′

i − ni ) = −(n′
i+1 − ni+1) from site i to site i + 1 is given

by 	ni = (d ′
i − di )/2 with di = ni+1 − ni. The probability to

choose a difference of particle numbers d ′
i between sites i and

i + 1 is independent of di which means that the probability to
transfer 	ni particles does not depend on the initial difference
of particle numbers of the two sites, as one might expect
intuitively for a mass transport model. In the absence of f , the
uniform energy ε(n) attached to each site tends to homogenize
the density over the link. The parameter f can be interpreted
as a driving force since it pushes particles toward the site i + 1
whatever the initial configuration. In terms of local detailed

balance, one has

ln
T
(
n′

i+1, n′
i

∣∣ni+1, ni
)

T
(
ni+1, ni

∣∣n′
i+1, n′

i

) = −	εi+1 − 	εi + f 	ni (54)

with 	εi = ε(n′
i ) − ε(ni ). Hence, Eq. (54) confirms the inter-

pretation of f as a driving force since f 	ni can be interpreted
as the work needed to move a number of particles 	ni from
site i to site i + 1. As for the alternation of the partition
choice, one can imagine that this is produced by an oscillating
confining potential of two sites period. In the presence of a
driving force f , the oscillating potential would look more like
a sawtooth potential of slope − f .

The stationary probability density function can be exactly
computed (see [69] for the continuous mass version of this
model) and reads as

P({ni}i∈�)

= 2

Z (|�|, N )
exp

(∑
i∈�

ε(ni )

)
cosh

(∑
i∈�

(−1)i f ni

)
.

(55)

One thus observes that the stochastic oscillating forcing pro-
duces long-range static correlations that can be anticipated
from the presence of the hyperbolic cosine factor in (55)
(see [69] for detailed calculations of the static two-point
correlation function).

Note that in [69], the dynamics of the model was defined in
discrete time, which is a natural framework to deal with syn-
chronous dynamics. Here, however, we consider a continuous
time synchronous dynamics, meaning that the synchronous
updates of lattice partitions occur at random continuous times.
Note that the stationary probability distribution is the same
with discrete and with continuous time. Although a continu-
ous time dynamics might seem artificial in the context of a
synchronous update, its use allows for an easier implementa-
tion of a contact dynamics between two systems, as discussed
below.

B. Two driven lattice gas models in contact

We now move to the study of the contact between two
different systems, say A and B. As for the ZRP case, one
needs to define precisely the dynamics at contact since only
isolated systems have been defined so far. We want to connect
both systems to each other with at least one link, say, iA ∈ �A

and jB ∈ �B. But, contrary to the bulk dynamics for which all
links are updated in parallel, the contact dynamics is assumed
not to be synchronous with respect to the bulk. An exchange
between both systems is thus selected at a rate very small
compared to the bulk one of each system. The dynamics at
contact needs to satisfy local detailed balance in the absence
of drive since there is a priori no reason that the transition
rates change when systems are driven out of equilibrium
orthogonally to the contact. Since an energy ε(ni ) is attached
to each site filled by ni particles, we set Tc, the transition rate
at contact, such that it satisfies the local detailed balance that
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reads as

Tc
(
n′

iA , n′
jB

∣∣niA , n jB

)
Tc
(
niA , n jB

∣∣n′
iA
, n′

jB

)
= e−[εA(n′

iA
)−εA(niA )]e−[εB (n′

jB
)−εB (n jB )]

, (56)

if particle number conservation n′
iA + n′

jB = niA + n jB holds,
and Tc = 0 otherwise. From here on, we consider dif-
ferent dynamics that will differ by a different choice
of the mobility parameter [53,73]; we recall that the
mobility refers to the parameter a in the decomposi-
tion Tc(C ′|C) = a(C, C ′) exp[ 1

2 F (C, C ′)] according to which
a(C, C ′) = a(C ′, C) and F (C, C ′) = −F (C ′, C).

1. Natural dynamics

We first consider the case when the transition rate at contact
is similar to the dynamics in the bulk, i.e., the transition rate
depends on the final configuration:

Tc
(
n′

iA , n′
jB

∣∣niA , n jB

) ∝ e−εA(n′
iA

)e−εB (n′
jB

)
. (57)

The symbol ∝ means here that the transition rates are equal to
the right-hand side up to a constant factor that sets the typical
timescale associated with the transition. In the slow exchange
contact limit, the latter factor will be infinitesimally small.

2. Sasa-Tasaki rule

For the Sasa-Tasaki rule which models a high energy
barrier separating both systems, the probability to transfer a
particle from A to B (respectively from B to A) only depends
on the energy to go from the A side (respectively B side)
bottom of the barrier to its top. Hence, it reads as

Tc
(
n′

iA , n′
jB

∣∣niA , n jB

)
∝
{

exp
{−[εA

(
n′

iA

)− εA
(
niA

)]}
if n′

iA < niA ,

exp
{− [

εB
(
n′

jB

)− εB
(
n jB

)]}
if n′

iA > niA .
(58)

3. Kawasaki, or heat bath, rule

The Kawasaki, or heat-bath, rule is a standard choice of
transition rate. It does not factorize in two terms that respec-
tively depend on A and B:

Tc
(
n′

iA , n′
jB

∣∣niA , n jB

)
∝ 2

1 + e[εA(n′
iA

)−εA(niA )]+[εB (n′
jB

)−εB (n jB )]
. (59)

Note that another standard and qualitatively similar transition
rate is the Metropolis rule. In what follows, we shall use only
the Kawasaki rate for the purpose of illustration, but similar
results can be obtained with the Metropolis rule.

C. Large-deviation function and chemical potentials for
single-particle exchange

Having specified the dynamics, we will compute here the
large-deviation function of the density. Under the hypothesis
that the exchange of particles between systems is very rare,

the coarse-grained transition rate (10) reads as

ϕ(ρA,	n) =
∑

niA ,n jB

T
(
niA + 	n, n jB − 	n

∣∣niA , n jB

)
× P

(
niA

∣∣ρA
)
P
(
n jB

∣∣ρB
)
. (60)

When only one particle can be exchanged, the macroscopic
detailed balance (21) always holds. To illustrate the depen-
dence of the large-deviation function, and thus the chemical
potentials when defined, with respect to the dynamics at
contact, we compute the latter for the three contact dynamics
presented in Sec. V B.

1. Natural dynamics and the Sasa-Tasaki rule

We start by considering the natural dynamics (57) and the
Sasa-Tasaki rule (58) as the dynamics of the contact. Since
these microscopic dynamics are factorized, the coarse-grained
transition rates also take a factorized form

ϕ(ρA,	NA) = φA(ρA,	NA)φB(ρB,	NB) (61)

with 	NB = −	NA = ±1.
The explicit expressions of the factors φA(ρA,	NA) and

φB(ρB,	NB) for each dynamics are given in Appendix B.
Transition rates being factorized, one can associate with each
system chemical potentials that read as, according to (30),

μcont
k (ρk ) = μiso

k (ρk ) + ηk (ρk ) (62)

with μiso
k given by Eq. (B4) for every dynamics and ηk

reading as

η
(ND)
k (ρk )

= ln

∑nk
max−1

nk=0 e−[εk (nk )+εk (nk+1)]+μiso
k nk eυ[μiso

k , fk ](n+1)∑nk
max−1

nk=0 e−[εk (nk )+εk (nk+1)]+μiso
k nk eυ[μiso

k , fk ](n)
,

η
(ST)
k (ρk ) = ln

∑nk
max−1

nk=0 e−εk (nk )+μiso
k nk eυ[μiso

k , fk ](nk+1)∑nk
max−1

nk=0 e−εk (nk )+μiso
k nk eυ[μiso

k , fk ](nk )
,

(63)

with υ[μiso
k , fk] given in Appendix B [see Eq. (B6)]. The

expression of the excess chemical potentials, and thus of the
chemical potentials of the systems in contact, take different
forms for both dynamics, as expected from the generic de-
pendence of the nonequilibrium chemical potentials on the
contact dynamics. The difference between the two contact
dynamics will be discussed quantitatively in Sec. D.
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2. Kawasaki rule

As a last example, we turn to the Kawasaki rule (59), for which the microscopic dynamics does not take a factorized form.
The coarse-grained transition rate reads as

ϕ(ρA,+1) =
nA

max−1∑
niA =0

nB
max∑

n jB =1

2P
(
niA

∣∣ρA
)
P
(
n jB

∣∣ρB
)

1 + eεA(niA +1)−εA(niA )+εB (n jB −1)−εB (n jB ) ,

ϕ(ρA,−1) =
nA

max∑
niA =1

nB
max−1∑

n jB =0

2P
(
niA

∣∣ρA
)
P
(
n jB

∣∣ρB
)

1 + eεA(niA −1)−εA(niA )+εB (n jB +1)−εB (n jB ) . (64)

Here, the coarse-grained transition rates do not factorize, so that the large-deviation function is not additive, implying that a
chemical potential cannot be defined. One can nevertheless evaluate the derivative of the large-deviation function (21), which
reads as

I ′(ρA|ρ̄) = μiso
A − μiso

B + ln

⎡
⎣nA

max−1∑
niA =0

nB
max−1∑

n jB =0

2eμiso
A niA +μiso

B n jB eυ[μiso
A , fA](niA +1)+υ[μiso

B , fB](nB )

eεA(niA +1)+εB (n jB ) + eεB (n jB +1)+εA(niA )

⎤
⎦

− ln

⎡
⎣nA

max−1∑
niA =0

nB
max−1∑

n jB =0

2eμiso
A niA +μiso

B n jB eυ[μiso
A , fA](niA )+υ[μiso

B , fB](nB+1)

eεA(niA +1)+εB (n jB ) + eεB (n jB +1)+εA(niA )

⎤
⎦. (65)

Equating this derivative to zero still allows for a characterization of the stationary densities of the systems in contact. However,
this characterization cannot be written as the equality of chemical potentials depending only on the properties of a given system
(even including contact properties). Rather, equating the expression (65) of I ′(ρA|ρ̄) to zero yields the equality of two functions
that both depend on the two densities ρA and ρB.

3. Comments on the contact dynamics

Before concluding this section on the evaluation of the
chemical potential in the lattice gas model, two comments are
in order. The first one is that when there is at most one particle
on each site, i.e., nk

max = 1 for both systems, P(nk|ρk ) =
ρk by translation symmetry and is thus independent of the
driving force f . In this case, one recovers an equilibrium
situation and stationary densities are given by the equality
of the equilibrium chemical potential μcont

k (ρk ) = μ
eq
k (ρk ) =

ln[ρk/(1 − ρk )].
The second comment concerns situations when the contact

between the two systems is extended along several links. Up
to now, the contact was built along a single link involving
only two sites. In general, several links may be involved in the
contact area. But, since the dynamics is asynchronous, only
one link can be chosen at a time, and observing any effect
related to the extension of the contact area is not expected.
Numerical simulations performed confirm this hypothesis (see
below).

D. Numerical simulations and explicit examples

In all cases studied, the excess chemical potentials, or
excess large-deviation derivative, is nonzero because of the
presence of the nonequilibrium factor eυ[μiso, f ](n) appearing in
Eq. (63). But, one can wonder what is the magnitude of these
correction terms compared to the chemical potential of the
isolated systems. In order to address this question, we provide
some plots of the chemical potentials at contact in different
situations.

We fix the maximum number of particles to nmax = 2 and
we choose a simple linear energy function ε(n) = ε0n. The

first figure (see Fig. 1) represents the chemical potentials at
contact both for the natural and Sasa-Tasaki dynamics as well
as the chemical potential associated with the isolated system
with respect to the driving force f at a fixed density ρ = 0.9.
For f � 0.25, the three different chemical potentials start to
differ significantly and one may thus expect a clear effect of
the drive coupled to the specific contact dynamics at play.

In order to show how this nonequilibrium effect can
strongly perturb the equilibrium stationary state of the system,
we plot on Fig. 2 the chemical potential obtained from direct
numerical simulations of our model. The contact dynamics

FIG. 1. Plots of the chemical potentials associated with one sys-
tem. The parameters are nmax = 2, ρ = 0.9, and an energy parameter
ε0 = 1 [for ε(n) = ε0n]. The chemical potentials μiso (dashed black
curve), μcont,(ND) (blue, lower curve), and μcont,(ST) (red, upper curve)
are plotted as functions of the forcing f .
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FIG. 2. Numerical simulations of two lattice models A and B
in contact with different drives. (a) Densities ρA (red) and ρB

(blue) versus time. (b) Chemical potentials μcont
A (red) and μcont

B

(blue). The dashed lines are the theoretical predictions. Parameters:
|�A| = |�B| = 10 000, ρ̄ = 0.5. The dynamics used is the “natural
dynamics” (ND).

has been implemented numerically using 50 links between the
two systems, with a typical exchange frequency at contact ε =
0.01 in order to guarantee an effective timescale separation
between the bulk and the contact. We used two systems of the
same size (|�| = 10 000 sites) in contact and keep the driving
force of system B equal to fB = 2. By symmetry, for fA = 2,
the densities in each system should be the same, namely,
ρA = ρB = ρ̄ = 0.5, as confirmed by numerical simulations
(Fig. 2). But, when fA moves away from fB = 2, one can
observe that the stationary density difference grows as well,
leading to a significant effect. Also, as one can see on Fig. 2,
the agreement between theory and simulations is very good
for this nonzero, but small, value of ε.

E. Application to the KLS model

As a further application of the framework expounded be-
fore, we now consider numerical simulations of a well-known
lattice gas model, namely, the 2D KLS model [28,29]. This
system has already been considered in [16,17] to discuss a
very similar situation of two systems brought into contact. We

will discuss relations to our work in Sec. VI hereafter, but
we must as of now emphasize two major differences. First,
we explicitly enforce a small exchange rate at contact so that
Eq. (10) holds asymptotically. Second, we consider different
dynamics at contact (namely, transition rates of Sasa-Tasaki
and exponential type) enabling the factorization condition
(32) to hold.

Before describing our numerical simulation results, we
briefly recall the dynamics of the KLS model and introduce
some notations. We consider two lattices �A and �B in
two dimensions with periodic boundary conditions. On each
lattice, we call ni, i ∈ �k (k = A, B), the occupation number
and Ck = {ni}i∈�k the whole configuration of system k. The
energy of a configuration C reads as Hk (Ck ) = − Jk

2

∑
〈i, j〉 nin j

where
∑

〈i, j〉 refers to a sum on (i, j) with j nearest neighbor
of i. We call Jk the coupling constant setting the interactions
between neighbors. Both systems are driven through the ac-
tion of a homogeneous external force fk (k = A, B) along the
y direction.

As in [16,17], we choose a continuous time asynchronous
dynamics by moving one particle only at each time step. We
assume local detailed balance and choose a Kawasaki rule for
the transition rates in the bulk:

T (C i j |C) = ni(1 − n j )
exp

(
β

2 [−	Hi j (C) + f · ei j]
)

cosh
(

β

2 [−	Hi j (C) + f · ei j]
) . (66)

ei j is the displacement vector such that f · ei j = ± f if the
jump is along or opposite to the driving force f , or 0 if
the latter is orthogonal to f . Ci j refers to the configuration
obtained from C by exchanging the occupation state of sites i
and j. Since we consider periodic boundary conditions in both
directions, systems A and B are brought into contact through
a third dimension by allowing exchange of particles on few
sites. In order to minimize potential effects of long-range
correlations along the driving force, we place the contact sites
on a same row along the x axis. We consider two different
dynamics at contact, namely, the exponential and the Sasa-
Tasaki rules, which both obey local detailed balance and share
the factorization property (32).

1. Exponential rule

In this section, we assume that the dynamics at contact is
governed by the exponential rule that reads as

Tc
(
C iA−

A , C iB+
B

∣∣CA, CB
)

= niA

(
1 − niB

)
e− β

2 	H
iA−
A (CA )e− β

2 	H
iB+
B (CB ) (67)

for an exchange from A to B through the link (iA, iB).
	Hik±

k (Ck ) stands for the change of energy that follows the
removal (−) or the addition (+) of one particle at site ik in
system k. Exchanges from B to A can be easily recovered by
swapping niA and niB as well as + and − signs.

From this exponential transition rate, one can derive the
theoretical expression of chemical potentials according to the
definition (30) in the slow exchange limit. Indeed, the factors
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φk (ρk,±1) of the macroscopic transition rates (28) read as

φk (ρk,+1) =
∑

ik∈�c
k

〈(
1 − nik

)
e− β

2 	H
ik +
k (Ck )∣∣ρk

〉
k,

(68)

φk (ρk,−1) =
∑

ik∈�c
k

〈
nik e− β

2 	H
ik −
k (Ck )∣∣ρk

〉
k

with �c
k the set of the sites involved in the contact and 〈·|ρk〉k

the expectation with respect to the stationary probability dis-
tribution of isolated system k at fixed density ρk .

Since we have considered periodic boundary conditions
and a distribution of the contact sites orthogonal to the driving
force, one can assume that all terms in the sums of Eqs. (68)
are equal. The chemical potential at contact hence reads as

μcont
k (ρk ) =

〈
nik e− β

2 	H
ik −
k (Ck )∣∣ρk

〉
k〈(

1 − nik

)
e− β

2 	H
ik +
k (Ck )∣∣ρk

〉
k

, (69)

where ik can be any of the contact sites.
Figure 3 shows the balance of average densities and associ-

ated chemical potentials for two KLS systems A and B brought
into contact for different overall densities ρ̄. Both systems are
of the same size 20 × 20 and have the same coupling constant
JA = JB = 1. The system A is forced with a driving force
fA = 6 while system B is kept at equilibrium ( fB = 0). One
can notice the quite important effect of the driving force fA

(if both systems were in equilibrium, the densities of each
of them would have been equal) for intermediate densities
[one does not expect any effect at low density for which
interactions disappear as well as at high density for which
the incompressibility wins (interactions being saturated)]. In
particular, one can observe that the effect of the external
field is inverting around ρ̄ ∼ 0.5. But, remarkably, the density
shift is very well captured by the equalization of the chem-
ical potentials μcont

A and μcont
B = μ

eq
B for this small but finite

ε = 0.01.
To support our assumption of homogeneity along the dif-

ferent sites at contact, we provide in Fig. 4 the y-average
stationary density profile along the x direction; symboli-
cally, 〈ρ〉y

(x) = 1
Ly

∫ Ly/2
−Ly/2〈ρ〉(x, y)dy, for ρ̄ = 0.3, JA = JB =

1, fA = 6, fB = 0, ε = 0.01. Error bars, barely visible, indi-
cate the local minimum and maximum of average stationary
density along the y direction.

In order to demonstrate the importance of the dynamics at
contact, we now examine the same situation for which one has
only replaced the exponential transition rates by Sasa-Tasaki
ones.

2. Sasa-Tasaki rule

For the Sasa-Tasaki rule, the transition rates read as, using
the same notation as above,

Tc
(
C iA−

A , C iB+
B

∣∣CA, CB
)

= niA

(
1 − niB

)
exp

[− β	HiA−
A (CA)

]
, (70)

Tc
(
C iA+

A , C iB−
B

∣∣CA, CB
)

= niB

(
1 − niA

)
exp

[−β	HiB−
B (CB)

]
. (71)

FIG. 3. Numerical simulations of two KLS models A and B in
contact at stationarity for different overall density, with an expo-
nential dynamics at contact. Parameters are JA = JB = 1, fA = 6,
fB = 0, β = 1, VA = 20 × 20, VB = 20 × 20, ε = 0.01. (a) Densities
ρA (red) and ρB (blue) versus ρ̄. Dashed line corresponds to the ideal
equilibrium situation. (b) Chemical potentials μcont

A (red) and μcont
B

(blue) versus ρ̄.

Computing the factors of the macroscopic transition rate in
exactly the same way as in (68) leads to

μcont
k (ρk ) =

〈
nik e−β	H

ik −
k (Ck )

∣∣ρk
〉
k

1 − ρk
. (72)

Figure 5 is the analog of Fig. 3 for the Sasa-Tasaki rule.
Comparison with the exponential rule shows that the Sasa-
Tasaki dynamics has stronger impact on the density difference
for the same driving force fA = 6. Furthermore, one can
observe that no inversion effect emerges here, the maximum
impact being this time around ρ ∼ 0.5.
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FIG. 4. Average density profile along the x direction for two KLS
systems in contact. Plain line refers to the space average along y
and error bars indicate the maximum and minimum values along
the y direction. Dynamics is the exponential rule with the following
parameters: ρ̄ = 0.3, JA = JB = 1, fA = 6, fB = 0, ε = 0.01. Red
(lower curve): system A. Blue (upper curve): system B.

In a similar manner as the exponential rule, we provide in
Fig. 6 estimation of the y-average density profile with respect
to x as well as the maxima and minima in the y direction. One
can observe that the density profile is rather flat everywhere,
thus supporting the equivalence of all the sites belonging to
the contact region.

VI. DISCUSSION

In light of the general large-deviation framework and
our previous examples of mass transport models, we now
briefly discuss some of the main previous works [16,17,19,21]
closely related to the notion of out-of-equilibrium chemical
potentials.

A. Chemical potential and the zeroth law

Pradhan et al. [16,17] discussed the existence of a thermo-
dynamic structure with numerical simulations of two driven
lattice gases in contact [28]. The transition rates are of
Metropolis type. Contrary to our setting, they have not as-
sumed a vanishing exchange rate at contact. However, their
measurement of the two-point correlation function across the
contact (see Sec. V B of [17]) shows that the latter is very
small compared to the bulk correlations. This led them to
assume the existence of a large-deviation principle for the
probability distribution of densities with an additive large-
deviation function, similar to the equilibrium case, but with
chemical potentials in excess to account for the breaking of
the zeroth law.

Even though these numerical simulations were not done in
the slow exchange limit, the observed breaking of the zeroth
law for two driven lattice gases in contact is qualitatively
consistent with our general framework since the zeroth law
is not expected to hold for most steady-state systems in

FIG. 5. Numerical simulations of two KLS models A and B in
contact at stationarity for different overall density, with a Sasa-Tasaki
dynamics at contact. Parameters are JA = JB = 1, fA = 6, fB = 0,
β = 1, VA = 20 × 20, VB = 20 × 20, ε = 0.01. (a) Densities ρA (red)
and ρB (blue) versus ρ̄. Dashed line corresponds to the ideal equilib-
rium situation. (b) Chemical potentials μcont

A (red) and μcont
B (blue)

versus ρ̄.

contact. However, we would like to point out here that the
assumption of the existence of a modified additive large-
deviation function is not consistent with the chosen transition
rates at contact, namely, the Metropolis rule. Indeed, the
vanishing of the two-point correlation function across the
contact suggests that the stationary probability distribution
of the whole system may indeed be factorized as in (10).
However, it can be shown that the Metropolis rule cannot
lead to factorized coarse-grained transition rates [see (10)]
with the assumption of a factorized distribution. Since only
one particle can be exchanged at a time, macroscopic detailed
balance is expected to hold and thus leads to a nonadditive
large-deviation function, according to (21).
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FIG. 6. Average density profile along the x direction. Plain line
refers to the space average along y and error bars indicate the max-
imum and minimum values along the y direction. Dynamics is the
Sasa-Tasaki rule with following parameters: ρ̄ = 0.5, JA = JB = 1,
fA = 6, fB = 0, ε = 0.01. Red (lower curve): system A. Blue (upper
curve): system B.

This lack of additivity of the large-deviation function is
also supported by the observed violation of the zeroth law
when bringing a driven KLS system in contact with different
equilibrium systems whose chemical potentials are known
(see [17], Sec. III B). Indeed, the chemical potential of the
driven system measured through the ones of the equilibrium
system is observed to depend on the coupling constant of the
equilibrium systems, at odds with the equilibrium situation.
This observation can be interpreted by noting that the nonad-
ditive large-deviation function can be decomposed in a similar
way as in Eq. (65), namely,

I ′(ρA, ρeq ) = μiso(ρA) − μeq(ρeq ) + η(ρA, ρeq ). (73)

At stationarity, μiso(ρ∗
A) + η(ρ∗

A, ρ∗
eq ) = μeq(ρ∗

eq ). Hence,
measuring μeq allows one to measure μiso + η which depends
on the parameters of both systems through the details of
the nonfactorized microscopic transition rates in η [see (65)
for such a dependence in another driven system]. If η were
equal to zero, any change in the parameters of the equilibrium
system would potentially modify the actual stationary densi-
ties (ρ∗

A, ρ∗
eq ) but not the whole chemical potential function

ρ∗
A → μiso(ρ∗

A) since the latter should be independent of the
equilibrium system. On the contrary, if η �= 0 in (73), any
change in the parameters of the equilibrium system would
modify both μeq and η, then leading to different curves ρ∗

A →
μiso(ρ∗

A) + η(ρ∗
A, ρ∗

eq ).
One should also point out that similar numerical results

were found in [18] for other driven lattice gases for which each
site of both systems participates in the contact. The authors
found that proper chemical potentials could be retrieved only
in the small exchange-rate limit with a factorized microscopic
transition rate (Sasa-Tasaki rule in this case), in agreement
with the work presented here.

B. Short-range correlations

As an extension of the precursor analysis inspired by the
ZRP [10,11], Chatterjee et al. [21] generalized the definition
of chemical potentials for out-of-equilibrium steady-state sys-
tems in contact displaying short-range correlations in the bulk
as well as in the contact area. Like our study, a slow exchange
limit of mass at contact is assumed. This hypothesis allows
one to write the stationary probability distribution as

PV (CA, CB|ρ̄) =
∫

dρAdρB PV (ρA, ρB|ρ̄ )

× PVA (CA|ρA)PVB (CB|ρB). (74)

Hence, the absence of correlations between A and B lies
in the factorization property of PV (ρA, ρB|ρ̄) or, at large-
deviation level, in the additivity property of I (ρA, ρB|ρ̄). They
show, under the crucial assumption of short-range correlations
inside each system [allowing factorization of the station-
ary distributions P(Ck|ρk ), k = A, B], that such an additivity
property can hold only if microscopic detailed balance with
respect to the nonequilibrium stationary distributions of both
isolated systems, and then macroscopic detailed balance, is
satisfied.

Although this study has mainly considered transition rates
at contact that satisfy microscopic detailed balance with re-
spect to the equilibrium distributions (and not the nonequi-
librium distributions of isolated systems), our analysis in-
cludes the situation discussed in [21] by simply assuming
microscopic detailed balance with respect to the stationary
nonequilibrium distributions of both isolated systems.

We nevertheless point out that such an assumption appears
less physically relevant if driven forces are orthogonal to the
contact. In particular, if the microscopic contact dynamics
does not depend on the drive, microscopic detailed balance
with respect to the distribution (74) can only hold if the
distributions PVA (CA|ρA) and PVB (CB|ρB) of the isolated sys-
tems do not depend on the drive, which is a very restrictive
assumption. Alternatively, if these distributions depend on the
drives, the contact dynamics has to be fine tuned with the
drives for the microscopic detailed balance conditions to hold.

As for the short-range correlation assumption, we agree
that the hypothesis made in [21] allows one to justify the
existence of chemical potentials for isolated systems, consis-
tently with the discussion in Sec. IV C 3. However, our study
provides general conditions to reach the additivity property as
discussed in Sec. IV, a particular case of which yields back
the condition assumed in [21].

We note that with a slight modification of microscopic
dynamics at contact, our study generalizes the work of [21]
by considering more general factorized dynamics at contact,
leading to a broader form of additivity for which chemical
potentials at contact and of isolated systems do not necessarily
coincide.

C. Position of the contact in multidimensional systems

Eventually, we discuss briefly the results expounded in [19]
(see also [18]) where the author discusses the effect of the
position and the extension of the contact region. For the same
factorized microscopic transition rates, the author indeed
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showed that different final densities could be reached simply
by modifying the position of the contact (pointwise in the
bulk or near the boundaries, along the edges of both systems,
etc.). This effect can be easily interpreted in our framework.
Indeed, the macroscopic transition rates are averages of the
microscopic ones with respect to the stationary distribution
of the configurations in the contact area. The way in which
the latter differs from the equilibrium distribution generically
depends on the position of the contact area with respect to
the bulk of the systems in contact. In particular, as shown in
[19], perturbations near boundaries do modify the chemical
potentials at contact (when additivity holds), thus leading to
different stationary densities in both systems.

VII. CONCLUSION

In this paper, we have shown how a nonequilibrium chem-
ical potential can be defined for two driven systems in slow
exchange limit at contact. This definition relies on the addi-
tivity property of the large-deviation function describing the
statistics of the densities of the systems in contact. A sufficient
condition for the additivity property to hold is that the coarse-
grained dynamics of the exchange of mass satisfies a detailed
balance property, and that the microscopic dynamics of the
contact factorizes with respect to the two systems.

Quite importantly, the nonequilibrium chemical potential
of the two systems in contact lacks an equation of state,
and explicitly depends on the contact dynamics [see also
[59] for a similar result in the framework of gases of active
particles]. As a consequence, the steady-state densities of the
two systems also depend on the contact dynamics, even in
the slow exchange limit at contact considered here. However,
the zeroth law of thermodynamics still holds, but only for
restricted classes of systems defined by including (half of) the
contact dynamics in the definition of the system. We have also
shown that the chemical potential of systems in contact differs
from that of the isolated systems, and can be reexpressed by
introducing a deviation with respect to a reference state: either
the equilibrium state or the isolated driven system.

We have also discussed our results on the explicit example
of an exactly solvable driven lattice gas, and shown on the
example of the KLS model that the method also applies
to models with unknown steady-state distributions, using a
numerical procedure to determine the chemical potentials.

Future work may follow, among others, two research lines.
First, it could be of interest to explore the corrections to
the slow exchange limit at contact for a small but finite
exchange rate. Calculations are much harder in this case, but
preliminary results suggest that the additivity of the large-
deviation function is generically broken in such a situation,
which may lead to further interesting effects. For instance,
unequal steady-state densities have been found recently in
zero-range processes in contact [74], while the slow exchange
limit predicts equal densities in such models where the prob-
ability distributions of isolated systems do not depend on the
drives. Hence, it is likely that no chemical potential can be
defined beyond the slow exchange limit at contact. A second,
and perhaps more promising, line of research would be to
extend the large-deviation approach to evaluate the large-
deviation functional of the full density profile, in the spirit

of macroscopic fluctuation theory [55]. One of the goals of
such an extension would be to deal with smooth interfaces at
the contact between the two systems, instead of sharp ones
as considered in this work. An extension along this line may
be of interest to describe, for instance, phase coexistence
in active systems, perhaps providing some support to recent
phenomenological approaches aimed at describing this phe-
nomenon [75,76]. One may draw inspiration from the method
presented in [77] to evaluate the large-deviation functional of
the density profile in systems of active Brownian particles.
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APPENDIX A: STATIONARY STATE: LINK BETWEEN
THE VANISHING OF I(ρA|ρ̄) AND THE CURRENT J(ρA)

To show explicitly that the stationary state ρ∗
A is the min-

imum of I (ρA|ρ̄) and makes the current J vanish, we use,
following [42], the stationary Hamilton-Jacobi equation (19)
evaluated along the deterministic path obeying (22). For ρA(t )
solution of (22), one has

dI (ρA(t )|ρ̄)
dt

= J (ρA(t ))I ′(ρA(t )|ρ̄)

=
∑

	NA �=0

ϕ(ρA(t ),	NA)	NAI ′(ρA(t )|ρ̄). (A1)

Let us emphasize that I (ρA) is the stationary large-deviation
function, solution of (19). Hence, the only time dependent
quantity is the average density ρA(t ).

Since the inequality ex − 1 � x holds for all x with equal-
ity only when x = 0, 	NAI ′(ρA(t )|ρ̄ ) � e	NAI ′(ρA(t )|ρ̄) − 1, the
last equality in (A1) yields

dI (ρA(t )|ρ̄)
dt

�
∑
	NA

ϕ(ρA(t ),	NA)(e	NAI ′(ρA(t )|ρ̄ ) − 1) = 0 (A2)

because the last term is the left-hand side of the Hamilton-
Jacobi equation (19). The stationary large-deviation func-
tion I (ρA|ρ̄ ) thus plays the role of a Lyapunov function
for the macroscopic dynamics. This implies that a steady-
state dI (ρA(t )|ρ̄)/dt = 0 corresponds to ρA(t ) = ρ∗

A with
I ′(ρ∗

A|ρ̄) = 0. So, if J (ρ∗
A) = 0, Eqs. (A1) and (A2) imply that

I ′(ρ∗
A|ρ̄) = 0.

Let us now show that, conversely, I ′(ρ∗
A|ρ̄) = 0 implies

J (ρ∗
A) = 0. Taking the derivative with respect to ρA of the

stationary Hamilton-Jacobi equation (19) leads to

0 =
∑
	NA

dϕ

dρA
(ρA,	NA)(e	NAI ′(ρA|ρ̄ ) − 1)

+ I ′′(ρA|ρ̄)
∑
	NA

ϕ(ρA,	NA) 	NA e	NAI ′(ρA|ρ̄ ). (A3)
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At the stationary point ρ∗
A for which I ′(ρ∗

A|ρ̄) = 0, the last
equation reads as

J (ρ∗
A)I ′′(ρ∗

A) = 0. (A4)

Then, if I ′′(ρ∗
A|ρ̄) �= 0 [actually, I ′′(ρ∗

A|ρ̄) > 0 to ensure
convexity], I ′(ρ∗

A|ρ̄) = 0 implies J (ρ∗
A) = 0. We have thus

shown the equivalence between the properties J (ρ∗
A) = 0 and

I ′(ρ∗
A|ρ̄ ) = 0.

APPENDIX B: EXACTLY SOLVABLE LATTICE MODEL

1. Isolated chemical potential

Even if the distribution P is not factorized, one can define
a chemical potential associated with one isolated system,
related to the partition function Z (|�|, N ). Indeed, from the
normalization of the stationary probability (55), the partition
function of our model reads as

Z (|�|, N ) = 2
∑

{ni}i∈�

[
L∏

k=1

f+(n2k ) f−(n2k+1)

]
δ∑

i∈� ni, N ,

(B1)
where f+(n)= exp [−ε(n)+ f n] and f−(n)= exp [−ε(n)− f n].
Introducing the Fourier transform of the Kronecker delta, one
obtains

Z (|�|, N ) = 2
∫ π

−π

dθ e−|�|[iθρ̄− 1
2 ln[z+(iθ )z−(iθ )]]

, (B2)

where one has introduced zα (x) = ∑
n fα (n)exn, α = ±, and

ρ̄ = N/|�|. Assuming that there is only one saddle point at
μ(ρ̄ ), the partition function eventually reads as

Z (|�|, N ) � e−|�|[μ(ρ̄)ρ̄− 1
2 ln[z+(μ(ρ̄))z−(μ(ρ̄))]] (B3)

with the implicit equation verified by μ(ρ̄) reading as

ρ̄ = 1

2

(
z′
+(μ(ρ̄))

z+(μ(ρ̄))
+ z′

−(μ(ρ̄ ))

z−(μ(ρ̄ ))

)
. (B4)

The quantity μ(ρ̄) is naturally interpreted as the chemical
potential associated with the isolated system.

2. Single-site marginal distribution

Integrating over all except one site the stationary distribu-
tion (55), the single-site probability distribution reads as

P(n|ρ̄) = exp [μ(ρ̄ )n]

2

(
f+(n)

z+(μ(ρ̄ ))
+ f−(n)

z−(μ(ρ̄))

)

= exp [μ(ρ̄ )n − ε(n)]

z0(μ(ρ̄ ))
exp (υ[μ, f ](n)), (B5)

with

exp (υ[μ, f ](n)) = z0(μ)

2

(
e f n

z+(μ)
+ e− f n

z−(μ)

)
. (B6)

The quantity z0(x) reads as
∑

n f0(n)exn, where f0(n) =
exp [−ε(n)], i.e., the stationary weight for the driving force
f = 0.

3. Detailed computation of the chemical potentials for the
natural and the Sasa-Tasaki dynamics

Natural dynamics. For the natural dynamics, the explicit
expressions of the factors φA(ρA,	NA) and φB(ρB,	NB) are
given by

φA(ρA,+1) =
nA

max−1∑
niA =0

e−εA(niA +1)P(niA |ρA),

φA(ρA,−1) =
nA

max∑
niA =1

e−εA(niA −1)P(niA |ρA),

(B7)

φB(ρB,+1) =
nB

max−1∑
n jB =0

e−εB (n jB +1)P(n jB |ρB),

φB(ρB,−1) =
nB

max∑
n jB =1

e−εB (n jB −1)P(n jB |ρB)

with |�B|ρB = N − |�A|ρA. Microscopic transition rates
being factorized, chemical potentials associated with
each system can be defined and read as, according
to (30),

μcont
k (ρk ) = ln

∑nk
max−1

nk=0 e−εk (nk )P(nk + 1|ρk )∑nk
max−1

nk=0 e−εk (nk+1)P(nk|ρk )
, (B8)

where k = A, B. Using the expression of the single-site prob-
ability distribution given in Eq. (B5), one finally obtains
Eq. (63).

Sasa-Tasaki rule. For the Sasa-Tasaki dynamics rule (58),
the coarse-grained transition rates are also factorized, but
the expressions of the factors φA(ρA,	NA) and φB(ρB,	NB)
differ from that of the natural dynamics. They read as

φA(ρA,+1) =
nA

max−1∑
niA =0

P
(
niA

∣∣ρA
)
,

φA(ρA,−1) =
nA

max∑
niA =1

e−[εA(niA −1)−εA(niA )]P
(
niA

∣∣ρA
)
,

(B9)

φB(ρB,+1) =
nB

max−1∑
n jB =0

P
(
n jB

∣∣ρB
)
,

φB(ρB,−1) =
nB

max∑
n jB =1

e−[εB (n jB −1)−εB (n jB )]P
(
n jB

∣∣ρB
)

with again |�B|ρB = N − |�A|ρA. The exclusion rule, i.e., the
fact that there can be at most nmax particles on a single site,
generates a dependence on the recipient system although the
transition rates only involve the energy variation of the sender
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system. The term reminiscent of the exclusion rule reads as

nk
max−1∑
nk=0

P(nk|ρk ) = 1 − P
(
nk

max

∣∣ρk
)

(B10)

by normalization. When nmax → ∞, one expects
P(nk

max|ρk ) → 0 and this extra dependence vanishes. Apart

from this remark, calculations remain qualitatively similar to
the previous case and chemical potentials read as

μcont
k (ρk ) = ln

∑nk
max

nik =1 e−[εk (nik −1)−εk (nik )]P
(
nik |ρk

)
1 − P

(
nk

max|ρk
) . (B11)

Similarly to the case of the natural dynamics, one can use the
single-site probability distribution (B5) given above to write
μcont

k in terms of μiso
k and η

(ST)
k displayed on (63).
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