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From power law to Anderson localization in nonlinear Schrodinger
equation with nonlinear randomness
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We study the propagation of coherent waves in a nonlinearly induced random potential and find regimes of
self-organized criticality and other regimes where the nonlinear equivalent of Anderson localization prevails.
The regime of self-organized criticality leads to power-law decay of transport [Y. Sharabi ef al., Phys. Rev. Lett.
121, 233901 (2018)], whereas the second regime exhibits exponential decay.
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I. INTRODUCTION

In this work, we consider a problem of polynomial to ex-
ponential localization in the one-dimensional (1D) nonlinear
Schrodinger equation (NLSE) in a random potential. A special
property of the system is that randomness is incorporated into
nonlinearity in the form Sn(x)|v (x)|?, where ¥ = ¥ (x) is a
wave function, n(x) is a random field, and § is a nonlinearity
parameter. This formulation of randomness and nonlinearity
differs essentially from the NLSE in random potential, which
reads

iV = —32W + n(x)W + B|W|*W. (1)

The model, (1), has been extensively studied, and a variety
of results have been observed over the years. In particular, a
stationary counterpart of Eq. (1), when

W(x, 1) = e P (x), 2)

relates to the Anderson localization [1,2] of the stationary
states of the NLSE. Another important task is wave prop-
agation in nonlinear media [3-11], where the problems of
spreading of wave packets and transmission are not simply
related [6,7,12,13], in contrast with the linear case. This
problem is relevant for experiments in nonlinear optics, for
example, disordered photonic lattices [14,15], where An-
derson localization was found in the presence of nonlinear
effects. This long-lasting task is far from being completely
solved, and many fundamental problems are still open in both
dynamical and stationary cases, like the Berry phase and the
semiclassical, also known as the adiabatical, approximation in
the NLSE [16].

Here, we study the propagation of coherent waves in a
random potential that is induced (nonlinearly) by the wave
itself. The problem was first proposed in the context of
nonlinear optics [17], but it is in fact a universal problem,
relevant to any coherent wave system, for example, cold atoms
in the Gross-Pitaevskii regime [18], and more. The underlying
model is fundamentally different from the NLSE, (1), because
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the random potential is strictly nonlinear, with a mean value
around 0. Technically, this situation corresponds to the study
of stationary solutions of the 1D NLSE in a random potential,
where the latter relates now to the nonlinear part of the
NLSE, and this situation relates to numerical observation of
the power-law decay of diffusive waves [17] in 1D dielectric
disordered, nonlinear media. The model in task reads [17]

32y + oy + By Py =0, 3)

where o is the energy of the real stationary solution .
Here the variables are chosen in dimensionless units and the
Planck constant is /i = 1. Statistical properties of the random
potential n(x) are specified when necessary in the text. To
admit the difference between the NLSE, (1) [with solution
(2)], and Eq. (3), we call the latter the random nonlinear
Schrodinger equation (RNLSE).

When o = k?, where k is a wave number'and B/k? is the
Kerr coefficient, Eq. (3) is the Helmholtz equation, which
corresponds to the experimental setup in Ref. [17], where
the power-law decay of the intensity of the wave has been
observed numerically. Therefore, polynomial decay of the
wave function is anticipated for the solution of Eq. (3).

The paper is organized as follows. In Sec. II some heuristic
arguments based on the random walk theory are presented
to explain the experimental setup. Section III is devoted to
the estimation of the transmission coefficient based on the
RNLSE under the condition of a nonzero constant probability
current. A completely original approach to Anderson localiza-
tion is developed in Sec. IV, and its numerical verification is
presented in Sec. V. A summary of the results and conclusion
are presented in Sec. VI.

II. HEURISTIC ARGUMENTS OF EXPERIMENTAL SETUP
IN REF. [17]

Returning to the experiment on wave diffusion, the power-
law decay of wave transmission has been explain by heuristic

"Without restriction of the generality, the refractive index of the
medium is taken to be 1.
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arguments as follows. Due to the Kerr effect, the trans-
mitting characteristic is a function of the intensity of the
wave T = T (I) = ol. Therefore, the Boltzman equation,
which describes the intensity of the diffusive wave, reads
[19,20] dI/dx = =T (I = —oI?, with the boundary condi-
tion I (x = 0) = Iy. This equation defines the power-law decay
of the propagating wave amplitude: I(L) = Iy/(1 + T (Iy)L).
It is a simplified scheme of a more sophisticated toy model
suggested in Ref. [17].

Random walk approximation

The kinetic theory of diffusive light in slab geometry can
also be considered in the framework of random walk theory
based on the universality of the probability of escape from a
half-space [21,22]. This phenomenology is completely rele-
vant for the multicollision dynamics for transmission through
a finite slab, considering diffusive waves as a Brownian par-
ticle. In this approach, the transmission probability is deter-
mined by the first passage of a Brownian particle at x = L.

A random walk of a particle in random media, starting at
x(t = 0) = 0, after n identically distributed steps Ax(z;), re-
lated to n — 1 collisions, finishes at a random position x(z,) =
Z;f;(l) Ax(t;), with mean squared displacement ((x(z,))*) ~
o’t,. Note that the free pass variance between collisions
o2 = ((x(t,))?) is a well-defined value from the experimental
setup. Therefore, the mean transition time reads #; ~ (L/o)?
for 0 < L < oo [21]. It has been shown in Ref. [22] that the
probability of reaching the boundary L, which corresponds
to transmission and is determined as the superposition of all
first-boundary passages, reads”

T ~ Prob(r > 1) ~ RN (L/o)7 L. 4)

NZI173

Although these heuristic arguments on wave diffusion,
based on either the Boltzman equation or random walks,
provide physically reasonable and relevant explanations, these
approaches are far from analytical rigor, related to Eq. (3). An-
other fundamental question is about the localization length, or
Lyapunov exponents of the stationary solution of the RNLSE,
(3). As has been shown for the NLSE, (1), in Ref. [9], the
nonlinearity parameter 8 does not contribute to the Lyapunov
exponents of the linear counterpart. It is also well known
that in the linear case for a random system of finite length
L, the transmission coefficient decays exponentially with L,
including the linear part of the NLSE, (1) [5,9]. However,
a specific feature of the RNLSE, (3), is that for g = 0, the
medium is transparent and the transmission coefficient does
not decay at all. Therefore, our next consideration of the
transmission is in the framework of Eq. (3).

2Following the Sparre Andersen theorem [23], one obtains that
the first-passage probability of escaping from a half infinite line for
any symmetrical random walk reads P (¢) ~ t~3/2. Therefore, to
find a particle outside the boundary L after the mean transit time is
Prob(t > 1) = f:o Po(t) ~ 1, 2 for an asymptotically large L.

III. THE RNLSE AS A HELMHOLTZ EQUATION:
DEVILLARD-SOULLIARD APPROACH

In this section, we investigate the initial-value problem,
where the wave is launched from x = 0 with some initial
amplitude and induces nonlinear changes in the potential as
it propagates. In this regime, we find that the wave follows
self-organized criticality, as it exhibits power-law decay while
propagating into the structure.

Let us consider 1D wave propagation in the slab geometry,
which is described by Eq. (3),

32y + oy + By Py = 0. Q)

The boundary conditions for the random potential are n(x) =
0 for x < 0 and x > L. Therefore the incident and reflected
(with coefficient 'R) waves on the left and outgoing (with
transmission coefficient 7)) wave on the right read

w(x) — eikx 4 Re—ikx’
Y(x) =T,

x <0, (6a)
x> L. (6b)

For the fixed output condition, the conservation condition
for the current reads

J(x) = [y oy — vy 12i= TP =1—[RI>. (T)

In this section, we follow Devillard and Souillard’s con-
sideration in Ref. [5]. Namely, we follow their improved
(theoretically and numerically) Theorem (3), which states that
for any J the transmission T cannot tend toward 0 faster than
L~ as L — oo. This theorem has been proved for the NLSE,
(1), and we prove it here for the RNLSE, (3), or (5) following
the method in Ref. [5], modified for the present model, (5). In
this sense, this extension of the Devillard-Souillard estimation
of the wave transmission in the framework of the RNLSE, (3),
can be considered as a corollary of Theorem (3) in Ref. [5].
Note also that the present case is simpler, and the result
immediately follows from the theorem conditions.

We make the partition L = NAx = ) A with constant
randomness 71(x,) = 1, at each step x, € (nAx, nAx + Ax).
Therefore, for every interval Ax, with constant value 7,
there is a Hamiltonian/energy H,, which produces, by the
Hamiltonian form of Eq. (5) for each step n,

H, = 0.9 1> + ol |* + Bnalyl*/2. ®)

Since ¥ and 9,y are continuous at edges of the steps [5], we
have

Hu1 — Hy = By — nas DIV ] /2. ©

Taking AN = Nmax — Mmin aS the maximum fluctuation, we
obtain from Eq. (9)

BAn
a1 = Hal < BANIYIY/2 < —2Hi = AHJ - (10)
where A = % and the second inequality is valid for the

positive random potential n(x) > 0. This inequality yields a
decay of the energy H, with n not faster than 1/n in the
limiting case of n > 1. We also have from Eq. (10) that the
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maximum decay’ of the energy reads

Hy

= 11
1+AH07’£ ( )

From the partition it follows that 7" = |y |?/|10|?, and taking
into account Egs. (10) and (11), the transmission coefficient
reads

lUw|? Ly 1
[Wol2 Hy = 1+bL’

where AHy = bAx and L = N Ax. Therefore, the transmission
T cannot tend toward O faster than L~! as L tends to oo. This
behavior is also supported by numerical investigations of the
scattering problem in Egs. (5) and (6), reported in Ref. [17].

T = (12)

IV. FOKKER-PLANCK EQUATION

In this section, we consider 1D localization of stationary
solutions of the RNLSE, (3), in a random §-correlated poten-
tial n(x) with a Gaussian distribution (white noise), of zero
mean and variance 2D: namely, (n(x)n(x")) = 2D§(x — x).
Following Refs. [9] and [10], we study Anderson localization
of stationary solutions with energies w. In this case, the wave
functions are real, ¥ (x) = ¥*(x) = ¢(x).

We specifically calculate (¢p?(x)) of solutions of Eq. (3)
that are found for a certain w, with given boundary conditions
at some point, for example, ¢(x = 0) and ¢’(x = 0), where
the prime means the derivative with respect to x. This is
done with the help of the analogy with the Langevin equation
[9,25,26]. In particular, we calculate the growth rate of the
second moments (¢>(x)) and ((¢’(x))?). Therefore, consider-
ing coordinate x as the formal time on the half-axis with the
definition \/wx = 1 € [0, 00), Eq. (3) reduces to the classical
Langevin equation

B

é+¢=mmww,ﬁw=5. (13)

Here () is considered the §-correlated Gaussian noise®
(n(x)n(t")) =d8(r — ).

The dynamical process in the presence of the Gaussian
d-correlated noise is described by the distribution function
P=P(u,v, )= (8(p(t) —u)s(¢p(r) — v)) that satisfies the
Fokker-Planck equation [9]

3P = —vd,P + ud,P + p2u’d?P. (14)

The Fokker-Planck equation produces an infinite chain of
equations for the averages

P = (W) = fdvduumv”P(u, v, T),

3From Egq. (10), we have equality H,,, — H, = —AH?. Denoting
z, = AH,, we obtain the iteration z,+; = z,(1 — z,), which maps the
unit interval [0, 1] onto itself. There is a fixed point defined by z* =
7*(1 — z*), and the iterations converge to z* = 0 [24]. Therefore, the
energy H, decays to O at the maximal rate according Eq. (11) with
the initial condition at the incident point at x = 0.

“In this notation, the correlator is scaled over the variance 2D.

where m+n=2+4l withl,m,n =0, 1,2, .... This yields
the system of equations

2,0 = 2r11,

1,1 = —r20 + 702,

Fon = —2r11 + 282760,

7.”6,0 = 6}”5,1. (15)

In vector notation, it reads
R = MR. (16)

Here M is a dynamical matrix, which is defined from Eq. (15)
later in the text.

A. First order of the perturbation theory

The chain of equations in system (15) is truncated at the
term rg0 = (u®), taking 769 = 0, and Zﬂf)r@,o = h is a small
constant value.’

It should be admitted that the rest of this infinite chain of
linear equations, determined by matrix M, contributes only
to the term ¢ o(7). However, in the perturbation approach,
when 2 = 0, the material is transparent. Therefore, neglecting
h terms in the rest of the matrix M, we obtain it in the Jordan
block form, where every block matrix M[(3 4+ 41) x (3 + 41)]
has the same structure, determined by operator —vd, + ud,.
Its integral curves are circles in the (#, v) phase space [27].
Correspondingly, every block matrix has imaginary eigenval-
ues, and 28276 < h = const.

Consequently, after the truncation, Eq. (16) becomes an
inhomogeneous equation with [ = 0, which reads

R = MR +hV, (17)
where
r2,0 . 0 2 0 0
R= rei g, M=|-1 0 1 . V=10
7‘0,2 0 -2 0 1
(18)

We take the “initial” conc{ition Rg = (0, 0, 1). Performing the
Laplace transformation R(s) = L[R(7)](s), we arrive at the
equation for the Laplace image

) = oy Ros +4V) (19)
The inverse Laplace transformation yields the solution

M1

R(t) = MRy + 1 V. (20)

5In the numerical experiment [17], fluctuations of the refractive
index 8 ~ 10~3. However it cannot be neglected, since it is incorpo-
rated into the highest derivative in the Fokker-Planck equation, (14).
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FIG. 1. Dynamics of the sixth moment 74 vs time T as a result
of the numerical solution of Eq. (17) for / =1 and g2 =103
(MATLAB, ode45).

Let us consider the series of the exponential. To this end
we use the Cayley-Hamilton theorem.® The characteristic
equation of matrix M is 23 + 41 = 0. Therefore, M> = —4M,
and correspondingly M* = —4M?. These equalities determine
the exponential in Eq. (20) as follows:

o
I

il 1 1 R N
1+Z I—Zcos(Zr) M +§ sin(2t)M, (21a)

1 . 1 .

=T+ g[ZT — sin(27)|M? + 1ol —cos2D)IM.
T

(21b)

Applying these expressions to the solution, (20), we eventu-
ally obtain that r, o and ry increase linearly for large values
of t. Therefore the second moments of the wave function and
its derivative grow linearly with the coordinate x:

(@*(X) ~ 1+ Bloix. (22)

An important part of the analysis is the perturba-
tion approach, which is valid only when the nonlinear
randomness/(random nonlinearity) is small. The situation be-
comes completely unclear for the strong nonlinearity. There-
fore. we take into account all the orders of the perturbation
theory.

B. Iteration procedure for higher orders
of the perturbation theory

Now we consider Eq. (17) for the next Jordanian block with
I = 1, which reads R; = MR, + hV;. It describes moments
Fmn With m +n = 6. Therefore, RT = (r¢0,761,...,706)
and VlT =(0,0,2,6,12,20,30). We are interested in the
dynamics of ¢ 9, which also grows linearly with t. Its numer-
ical solution is shown in Fig. 1. Therefore, the second order

® According to the Cayley-Hamilton theorem, every complex square
matrix satisfies its own characteristic equation; see, for example,
[28].

300
250f 4 1
=)
N
200 B 2 1
k)
° 0
. 150 1
-2
5 6 7 8
100t log(t) 1
50t 1
0
0 1000 2000 3000 4000 5000
T

FIG. 2. Dynamics of the second moments obtained numerically
for B2 = 1073 (MATLAB, ode45). The upper curve corresponds to
the second order of the perturbation and the lower curve corresponds
to the first order of the perturbation.

of the perturbation, shown in Fig. 2, yields quadratic growth
of the moment 7 o(t) ~ 2.

Since the structures of the Jordanian blocks are just the
same for all l =0, 1, ..., then each /th block has its solution
in the form of Eq. (20), which reads

7 Mt 1
R/(t) = ""Ro+ h————V,. (23)
M,
This solution corresponds to the linear growth of the moment
royai0(T) ~ ,Bf)r. Therefore in the /th order of the perturba-
tion theory, after [ integrations, we obtain 76 ¢(7) in Eq. (17)
as

1 J
(Bo7)
h~ Z T (24)
j=0

where constants in the primitives at every integration are
taken to be 1, to obtain the truncated series of an exponential
function. Continuing this iteration procedure ad infinitum, we
eventually obtain the second moment in the exponential form
as follows:

(@2 (X)) = ra0(r) = o7 = exp(B2w ?x).  (25)

C. Anderson localization of the wave function

The rate of this exponential growth of the second moment
is determined by the so-called generalized Lyapunov exponent
[32]

In(&> 3/2
2y = lim In{¢"(x)) _ ™" (26)
X—>00 X ﬂz
This exponential growth is a strong indication of the exponen-
tial, Anderson, localization of the stationary states ,,(x) with
localization length & = 1/y. Note that it is different from the
usually studied self-averaging quantity

Ys = li<1n »*(x)) lim

In 152 x
= = —( ), (27)
2dx 2 x—o00 X
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which determines a genuine localization length.” In the
NLSEs (1) and (2), the Lyapunov exponent y is independent
of B and coincides with the linear limit [9]. However, here the
limit with 8 = 0 does not exist, and as reported above, 8 can-
not be a parameter for a perturbation consideration. We return
to this value in Sec. V, while here, following [9] and [10], we
explore a la Borland arguments: since the distribution of the
random potentials is translationally invariant, it is independent
of the choice of the initial point as x = 0. As in the linear case,
starting from a specific initial condition, ¢(x) will typically
grow. For specific values of w at some point this function will
start to decay, so that a normalized eigenfunction is found.
Borland’s arguments [29,30] are rigorous for the linear case
[31]. In heuristic form, applied to the nonlinear case, the
envelope of the wave function will grow exponentially if we
start either from the right or from the left. The value of w
results from the matching condition, so that an eigenfunction
has some maximum and decays in both directions as required
by the normalization condition. The exponential decay is an
asymptotic property, while the matching is determined by the
potential in the vicinity of the maximum. This observation
is crucial for the validity of this approach and enables us
to determine the exponential decay rate of states from the
solution of the initial value problem in the form of both the
NLSE, (1), and the RNLSE, (3).

V. NUMERICAL PERTURBATION THEORY

In this section we develop an analytical approach based
on the numerical evaluation of a small parameter, which is
necessary for the perturbation theory. We rewrite Eq. (3) in
the form

— 124020 + BV Py = wy, (28)

where we have introduced a dimensionless Planck constant
Fegr, which should be small enough for correct numerical
evaluation of Anderson localization.

Parameter § cannot be 0: 8 # 0 since it does not fulfill
the boundary condition ¥ (x = +00) = 0 for the equation
831# + oy =0, if B =0. Therefore a perturbation theory
over 8 does not exist even for small 8 « 1. Therefore we keep
B =1

Let us perform an identity transformation by adding and
subtracting the linear random term B7(x)y (x) in Eq. (28). We
have

B2 + o — By (x) = oy — Hopr
= —Bn(x)Y (x) + B>,

(29)

where 1-70 is the Anderson Hamiltonian. Therefore, the left-
hand side of Eq. (29) corresponds to the eigenvalue problem
of Anderson localization

Hopa(x) = [ = 1397 + Bn(0)]ea(x) = 0,0a(x),  (30)

In the linear case, with a Gaussian noise, these values are related
[32], ¥y = ys + a, where a is due to the width of the Gaussian process.

where the eigenvalues are functions of 8, namely, o, = 0,(8)
and

/ i (X)@n(X)dx = S, €1V

[e¢]

The Hamiltonian A, is Hermitian, and {¢,(x)} is a com-
plete set of orthogonal functions. Therefore, the stationary
states can be expanded over the Anderson modes

Y (X)) = Yo 0) = ) an(@)pn(x). (32)

Substituting expansion (32) into Eq. (29), we obtain

® Y apa(x) = Y oupn(x)
= —Bn(x) Y _ anpa(x)

+B Y 000 ()0, (e (), (33)

ni,n,n3

where a, = a,(w).

A. Algebraic equation and small parameter

Multiplying Eq. (33) by ¢,,(x) and integrating with respect
to x, and taking into account Eq. (31), we arrive at the
algebraic equation

am(w — oy) = _/3 ZAm,nan + IB Z B:;nl.nz,ngaﬂla"zanw
n ny,np,n3
(34
where the overlapping integrals are

A = f D()om (O (V)dx, (352)

By oy = / NC)Pn, (X)Pm (X)Pn, (X)@ny (x)dx.  (35b)

The overlapping integrals in Eqgs. (35) are estimated nu-
merically, and the results are presented in Figs. 3 and 4. These
integrals are definitely less than 1, and we take them as the
first order of the approximation by a small parameter® &:

m
&< Am,n ~ Bnl,nz,ns <L

8Some heuristic arguments for supporting this statement are in
order. If the localization length is large, the segment of integration
is large enough to apply the ergodic theorem for the Markov process,
which yields [ n(x)dx ~ (n(x)) = 0. Therefore, the integrals can be
considered as small parameters €. Moreover, the larger the segment
of integration is, the smaller ¢ is, and we can account for only
diagonals and a few nearest off-diagonals in matrices A and B. In the
opposite case, when the localization length is small, then overlapping
of Anderson modes is small, and only diagonal and nearest-neighbor
matrix elements should be taken into account. The off-diagonal
elements are small values, ¢ < 1, however, for the diagonal elements
the integrals are just less than 1 and these terms contribute to the
energy . Integrals B” are four-tensors, however, in the first

ny,ny,n3

order of ¢, only terms with n; = n, = n3 = n are accounted for.
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0 "‘ LR T
2000 4000 6000 8000

FIG. 3. Overlapping integrals A, , and B)', = for the random
mode m = 965 with o,, = —2.8822. The Anderson modes are the
result of numerical calculation of Eq. (30) in a chain with zero
boundary condition, number of cites N = 8192, and /iy = 1.5915 x
1073, Inset: Overlapping integrals, which contribute to the spectrum
for n = m and stationary states ¥, (/) for n # m in the first order of
perturbation, when the absolute values of the overlapping integrals
are larger then ¢ = 0.1.

B. Perturbation theory

After taking into account only nearest neighbors of the mth
mode, algebraic equation (34) reads

am(a) — Um) = _ﬂAm,mam + ﬂBrnrql,m,ma?n

~ " [BAwnan — BBl ual]. (36)

where the prime means n # m. Taking into account that the
overlapping integrals in Egs. (35) are small, we cast the
solution for a, in the form of the decomposition/expansion
over ¢ up to the first order of &:

an=a" +ea?, m=1,...,N. (37)
A
mn
0.6/ gm 06
nnn
0.4 o | ‘
2000 6000
0.2/
o
o T T
-0.2- : : : :
2000 4000 6000 8000

FIG. 4. The same as Fig. 3 for the random mode m = 2657 with
on = —1.6727.

e
| os \
-0.2 I |
_ \\ 0.4 w
e I l
= | 0 “ |
-0.5¢ | o2 U
| 4420 4480
|
w\
‘ | ‘
4420 4460 4500

FIG. 5. The normalized stationary state v, (/) constructed near
the Anderson mode (inset) ¢,,(/) for m = 965 with o,, = —2.8822.

Substituting Eq. (37) into Eq. (36) and collecting terms with
corresponding orders of ¢, we have for zero order

a9 (@ — 0,) = 0, (38)
which yields a\?(w) = 1 for w = 0,, and a'¥(w) = 0 for w #
opandm =1, ..., N. Formally, we define it as the Kronecker

delta:

aV =d%w)y=8(w—-0,), m=1,2,...,N. (39)

For the first order of ¢, we have

(@ = 0,) = B [Anna® — B, (@®)]  @0)

This equation has a solution only for w = o,, with n % m,
which yields

Om — Op

1
ay(w=o0,) =

while the spectrum reads w = @, = 0w — B(Am.m — By 1. n)-
Here we have used that a"(w = 0,,) = 0.

Eventually, we obtain that the stationary states
Y,(x) are localized only for the discrete spectrum
w € spec(o, + an’n —Apmn), n=1,2,.... For example,

R
0.4 0.1
-0.3
33 0.2 ‘ 05 d
= il 1980 2060
Dl y
0 ! ~v Lv
-0.2; ‘ B
1950 2050 2150

FIG. 6. The same as Fig. 5 for m = 2657 and 0,, = —1.6727.
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for w = oy, the stationary state ¥, (x) contains all a,’s with
o = w,, which are a(c,) and a(0)). Therefore, the
stationary state reads

Vo) = 00+ YL () @

0, — O]
ketn n k

with eigenenergy

W, =0, — ,B(A,,ﬁ - B ) (43)

n,n,n

Results of numerical evaluation of two random stationary
modes are presented in Figs. 5 and 6.

VI. CONCLUSION

We have considered two related problems and obtained two
results. The first is the power-law decay of the transmission
coefficient as a function of the slab length L. This result
is obtained in both heuristic and microscopic (in the frame-
work of the Helmholtz-RNLSE) approaches. We present these
alternative ways to explain the experimental setup [17] of
wave propagation in nonlinear media. The second result corre-
sponds to the general microscopic consideration of Anderson
localization in the RNLSE, (3). We construct a perturbation
theory over the nonlinearity parameter. Constructing an itera-
tion procedure, we are able to take into account all orders of
the perturbation theory by means of a resummation procedure
over all the orders of the small parameter ,33). As the result
of the developed method, we obtain exponential (Anderson)
localization of the wave function ¢ (x) ~ e~*/%, estimating the
mean squared second-moment growth. It should be stressed
that this approach does not determine the localization length
&, and we estimate it approximately according to the general-
ized Lyapunov exponent y: & = 1/y ~ 1/2/wB2 > 1.°

9We stress that it is not a genuine localization length, defined in
Eq. (27).

We have also suggested numerical verification of Anderson
localization of the stationary states ,,(x) for discrete spec-
trum w. To this end we introduce a linear counterpart of the
RNLSE in the form of Egs. (29) and (30). In this case a small
parameter ¢ can be introduced in the form of overlapping
integrals of the linear Anderson modes. This makes it possible
to construct a perturbation theory which is well controlled
numerically.'”

In conclusion, we admit that the obtained results on the
power-law and exponential decays correspond to two different
approaches, which are so-called “fixed output” and “fixed
input” [7]. The former, considered in Sec. III, leads to the
power-law localization, while the latter, considered in Secs.
IV and V, leads to the exponential (Anderson) localization.
Therefore, there is an essential difference between Eq. (5) and
Eq. (13). Namely, in the former case there is a finite constant
probability current that corresponds to the fixed output con-
ditions, while in the latter case, the probability current is O,
which is a necessary condition of localization.
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107t is the first step of the numerical approach. For example,
numerical study of the localization length as a function of the
spectrum £ = £(w) is an important task, which should be considered
separately.
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