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Stochastic thermodynamics of a harmonically trapped colloid in linear mixed flow
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In this paper, motivated by a general interest in the stochastic thermodynamics of small systems, we derive an
exact expression—via path integrals—for the conditional probability density of a two-dimensional harmonically
confined Brownian particle acted on by linear mixed flow. This expression is a generalization of the expression
derived earlier by Foister and Van De Ven [J. Fluid Mech. 96, 105 (1980)] for the case of the corresponding free
Brownian particle, and reduces to it in the appropriate unconfined limit. By considering the long-time limit of our
calculated probability density function, we show that the flow-driven Brownian oscillator attains a well-defined
steady state. We also show that, during the course of a transition from an initial flow-free thermal equilibrium
state to the flow-driven steady state, the integral fluctuation theorem, the Jarzynski equality, and the Bochkov-
Kuzovlev relation are all rigorously satisfied. Additionally, for the special cases of pure rotational flow we derive
an exact expression for the distribution of the heat dissipated by the particle into the medium, and for the special
case of pure elongational flow we derive an exact expression for the distribution of the total entropy change.
Finally, by examining the system’s stochastic thermodynamics along a reverse trajectory, we also demonstrate
that in elongational flow the total entropy change satisfies a detailed fluctuation theorem.
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I. INTRODUCTION

The field of single colloid dynamics has emerged as a
fertile area for the interplay between experiment and theory,
spurred by advances in laser trapping and optical microscopy
on the one hand [1] and by the development of simple an-
alytically solvable models of stochastic particle motion on
the other. It has now become possible, for instance, both
to accurately measure various properties of single colloid
systems (including thermodynamic properties like heat and
work) and to analyze them in statistical mechanical terms.
This has taken place against the backdrop of discoveries
made some decades ago of several exact relations broadly
referred to as fluctuation theorems [2] that are characteristic of
the distributions that govern fluctuating thermodynamic vari-
ables away from equilibrium. Ongoing efforts to understand
complex dynamics at the nanoscale level now often include
comparisons of experimental results with the predictions of
these fluctuation theorems. Such comparisons can be useful
in cross-checking experimental data, validating technical pro-
tocols, and troubleshooting laboratory procedures.

While fluctuation theorems are mathematical statements
of considerable generality, their significance and utility often
become apparent only in the context of specific model sys-
tems, especially if the models can be treated exactly. There
has been widespread interest in such models as a result, many
of which have found applications in the analysis of data from
different experimental systems, including optically trapped
colloids dragged at a constant speed [3], electric circuits
at constant mean current [4], and torsion pendulums under
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periodic torque [5], to cite a few representative examples. In
these and related systems, the forces acting on the system
are typically conservative, but in many other cases, they
are nonconservative, originating, for instance, in temperature
gradients or flow fields, and often producing nonequilibrium
steady states at long times. Hydrodynamic forces represent an
especially important source of time-dependent driving, being
the basis for microfluidic approaches to the study of single
molecules [6]. But there appear to have been no exact treat-
ments of the stochastic thermodynamics of systems driven
to nonequilibrium steady states by the action of flows with
general velocity profiles. In this paper we show that, for a
model defined by the overdamped dynamics of a Brownian
particle in a harmonic potential acted on by a two-dimensional
linear mixed flow (which contains different proportions α

of rotational and elongational components, and which can
generate nonequilibrium steady states), several exact thermo-
dynamic results can, in fact, be derived, including the integral
fluctuation theorem (IFT).

The IFT is a generalized version of the second law of
thermodynamics that constrains the total amount of entropy,
Stot , that a system and its surroundings may produce in an
interval of time t during a change of state [7]. It is given
explicitly by the relation 〈e−�Stot/kB〉 = 1, where the angular
brackets denote an average over different realizations of the
path that the system can take in going from its initial to final
state. Using a path integral formalism, we show how the IFT
and related theorems (such as the Bochkov-Kuzovlev relation)
emerge from the equations of motion that define our flow-
driven nonequilibrium system. For the special case of pure
rotational flow (for which α = −1), we also derive an exact
expression for the particle’s heat distribution function, which
we find has exactly the same structure as the heat distribution
function of a charged particle in a magnetic field. For another
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special case, that of pure elongational flow (α = +1), we
are able to verify that �Stot satisfies a detailed fluctuation
theorem, which is a relation between the probabilities of
occurrence of forward and reverse trajectories. Furthermore,
from the steady-state solution of the Fokker-Planck equation
that is equivalent to the particle’s Langevin dynamics, we also
derive expressions for the steady-state probability currents,
allowing us to categorize the steady states as either equilib-
rium or nonequilibrium steady states, and simultaneously to
compare our results in certain limits with known results [8].

The paper is organized as follows: Sec. II A sets down the
Langevin equations that define the dynamics of our model
particle system, and then uses these equations to derive an
exact expression for the conditional probability density of
the particle’s position. Section II B considers the long-time
limit of this density function, and demonstrates that it satisfies
the steady-state limit of the Fokker-Planck equation that is
equivalent to the given Langevin equations. In considering
this t → ∞ limit, we also derive expressions for the corre-
sponding probability currents, which we find to be nonzero in
all cases except pure elongational flow. Section II C discusses
the stochastic thermodynamics of our model system, which
we show is consistent with the integral fluctuation theorem,
the Jarzynski equality, and the Bochkov-Kuzovlev relation. In
Sec. III A we calculate the steady-state position distributions
for the special cases of pure rotation, simple shear, and pure
elongation, and in Sec. III B we treat these special cases in
the limit of vanishing strength of the confining harmonic
potential. For the case of rotational flow we also derive,
in Sec. III C, an exact expression for the heat distribution
function of the model system. We continue our study of the
elongational flow case in Sec. III D, where we derive exact
expressions for the distributions of the total entropy change
along forward and reverse particle trajectories, and then use
these expressions to prove yet another fluctuation theorem,
the detailed fluctuation theorem for the total entropy change.
Section IV is a summary of our principal findings.

II. MODEL AND THEORETICAL BACKGROUND

A. Particle dynamics in linear mixed flow

The model we use to describe the dynamics of a harmoni-
cally trapped colloid in a viscous fluid at temperature T in the
presence of linear mixed flow is a generalization of a model
we had introduced earlier to describe the time evolution of a
Brownian oscillator in pure elongational flow [8,9]. The col-
loid is viewed as a point particle with coordinates rT = (x, y)
(T denoting transpose) that moves in a velocity field v(r) =
v0 + γ̇ κα · r, and that is acted on by forces from thermal
fluctuations and the static potential U = k(x2 + y2)/2. Here,
v0 is the background solvent velocity (which we immediately
set to 0), γ̇ is a flow rate, k is the stiffness of the potential,
and κα = (0 1

α 0), with α a parameter that specifies the relative
proportions of vorticity (rotation) and strain rate (elongation)
in the flow, which can range from −1 (pure rotation) through 0
(simple shear) to +1 (pure elongation) [10]. So in overdamped
conditions, the equation of motion of the particle is

ζ (ṙ(t ) − v(r)) + ∂U (r)

∂r
= θ(t ), (1)

where ζ is the friction coefficient of the particle and θT =
(θx, θy) is a white noise variable representing the effects of
thermal fluctuations; it is defined by the correlations 〈θi(t )〉 =
0 and 〈θi(t )θ j (t ′)〉 = 2ζkBT δi jδ(t − t ′), i, j ∈ (x, y).

Since the statistics of θ(t ) are Gaussian, the probability
P[θ] that θ(t ) follows a particular trajectory in the interval of
time t is given by the functional

P[θ] ∝ exp

{
− β

4ζ

∫ t

0
dt ′θT (t ′) · θ(t ′)

}
(2)

where β ≡ 1/kBT . It follows from Eqs. (1) and (2) that the
probability P[r] of realizing a particular trajectory of the
particle in the same interval of time is

P[r] ∝ J exp

{
− β

4ζ

∫ t

0
dt ′[ζ ṙ(t ′)−Dr(t ′)]T · [ζ ṙ(t ′) − Dr(t ′)]

}
,

(3)

where D = (ζ γ̇ κα − kI), with I the unit matrix, and J is the
Jacobian of the transformation from θ to r variables, which can
be shown to be given by J ∝ ekt/ζ [8,9]. After the dot product
in Eq. (3) is expanded out, the equation becomes

P[r] ∝ ekt/ζ exp

{
− β

4ζ

∫ t

0
dt ′[ζ 2(ẋ2 + ẏ2) + 2kζ (ẋx + ẏy)

+ (k2 + α2ζ 2γ̇ 2)x2 + (k2 + ζ 2γ̇ 2)y2

− 2ζ 2γ̇ (αxẏ + ẋy) − 2kζ γ̇ (1 + α)xy]

}
, (4)

the proportionality constant in this relation being fixed by a
normalization condition. The conditional probability density
P(x f , y f , t |x0, y0) of finding the particle at x f , y f at time t
given that it was at x0, y0 initially can now be written as

P(x f , y f , t |x0, y0) ∝ ekt/ζ−βk(x2
f +y2

f −x2
0−y2

0 )/4

×
∫ x(t )=x f

x(0)=x0

D[x]
∫ y(t )=y f

y(0)=y0

D[y]e−Sα [r],

(5)

where D[x] and D[y] denote the measures on the space of x
and y trajectories, and Sα[r] is the action, defined as Sα[r] =∫ t

0 dt ′Lα (ẋ, ẏ, x, y), with Lα the Lagrangian, given by

Lα (ẋ, ẏ, x, y) = a0(ẋ2 + ẏ2) + a1x2 + a2y2 − a3xẏ

− a4ẋy − a5xy. (6)

Here a0 = βζ

4 , a1 = βk2

4ζ
(1 + (αζ γ̇ )2

k2 ), a2 = βk2

4ζ
(1 + (ζ γ̇ )2

k2 ),

a3 = αβζ γ̇

2 , a4 = βζ γ̇

2 , and a5 = βkγ̇

2 (1 + α).
Because the path integral∫ x(t )=x f

x(0)=x0

D[x]
∫ y(t )=y f

y(0)=y0

D[y] e−Sα [r]

is a quadratic functional of particle positions, it can be deter-
mined using Feynman’s variational procedure [11,12], which
leads to the exact result φα (t ) exp −S̄α[r]. Here φα (t ) is the
so-called fluctuation integral, which is found from the de
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Witt–Morette formula [11,13]

φα (t )2 ∝ det

⎛
⎝ ∂2 S̄α

∂x f ∂x0

∂2 S̄α

∂x f ∂y0

∂2 S̄α

∂y f ∂x0

∂2 S̄α

∂y f ∂y0

⎞
⎠,

S̄α[r] being the action evaluated along the trajectories x̄(t ) and
ȳ(t ). These trajectories are the solutions to the Euler-Lagrange
equations ∂Lα

∂x − d
dt

∂Lα

∂ ẋ = 0 and ∂Lα

∂y − d
dt

∂Lα

∂ ẏ = 0; that is, they

are the solutions to

¨̄r(t ) + γ̇ (1 − α)J ˙̄r(t ) + Mr̄(t ) = 0, (7)

where r̄T = (x̄, ȳ), J = (0 −1
1 0 ), and M = 1

2a0
(−2a1 a5

a5 −2a2
).

The solution of Eq. (7) (which we express in terms of a time
variable s to distinguish it from the final time t) can be verified
to have the form [14]

x̄(s) = e−κs

{
A cosh as + B√

α
sinh as

}
+ eκs

{
C

(
cosh as − 2(1 − α2)ω√

αμα

sinh as

)
+ D[μα − 4(1 + α)]√

αμα

sinh as

}
, (8a)

ȳ(s) = e−κs

{
A
√

α sinh as + B cosh as

}
+ eκs

{
C[αμα − 4(1 + α)]√

αμα

sinh as + D

(
cosh as + 2(1 − α2)ω√

αμα

sinh as

)}
, (8b)

where κ = k/ζ , ω = γ̇ ζ /k, a = √
αγ̇ , μα = 4 + (1 − α)2ω2, and A, B, C, D are unknown integration constants that are

determined by applying the boundary conditions x̄(0) = x0, ȳ(0) = y0, x̄(t ) = x f , and ȳ(t ) = y f to Eqs. (8a) and (8b). The
expressions for these integration constants are given in Appendix A.

From its definition as the integral of the Lagrangian, the minimized action S̄α can be shown, using partial integration and the
Euler-Lagrange equations, to be given by

S̄α[x, y] = a0[ ˙̄x(t )x f + ˙̄y(t )y f − ˙̄x(0)x0 − ˙̄y(0)y0] − a3 + a4

2
(x f y f − x0y0). (9)

After substituting the expressions for A, B, C, and D into this equation, collecting terms, and simplifying the result (using
MATHEMATICA [15] to carry out the extremely lengthy calculations), we find that

S̄α[x, y] = βk

8�α

{
A1

(
x2

f + x2
0 + y2

f + y2
0

) + A2
(
x2

f − x2
0 − y2

f + y2
0

) − A3
[
α
(
x2

f + x2
0

) + y2
f + y2

0

]
+ e−2κt

[
A4x0y0 + A5

(
x2

0 − y2
0

)] − e2κt
[
A4x f y f + A5

(
x2

f − y2
f

)] + A6(x0y0 + x f y f ) − A7(x0y0 − x f y f )

− A8(x0x f + y0y f ) + A9(x0x f − y0y f ) + A10(αx0x f + y0y f ) + A11(x0y f + x f y0) + A12(x0y f − x f y0)
}
, (10)

where �α = αμα (cosh 2κt − 1) − (1 + α)2(cosh 2at − 1),
and the expressions for A1, A2, . . . , A12 are given in
Appendix B.

Using the de Witt–Morette formula in combination
with the normalization condition

∫ +∞
−∞ dx f

∫ +∞
−∞ dy f

P(x f , y f , t |x0, y0) = 1, the fluctuation integral φα (t ) is
now calculated as

φα (t ) = βk

π

√
α(1 − αω2)

2�α

. (11)

Thus the complete expression for the conditional probability
density of the trapped colloid’s time-dependent positions in
the presence of linear mixed flow is given by

P(x f , y f , t |x0, y0) = φα (t )e
kt
ζ

− βk
4 (x2

f +y2
f −x2

0−y2
0 ) exp −S̄α (12)

with φα (t ) given by Eq. (11) and S̄α by Eq. (10).

B. Particle dynamics at long times

Having set up the equations that define the time evolution
of a harmonically trapped Brownian particle in linear mixed
flow, we turn now to a consideration of the particle’s long-time
dynamics, as a preliminary to examining the energetic and
entropic changes that take place when the particle, initially
assumed to be in thermal equilibrium in the absence of flow,
is exposed to the effects of the flow at time t = 0 and then
allowed to evolve for a long time. In its initial state, the

particle’s positions are governed by the Boltzmann distribu-
tion:

P0 = βk

2π
e− βk

2 (x2
0+y2

0 ) ≡ Z−1
0 e−βU , (13)

where Z0 = ∫ +∞
−∞ dx0

∫ +∞
−∞ dy0e−βU (x0,y0 ) is the configura-

tional partition function of the system. Following the impo-
sition of the flow field, the particle eventually reaches a state
in which its positions are governed by the t → ∞ limit of
Eq. (12), which we find is given by

P∞
α = βk

π

√
1 − αω2

μα

exp

{
−βk

μα

(
[2 − (1 − α)αω2]x2

f

+ [2 + (1 − α)ω2]y2
f − 2(1 + α)ωx f y f

)}
. (14)

In arriving at this expression, we have assumed that k/ζ >

αγ̇ , which ensures that the particle is not permanently carried
away from the trap in the presence of flow.

The structure of P∞
α suggests that at long times the particle

experiences an effective flow-dependent potential V ∞
α that is

given by

V ∞
α (x, y) = k

μα

{[2 − (1 − α)αω2]x2 + [2 + (1 − α)ω2]y2

− 2(1 + α)ωxy}. (15)
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This in turn suggests that the coefficient
(βk/π )

√
(1 − αω2)/μα in Eq. (14) can be thought of

as the reciprocal of a partition function Z∞
α , where

Z∞
α = ∫ +∞

−∞ dx
∫ +∞
−∞ dye−βV ∞

α (x,y).
That the distribution P∞

α does correspond to a steady state
of the system can be verified by showing that it satisfies the
steady-state limit of the Fokker-Planck equation equivalent to
Eq. (1). This Fokker-Planck equation is found to be

∂P

∂t
= −

{
∂

∂x

(
− k

ζ
x + γ̇ y − kBT

ζ

∂

∂x

)

+ ∂

∂y

(
− k

ζ
y + αγ̇ x − kBT

ζ

∂

∂y

)}
P, (16)

where P ≡ P(x, y, t ) = 〈δ(x − x(t ))δ(y − y(t ))〉, the angular
brackets denoting an average over all realizations of the
thermal noise. Equation (16) can be written equivalently as

∂P

∂t
= − ∂

∂x
Jα,x − ∂

∂y
Jα,y, (17)

where Jα,x and Jα,y are probability currents, and are given by

Jα,x =
(

− k

ζ
x + γ̇ y − kBT

ζ

∂

∂x

)
P (18a)

and

Jα,y =
(

− k

ζ
y + αγ̇ x − kBT

ζ

∂

∂y

)
P. (18b)

If the system reaches a steady state, the distribution P
no longer changes with time, and ∂P/∂t = 0. Denoting the
solution of Eq. (16) in this limit as Pss

α , we see by direct
substitution of Eq. (14) into the right-hand side of Eq. (16) that
Pss

α = P∞
α . So at long times the particle does in fact reach a

steady state. The nature of this steady state can be determined
from the structure of the steady-state currents, which can be
obtained from Eqs. (18a) and (18b) by replacing P by Pss

α .
When this is done, the result is

Jss
α,x = γ̇ (1 − α)

μα

[−(1 + α)ωx + {2 + (1 − α)ω2}y]Pss
α

(19a)

and

Jss
α,y = − γ̇ (1 − α)

μα

[{2 − (1 − α)αω2}x − (1 + α)ωy]Pss
α .

(19b)

If these currents are identically 0 for any given α, the steady
state is said to be an equilibrium steady state, while if they
are nonzero, the steady state is said to be a nonequilibrium
steady state. It is clear that for α = 1, corresponding to pure
elongational flow, the steady state is an equilibrium steady
state, while for all other values of α it is a nonequilibrium
steady state.

C. Stochastic thermodynamics and fluctuation relations

As shown by Hatano and Sasa [16], a system that is driven
stochastically between different steady states by the action of

external forces satisfies the following relation:〈
exp −

∫ t

0
dt ′ η̇

∂φ(r; η)

∂η

〉
= 1, (20)

where η is a set of control parameters and φ(r; η) is the
function − ln Pss. Now in a steady state the probability density
function has the general form Pss = Z−1e−βV , where Z is the
partition function and V the effective potential, so it follows
that

φ(r; η) = −βF + βV (21)

with F ≡ −kBT ln Z being the steady-state free energy. (F
in our calculations is a free energy in the sense that it is
defined in terms of the logarithm of a partition function, which
may correspond either to equilibrium or to nonequilibrium
steady-state conditions; depending on the nature of the flow,
therefore, the associated F may be interpreted as an equilib-
rium free energy or a nonequilibrium free energy.) Since the
free energy is a state function, the term β

∫ t
0 dt ′ η̇ ∂F (η)

∂η
that is

obtained on substituting Eq. (21) into Eq. (20) is just the free
energy change �F = F (t ) − F (0). Thus the Hatano-Sasa
relation reduces to〈

exp −β

∫ t

0
dt ′ η̇

∂V (r; η)

∂η

〉
= e−β�F , (22)

which takes different forms depending on how the change
in the potential V is assumed to be affected during the
transition from one steady state to another. If it is assumed
that V changes in time solely by virtue of a time-dependent
protocol represented by λ(t ), then

∫ t
0 dt ′η̇ ∂V/∂η becomes∫ t

0 dt ′(∂V/∂λ)λ̇; this quantity is conventionally interpreted as
the thermodynamic work done during the change of state
[17], which we denote w. If on the other hand, it is assumed
that V is not explicitly time dependent but changes in time
by virtue of its dependence on the dynamical variable r,
then

∫ t
0 dt ′η̇ ∂V/∂η becomes

∫ t
0 dt ′v(r) · ∇rV ; this quantity

is conventionally interpreted as the mechanical work done
during the change of state [17], which we denote wr . It is
equivalent to the frame-invariant definition of work introduced
by Speck et al. [18] in their study of flow-driven systems. The
foregoing approaches to the treatment of V in Eq. (22) are
discussed in the two subsections below.

1. Thermodynamic driving

When the change in V originates in the time dependence of
the control parameter λ(t ), Eq. (22) reduces to

〈e−βw〉 = e−β�F , (23)

which will be recognized as the Jarzynski equality [19]. This
relation was initially assumed to hold only for systems that
made transitions between equilibrium states, but it is now
clear that it also holds when the transitions occur between
steady states.

For the present system, the control parameter λ(t ) can be
thought of as the flow strength, which varies between 0 at
t = 0 (where the potential is U ) and γ̇ at t � 1 (where the
potential can be taken to be V ∞

α ). The work done in this
interval is calculated indirectly, by appeal to the first law
in the form w = �V + q, where �V = V (γ̇ ) − V (γ̇ = 0) =
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V ∞
α − U and q is the associated heat change, which, following

Sekimoto’s definition [20] is obtained from the relation

q̇ = −∂V

∂x
ẋ − ∂V

∂y
ẏ. (24)

When V in this relation is identified with V ∞
α , we find that

q = − k

μα

{
(2 − (1 − α)αω2)

(
x2

f − x2
0

) + (2 + (1 − α)ω2)

× (
y2

f − y2
0

) − 2ω(1 + α)(x f y f − x0y0)
}
. (25)

The work is therefore given by

w = k

μα

{
[2 − (1 − α)αω2]x2

0 + [2 + (1 − α)ω2]y2
0

− 2ω(1 + α)x0y0
} − k

2

(
x2

0 + y2
0

)
, (26)

and the exponential average of this quantity, 〈e−βw〉, is calcu-
lated from the formula

〈e−βw〉 =
∫ +∞

−∞
dx f

∫ +∞

−∞
dy f

∫ +∞

−∞
dx0

×
∫ +∞

−∞
dy0e−βwP(x f , y f , t |x0, y0)P0(x0, y0),

(27)

where P(x f , y f , t |x0, y0) and P0(x0, y0) are given by Eqs. (12)
and (13), respectively. The evaluation of this expression using
Eq. (26) for w is straightforward, since the integrals are all
Gaussian, but it helps to use MATHEMATICA [15] to complete
the intermediate steps, which are extremely lengthy. The
calculations eventually produce this simple expression

〈e−βw〉 =
√

μα

4(1 − αω2)
. (28)

The same result is obtained much more simply by replacing
P(x f , y f , t |x0, y0) in Eq. (27) by its t → ∞ limit, which is
given by Eq. (14). If the relation in Eq. (23) does indeed
hold, then from Eq. (28) the free energy change between the
system’s initial and final states must be given by

�Fα = kBT

2
ln

4(1 − αω2)

μα

. (29)

This expression can be verified to be the free energy change
between these states by using the partition functions Z0

[Eq. (13)] and Z∞
α [the prefactor of the exponential in

Eq. (14)] to independently calculate the free energy change
from the formula �Fα = −kBT ln Z∞

α /Z0. This calculation
leads to exactly the same expression for �Fα as is shown in
Eq. (29).

Given the above expressions for q, Pss
α , and P0, one can

also calculate the total change in entropy of the system and
its surroundings when the system evolves from its initial
equilibrium state to its final steady state. If �S denotes the
entropy change of the system, �Sm that of the medium, and
�Stot their sum, then by making the following identifications
[7] �S = −kB ln Pss

α /P0 and �Sm ≡ q/T it follows that

�Stot = q

T
+ kB ln

Z∞
α

Z0
+ �V

T
, (30)

which becomes

�Stot (x0, y0)

kB

= 1

2
ln

(
μα

4(1 − αω2)

)
+ βk

μα

{
(2 − (1 − α)αω2)x2

0

+ (2 + (1 − α)ω2)y2
0 − 2ω(1 + α)x0y0

}− βk

2

(
x2

0 + y2
0

)
.

(31)

The exponential average of this quantity, 〈e−�Stot/kB〉, therefore
simplifies to

〈e−�Stot/kB〉 =
√

4(1 − αω2)

μα

〈e−βw〉, (32)

which from the Jarzynski relation, Eq. (28), further reduces to

〈e−�Stot/kB〉 = 1. (33)

Equation (33) is the statement of another fluctuation relation,
the integral fluctuation theorem [7].

2. Mechanical driving

As shown earlier, when the change in V originates in the
dynamics of r, the work done during the process is wr =∫ t

0 dt ′v(r) · ∇rV , and the Hatano-Sasa relation reduces to

〈e−βwr 〉 = e−β�Fr , (34)

where �Fr is the free energy change for the process. For the
present system, if V is identified with the time-independent
equilibrium potential U , the work wr is given by

wr (t ) = γ̇ k(1 + α)
∫ t

0
dt ′x(t ′)y(t ′). (35)

This is a path-dependent quantity, and its exponential average,
〈e−βwr 〉, is defined as

〈e−βwr 〉 =
∫ +∞

−∞
dx f

∫ +∞

−∞
dy f

∫ +∞

−∞
dx0

×
∫ +∞

−∞
dy0 eκt− βk

4 (x2
f +y2

f −x2
0−y2

0 )

× Gwr (x f , y f , t |x0, y0)P0(x0, y0), (36)

where Gwr (x f , y f , t |x0, y0) is the path integral

Gwr (x f , y f , t |x0, y0)

=
∫ x(t )=x f

x(0)=x0

D[x]
∫ y(t )=y f

y(0)=y0

D[y]e− ∫ t
0 dt ′L′(ẋ,ẏ,x,y). (37)

The function L′ in this expression is a new Lagrangian for the
system, and is given by

L′(ẋ, ẏ, x, y) = Lα (ẋ, ẏ, x, y) + βγ̇ k(1 + α)xy

= a0(ẋ2 + ẏ2) + a1x2 + a2y2 − a3xẏ

− a4ẋy + a5xy, (38)

where Lα (ẋ, ẏ, x, y) is the function defined in Eq. (6) and
a0, . . . , a5 are the parameters defined in the paragraph fol-
lowing Eq. (6). The evaluation of the path integral in Eq. (37)
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proceeds as before via Feynman’s variational approach, which
is discussed at greater length in Appendix C, where it is shown
that

Gwr (x f , y f , t |x0, y0) = φα (t ) exp −S̄′
wr

. (39)

In this expression, S̄′
wr

is the classical action (cf. Appendix C)
and φα (t ) is the fluctuation integral of Eq. (11). On substi-
tuting Eq. (39) into Eq. (36) and carrying out the Gaussian
integrals (using MATHEMATICA again to work out the very
complicated intermediate steps), Eq. (36) collapses to the
simple result

〈e−βwr 〉 = 1, (40)

which is an instance of what is now generally referred to as
the Bochkov-Kuzovlev relation [21]. It can be thought of as a
special case of the Jarzynski equality in which the free energy
change �Fr is zero.

The work defined in Eq. (35) can be substituted into the
first law to derive an expression for the heat transferred to
the medium, qr , along a stochastic trajectory. Using U for the
energy, one then obtains

qr = γ̇ k(1 + α)
∫ t

0
dt ′x(t ′)y(t ′) − k

2

(
x2

f + y2
f − x2

0 − y2
0

)
.

(41)

If this expression is in turn used to determine the total entropy
change of system and surroundings, the result is the following
path-dependent expression:

�Stot,r = −kB ln
Pss

α

P0
+ γ̇ k

T
(1 + α)

∫ t

0
dt ′x(t ′)y(t ′)

− k

2T

(
x2

f + y2
f − x2

0 − y2
0

)
, (42)

which when divided by the Boltzmann constant and exponen-
tiated gives

e−�Stot,r/kB = Pss
α

P0
exp

{
−βkγ̇ (1 + α)

∫ t

0
dt ′ x(t ′)y(t ′)

+ βk

2

(
x2

f − x2
0 + y2

f − y2
0

)}
, (43)

where P0 and Pss
α are given by Eqs. (13) and (14), respectively.

The average of Eq. (43) now leads to

〈e−�Stot,r/kB〉 =
∫ +∞

−∞
dx f

∫ +∞

−∞
dy f

∫ +∞

−∞
dx0

×
∫ +∞

−∞
dy0Pss

α e
βk
2 (x2

f −x2
0+y2

f −y2
0 )

× exp

{
−βγ̇ k(1 + α)

∫ t

0
dt ′x(t ′)y(t ′)

}

× P(x f , y f , t |x0, y0), (44)

where P(x f , y f , t |x0, y0) is given by Eq. (5). The substitution
of Pss

α and P(x f , y f , t |x0, y0) into the average then gives the

integral

〈e−�Stot,r/kB〉 =
∫ +∞

−∞
dx f

∫ +∞

−∞
dy f

∫ +∞

−∞
dx0

∫ +∞

−∞
dy0 Z∞

α
−1e−βV ∞

α

× eκt+ βk
4 (x2

f +y2
f −x2

0−y2
0 )Gwr (x f , y f , t |x0, y0),

(45)

where V ∞
α is the steady-state potential of Eq. (15) and Gwr

is the path integral defined by Eq. (39), the classical action
in that expression being determined by the Lagrangian of
Eq. (38). The evaluation of this path integral by the variational
method (cf. Appendix C), followed by integration over x f ,
y f , x0, y0 (using MATHEMATICA [15]) eventually leads, after
considerable algebra, to the result

〈e−�Stot,r/kB〉 = 1, (46)

which is an independent validation of the integral fluctuation
theorem.

III. SPECIAL CASES

A. Steady-state distributions

The steady-state distribution in Eq. (14) can be used to
obtain the steady-state distributions for the special cases of ro-
tational, shear, and elongational flow, which correspond to the
limits α = −1, α = 0, and α = +1, respectively. The shapes
of these distributions as a function of the dimensionless vari-
ables X̄ = x

√
βk and Ȳ = y

√
βk at a fixed (arbitrary) value of

0.005 for the dimensionless probability density Pss
α /βκζ , with

κ ≡ k/ζ , are shown in Fig. 1, as viewed along the z axis. As
may be verified, the rotational flow distribution in the steady
state happens to coincide with the flow-free equilibrium ther-
mal distribution defined in Eq. (13), so the projection of the
latter onto the same two-dimensional plane defined by X̄ and
Ȳ has exactly the same circular profile as the rotational flow
distribution, and is therefore not shown. For the case of shear
flow and elongational flow the distributions can be interpreted
as having the shapes of a distorted Gaussian surface.

B. The flow-driven free particle

In the limit k = 0 and x0 = y0 = 0, which describes an
unconfined particle starting out from the origin, Eq. (12)
reduces to

P(x, y, t |0, 0) = α

2π

(
2γ̇

Dχ (t )

)1/2

exp

{
− α1/2

2χ (t )
[αψ (t )x2

+ �(t )y2 − 2α1/2(1 + α)ϕ(t )xy]

}
, (47)

where D = kBT/ζ , ψ (t ) = (1 + α) sinh 2at + 2α1/2(1 −
α)γ̇ t , �(t ) = (1 + α) sinh 2at − 2α1/2(1 − α)γ̇ t , ϕ(t ) =
cosh 2at − 1, and χ (t ) = Dγ̇ −1{(1 + α)2(cosh at − 1) −
2α(1 − α)2γ̇ 2t2}. This expression agrees exactly with the
expression derived by Foister and Van De Ven as the solution
to a Fokker-Planck equation [22] (see Eq. (2.18) in Ref. [22]).
Equation (47), in turn, reduces to the following expressions in
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FIG. 1. The shapes of the steady-state distribution [Eq. (14)]
as viewed along the z axis for a flow-driven particle trapped by
a harmonic potential in two dimensions plotted for a fixed value
(0.005) of Pss

α /βκζ against the dimensionless quantities X̄ = x
√

βk
and Ȳ = y

√
βk, at the parameter values κ = 1 s−1 and γ̇ = 0.7 s−1,

and for different values of α: α = −1 (solid blue curve), α = 0
(dot-dashed red curve), and α = 1 (dashed black curve), which
correspond to pure rotational, simple shear and pure elongational
flow, respectively.

the limits α = −1 (pure rotation), α = 0 (simple shear), and
α = 1 (pure elongation):

Pα=−1(x, y, t |0, 0) = 1

4πDt
exp

{
− x2 + y2

4Dt

}
, (48)

Pα=0(x, y, t |0, 0) = 1

2πDt

√
3

γ̇ 2t2 + 12

× exp

{
− 3

[
x − 1

2 yγ̇ t
]2

Dt[γ̇ 2t2 + 12]
− y2

4Dt

}
,

(49)

and

Pα=1(x, y, t |0, 0)

= γ̇

2
√

2πD(cosh 2γ̇ t − 1)1/2

× exp

[
− γ̇

4D

{
sinh 2γ̇ t

cosh 2γ̇ t − 1
(x2 + y2) + 2xy

}]
.

(50)

In Eq. (48) we have selected the negative root of the
√

χ (t )
term in Eq. (47) to ensure that Pα=−1 is well defined, and
in Eq. (49) our expression for the coefficient of the expo-
nential factor corrects a typographical error in Eq. (2.20)

FIG. 2. The time-dependent probability Pα=−1D/γ̇ as calculated
from Eq. (48) and plotted against the dimensionless variables x̄ =
x
√

γ̇ /D and ȳ = y
√

γ̇ /D at two different dimensionless times: t̄ =
γ̇ t = 0.1 (yellow surface) and t̄ = 0.2 (blue surface).

of Ref. [22]. The time-dependent probability distribution in
Eq. (48), nondimensionalized by the factor D/γ̇ , is plotted
in Fig. 2 as a function of the dimensionless variables x̄ =
x
√

γ̇ /D and ȳ = y
√

γ̇ /D at two arbitrary values of the di-
mensionless time t̄ = γ̇ t . The distributions corresponding to
Eq. (49) and (50) show similar trends, except that the Gaussian
surfaces are distorted, much as they are in these cases for the
flow-driven harmonically trapped particle (cf. Fig. 1).

C. Heat distribution function in rotational flow

The calculation of the exponential averages of quantities
like heat or work can often be carried out exactly, but, because
such quantities are generally path dependent, it is typically
more difficult to calculate their distribution functions exactly.
For a Brownian oscillator in pure rotational flow, however,
the work done along a given trajectory is identically 0 [cf.
Eqs. (26) and (35)]. This means that the heat produced during
the process is just the negative of the change in internal energy.
That is,

q(α → −1) = −k

2

(
x2

f + y2
f − x2

0 − y2
0

)
, (51)

which is independent of the path. This makes it possible
to derive an analytical expression for the heat distribution
function. This function is defined, in general, as

P(q, t ) = 〈δ(q − q(t ))〉 (52)

with q(t ) given by Eq. (51). The average in this expression is
taken over the distribution of x f , y f , x0, and y0. By represent-
ing the delta function in this expression as a Fourier integral,
Eq. (52) can be written as

P(q, t ) = 1

2π

∫ +∞

−∞
dλeiλq〈exp −iλq(t )〉, (53)

where the average 〈exp −iλq(t )〉 is carried out using the
expressions for the conditional probability density of Eq. (12)
in the limit α → −1 and the equilibrium density distribution
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of Eq. (13); this leads to

〈exp − iλq(t )〉 = 4π

β2(1 + coth κt ) + 2λ2

β

k
φ−1(t )eκt . (54)

The fluctuation integral φ−1(t ) in this expression can be
calculated from Eq. (11) as

φ−1(t ) = lim
α→−1

φα (t ) = βk

4π
csch κt . (55)

The heat distribution function is then obtained by substituting
Eqs. (55) and (54) back into Eq. (53) and carrying out the
integral over λ using tabulated results [23]. In this way, one
finds that

P(q, t ) = βe
κt
2

2
√

2 sinh κt
exp −|q| βe

κt
2√

2 sinh κt
. (56)

The structure of this distribution is exactly the same as that of
the heat distribution of a charged Brownian particle in a static
magnetic field [24], and plots of its variation with q at two
different times have exactly the same appearance as Fig. 1 in
Ref. [24] when the parameters β and ζ are set to 1.

D. Detailed fluctuation theorem for total entropy
in elongational flow

The total entropy change in Eq. (31) vanishes in the
limit α → −1, implying that in rotational flow the trajectory
the particle follows in going from thermal equilibrium to
a nonequilibrium steady state is reversible. This is not the
case for α �= −1, but when α = 1 (i.e., when the flow is
elongational), �Stot assumes the following simple form:

�Sα=1
tot (x0, y0)

kB
≡ σα=1(r0)

= ln

√
1

1 − ω2
− βkωx0y0, (57)

for which the distribution of entropy values σα=1 can be
calculated from

P(σα=1) = 〈
δ(σα=1 − σα=1(r0))

〉
(58)

Written out in full, Eq. (58) is given by

P(σα=1) =
∫ +∞

−∞
dx f

∫ +∞

−∞
dy f

∫ +∞

−∞
dx0

×
∫ +∞

−∞
dy0 Pss

α=1(x f , y f )P0(x0, y0)

× δ(σα=1 − σα=1(x0, y0)) (59)

where we have used the steady-state limit of P(x f , y f , t |x0, y0)
in the calculation [as given by Eq. (14)] rather than the full
time-dependent conditional probability density itself [as given
by Eq. (12)] since our interest is limited to the regime t →
∞. After the expression for σα=1(x0, y0) is substituted into
Eq. (59), and the integrations over the final positions carried
out using the normalization condition on Pss

α=1, Eq. (59) is
reduced to an integral over just the initial positions x0 and
y0; the integral over x0 is then carried out using the scaling
property δ(ax) = δ(x)/|a|, leading to an integral in y0 of

FIG. 3. The entropy distribution for the total entropy change as
calculated from Eq. (60) and plotted against σα=1 at two different
values of ω: ω = 0.4 (solid black curve) and ω = 0.8 (dashed red
curve).

known form, which then results in

P(σα=1) = 1

π |ω|K0

⎛
⎝

√(
σα=1

ω
+ ln

√
1 − ω2

ω

)2
⎞
⎠, (60)

where K0(· · · ) is the modified Bessel function of order 0. The
above distribution function may be verified to be normalized;
it is plotted in Fig. 3 for two different values of ω. It is clear
from the figure that the average 〈�σα=1〉 is positive, which is
consistent with the requirements of the second law.

Similar calculations can be carried out for a process that
proceeds in the reverse direction. In this process, the system
is imagined to start out in the steady state Pss that it reaches
in the forward direction, and it is then assumed to end up
in the thermal equilibrium state P0 that it starts out from in
the forward direction, with the flow being reversed simulta-
neously, so that ω → −ω. If the coordinates of the particle
along a trajectory in the reverse direction are labeled with
tildes, the reverse process can thus be defined as x̃0 = x f ,
ỹ0 = y f , x̃ f = x0, and ỹ f = y0. Recalling that the total entropy
change �Stot is given, in general, by the relation �Stot =
−kB ln Pss/P0 + q/T , we can now determine �Stot for the
reverse process (which we denote �SR

tot and for which we
introduce the abbreviation σ R ≡ �SR

tot/kB) from the formula

σ R = ln
Pss(x̃0, ỹ0)

P0(x̃ f , ỹ f )
+ βqR, (61)

where qR, the heat dissipated in the reverse direction, is
obtained from Eq. (24), except that V in that equation is
replaced by U , since the thermal equilibrium state is now the
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FIG. 4. The entropy distribution for the total entropy change in
the reverse direction as calculated from Eq. (65) and plotted against
σα=1 at two different values of ω: ω = 0.4 (solid black curve) and
ω = 0.8 (dashed red curve).

final state. This leads to the result

qR = −k

2

(
x̃2

f + ỹ2
f − x̃2

0 − ỹ2
0

)
, (62)

so from Eq. (61) and the equations for P0 and Pss [Eqs. (13)
and (14), respectively], σ R, for the special case α = 1, is now
found to be

σ R
α=1(x̃0, ỹ0) = ln

√
1 − ω2 − βkωx̃0ỹ0. (63)

(It may be verified that for α = −1 the total entropy change
is 0, again confirming the reversibility of the rotational flow
case.) The distribution PR of possible values of σ R

α=1(x̃0, ỹ0)
can now be calculated from the integral

PR(σα=1) =
∫ +∞

−∞
dx̃ f

∫ +∞

−∞
dỹ f

∫ +∞

−∞
dx̃0

×
∫ +∞

−∞
dỹ0 Pss

α=1(x̃0, ỹ0)P0(x̃ f , ỹ f )

× δ
(
σα=1 − σ R

α=1(x̃0, ỹ0)
)
. (64)

The evaluation of this integral proceeds along the same lines
as the evaluation of Eq. (59), and it yields the result

PR(σα=1) = 1

π |ω| exp σα=1

× K0

⎛
⎝

√(−σα=1

ω
+ ln

√
1 − ω2

ω

)2
⎞
⎠. (65)

The above distribution is also normalized, but this can only
be established numerically. A plot of PR(σα=1) as a function
of σα=1 is shown in Fig. 4 for the same two values of ω

FIG. 5. The entropy distribution for total entropy change in the
forward and the reverse directions as calculated, respectively, from
Eqs. (60) (solid black curve) and (65) (dashed red curve) and plotted
against σα=1 at a fixed value of ω = 0.8

as used in Fig. 3. A comparison of the entropy distributions
for the forward and reverse processes [Eqs. (60) and (65),
respectively] is shown in Fig. 5 for a single ω value.

Having found the analytic structure of these two distribu-
tions, we immediately see that

P(σα=1)

PR(−σα=1)
= eσα=1 , (66)

which is the statement of another fluctuation theorem, the
detailed fluctuation theorem [25].

IV. SUMMARY

In this paper, starting from a set of coupled Langevin
equations, we have developed a model of the stochastic
thermodynamics of a single harmonically trapped colloid in
two-dimensional linear mixed flow. By reformulating these
equations in terms of path integrals, we have been able to
derive exact expressions, valid for arbitrary time t , for the
probability density distributions of the particle’s positions
as a function of the following parameters: the degree of
admixture α of the rotational and elongational components
of the flow, the strength k of the confining potential, and
the strength γ̇ of the externally imposed flow. Further, by
constructing the equivalent Fokker-Planck representation of
the Langevin equations, we have determined the structure
of the probability currents that characterize the long-time
steady-state dynamics of the system for any α. On the basis of
these currents, we have been able to classify the steady state
corresponding to pure elongational flow (α = 1) as an equilib-
rium steady state, and the steady states corresponding to flows
with α �= 1 as nonequilibrium steady states. We have also
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verified that our model system satisfies the integral fluctuation
theorem, the Jarzynski equality, and the Bochkov-Kuzovlev
relation.

At the single-molecule level, heat is often a nonlinear
functional of particle trajectories; its distribution can therefore
be particularly difficult to calculate analytically. For the spe-
cial case of a Brownian oscillator driven by pure rotational
flow, however, we have been able to show that the heat
dissipated by the particle into the medium during a certain
interval of time becomes trajectory independent, and that its
distribution can then be found in closed form. These findings
may have implications for the dynamics of charged particles
in magnetic fields, as there are exact mathematical analogies
between this system and the rotational flow-driven oscillator
system.

In the special case of elongational flow, we have also cal-
culated the distribution functions for the total entropy change
along the particle’s forward and reverse trajectories, and have
used these functions to demonstrate the validity of the detailed
fluctuation theorem for this case.

APPENDIX A: INTEGRATION CONSTANTS IN
CALCULATING THE DISTRIBUTION OF THE POSITION

The unknown integration constants A, B, C, D involved
in the calculation of the classical action S̄α in Eq. (5) are
determined by applying the boundary conditions x̄(0) = x0,
ȳ(0) = y0, x̄(t ) = x f , and ȳ(t ) = y f to Eqs. (8a) and (8b).
From the solution of the resulting simultaneous equations
(obtained using MATHEMATICA [15]), it can be shown that

A = 1

2�α

{(1 + α)(1 − cosh 2at )(2x0 − (1 − α)ω y0
) − αμα[(1 − e2κt )x0 + 2x f sinh κt cosh at] + 2

√
α sinh at

× [(1 + α){((1 − α)ω x0 + 2y0) cosh at − eκt ((1 − α)ω x f + 2y f )} + y f μα sinh κt]} (A1)

B = 1

2�α

{α(1 + α)(1 − cosh 2at )((1 − α)ω x0 + 2y0) − αμα[(1 − e2κt )y0 + 2y f sinh κt cosh at] + 2
√

α sinh at

× [(1 + α){(2x0 − (1 − α)ω y0) cosh at − eκt (2x f − (1 − α)ω y f )} + x f αμα sinh κt]}, (A2)

C = 1

2�α

{(1 + α)(1 − cosh 2at )(2αx0 + (1 − α)ω y0) − αμα[(1 − e−2κt )x0 − 2x f sinh κt cosh at] − 2
√

α sinh at

× [(1 + α){((1 − α)ω x0 + 2y0) cosh at − eκt ((1 − α)ω x f + 2y f )} + y f μα sinh κt]}, (A3)

D = 1

2�α

{−(1 + α)(1 − cosh 2at )((1 − α)αω x0 − 2y0) − αμα[(1 − e−2κt )y0 − 2y f sinh κt cosh at] − 2
√

α sinh at

× [(1 + α){(2x0 − (1 − α)ω y0) cosh at − eκt (2x f − (1 − α)ω y f )} + x f αμα sinh κt]}, (A4)

where �α = αμα (cosh 2κt − 1) − (1 + α)2(cosh 2at − 1).

APPENDIX B: THE COEFFICIENTS A1, . . . , A12 IN EQ. (10)

The expressions for the coefficients A1, . . . , A12 in Eq. (10) are given below:

A1 = 2αμα sinh 2κt,

A2 = 2(1 − α2)(cosh 2at − 1 + αω2),

A3 = 4
√

α(1 + α)ω sinh 2at,

A4 = 8α(1 + α)ω,

A5 = 2αω2(1 − α2),

A6 = 8
√

α(1 + α) sinh 2at,

A7 = 8αω(1 + α) cosh 2at,

A8 = 8αμα sinh κt cosh at,

A9 = 8α(1 − α2)ω2 sinh κt cosh at,

A10 = 16
√

α(1 + α)ω cosh κt sinh at,

A11 = 16(1 + α)(αω sinh κt cosh at − √
α cosh κt sinh at ),

A12 = 16
√

α(1 − α)(1 − αω2) sinh κt sinh at .
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APPENDIX C: CALCULATION OF THE PROPAGATOR Gwr (xf , y f , t|x0, y0 ) IN EQ. (37)

The path integral of Eq. (37), with L′(ẋ, ẏ, x, y) given by Eq. (38), is evaluated by the variational method, which proceeds by
first deriving the Euler-Lagrange equations corresponding to L′; these equations are

¨̄r(t ) + γ̇ (1 − α)J ˙̄r(t ) − M′r̄(t ) = 0, (C1)

where J has the form given after Eq. (7) and M′ = 1
2a0

(
2a1 a5

a5 2a2
). The solution of Eq. (C1) can be shown to be given by

x̄′(s) = eκs

{
A′ cosh as + B′

√
α

sinh as

}
+ e−κs

{
C′

(
cosh as + 2(1 − α2)ω√

αμα

sinh as

)
+ D′[μα − 4(1 + α)]√

αμα

sinh as

}
(C2)

ȳ′(s) = eκs

{
A′√α sinh as + B′ cosh as

}
+ e−κs

{
C′[αμα − 4(1 + α)]√

αμα

sinh as + D′
(

cosh as − 2(1 − α2)ω√
αμα

sinh as

)}
, (C3)

where κ , ω, a, and μα are the parameters defined after Eq. (8b), and A′, B′, C′, and D′ are unknown integration constants. These
constants are determined by imposing the boundary conditions x̄′(0) = x0, ȳ′(0) = y0, x̄′(t ) = x f , and ȳ′(t ) = y f on Eqs. (C2)
and (C3) and solving the resulting simultaneous equations. This leads to

A′ = 1

2�α

{(1 + α)(1 − cosh 2at )(2x0 + (1 − α)ω y0) − αμα[(1 − e−2κt )x0 − 2x f sinh κt cosh at] − 2
√

α sinh at

× [(1 + α){((1 − α)ω x0 − 2y0) cosh at − e−κt ((1 − α)ω x f − 2y f )} + y f μα sinh κt]}, (C4)

B′ = 1

2�α

{α(1 + α)(1 − cosh 2at )( − (1 − α)ω x0 + 2y0) − αμα[(1 − e−2κt )y0 − 2y f sinh κt cosh at] + 2
√

α sinh at

× [(1 + α){(2x0 + (1 − α)ω y0) cosh at − e−κt (2x f + (1 − α)ω y f )} − x f αμα sinh κt]}, (C5)

C′ = 1

2�α

{(1 + α)(1 − cosh 2at )(2αx0 − (1 − α)ω y0) − αμα[(1 − e2κt )x0 + 2x f sinh κt cosh at] + 2
√

α sinh at

× [(1 + α){((1 − α)ω x0 − 2y0) cosh at − e−κt ((1 − α)ω x f − 2y f )} + y f μα sinh κt]}, (C6)

D′ = 1

2�α

{(1 + α)(1 − cosh 2at )((1 − α)αω x0 + 2y0) − αμα[(1 − e2κt )y0 + 2y f sinh κt cosh at] − 2
√

α sinh at

× [(1 + α){(2x0 + (1 − α)ω y0) cosh at − e−κt (2x f + (1 − α)ω y f )} − x f αμα sinh κt]}, (C7)

where, as before �α = αμα (cosh 2κt − 1) − (1 + α)2(cosh 2at − 1). By partially integrating the Lagrangian L′ and applying
the Euler-Lagrange equations to the result, the classical action is now found as

S̄′
wr

[x, y] = a0[ ˙̄x′(t )x f + ˙̄y′(t )y f − ˙̄x′(0)x0 − ˙̄y′(0)y0] − a3 + a4

2
(x f y f − x0y0), (C8)

which from Eqs. (C2) and (C3), using Eqs. (C4)–(C7) for A′, B′, C′, and D′, becomes

S̄′
wr

[x, y] = βk

8�α

{
A1

(
x2

f + x2
0 + y2

f + y2
0

) − A2
(
x2

f − x2
0 − y2

f + y2
0

) − A3
[
α
(
x2

f + x2
0

) + y2
f + y2

0

]
− e−2κt [A4x f y f − A5(x2

f − y2
f )] + e2κt

[
A4x0y0 − A5

(
x2

0 − y2
0

)] − A6(x0y0 + x f y f ) − A7(x0y0 − x f y f )

− A8(x0x f + y0y f ) + A9(x0x f − y0y f ) + A10(αx0x f + y0y f ) − A11(x0y f + x f y0) + A12(x0y f − x f y0)
}
, (C9)

where A1, A2, . . . , A12 are the same coefficients given in Appendix B. The fluctuation integral φ′
wr

(t ) is obtained from the de
Witt–Morrette formula, which leads to the same expression obtained earlier for φα (t ) [Eq. (11)]. The path integral in Eq. (37)
therefore finally assumes the form

Gwr (x f , y f , t |x0, y0) = φα (t ) exp −S̄′
wr

. (C10)
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