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Generalized diffusion of quantum Brownian motion
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This article discusses the numerical result predicted by the quantum Langevin equation of the generalized
diffusion function of a Brownian particle immersed in an Ohmic quantum bath of harmonic oscillators. The time
dependence of the standard deviation of the reduced Wigner function of the system, obtained by integrating the
whole function in the momentum space, is determined as well. The complexity of the equations leads to resort
to a much simpler calculation based in the position correlation function. They are done for the three possible
regimes of the system, namely, periodic, aperiodic, and overdamped. It is found in the periodic case that the
generalized diffusion is a discontinuous function exhibiting negative values during short time periods of time.
This counterintuitive result, found theoretically in other systems and waiting for its experimental confirmation,
can be perfectly explained in the framework of the quantum Langevin equation. Its oscillatory behavior is
primordially due to the response to the external field while its quantum origin contributes only in its magnitude.
The results are compared to those of the continuum limit which exhibits similar behavior.
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I. INTRODUCTION

The Fokker-Planck equation (FPE) of a harmonically
bound Brownian particle has been extensively analyzed. It
was originally studied in classical systems by Chandrasekhar
[1] and subsequently refined by Adelman [2] and Adelman
et al. [3].

The extension to a quantum harmonic thermal bath has
also been developed by several authors. For instance, Caldeira
et al. [4] applied the Feynman-Vernon theory [5] to study
the quantum dissipation by assuming the initial preparation
of the system has no effect on the evolution of the dynamics.
They found a FPE by making a transformation from Hilbert
space to the classical phase space by way of the Wigner
distribution functions. An important advance in the search for
an exact FPE was the work by Grabert et al. [6] where the
correlation functions of position and momentum were eval-
uate in closed form. Schramm et al. [7] partially used these
results to enhance the FPE of Ref. [4] by expanding the time
evolution of the probability density in terms of cumulants of
the noise, previously presented by Hänggi [8], and including
the correlation between the quantum noise and the particle
initial position. The resulting FPE is exact and correctly
reduces to that of Ref. [2] in the classical Markovian limit.
The absence of the initial preparation of the system in the
Feynman-Vernon theory was incorporated by Grabert et al. [9]
in their functional integral formalism of quantum dissipation.
It validated the findings already derived in Ref. [7]. Subse-
quently, Allahverdyan et al. [10] proposed an alternate FPE
in their study about the extraction of the work of a quantum
particle strongly coupled to the bath. The authors [11] fully
derived it later on in their proof that at low temperatures
the Clausius inequality is violated due to the appearance of
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quantum coherence by the off-equilibrium nature of the bath.
That is, a construction of a perpetual model of the second
kind. This assertion has generated a debate between coherence
and entanglement as the cause of the violation. Very recently,
Soltanmanesch et al. [12] experimentally validated it using
interferometry techniques while Micadei et al. [13] showed
by means of nuclear magnetic resonance, that two initially
thermal correlated spin-1/2 break the time-reversal symmetry
and changes the direction of the energy flow between the
qbits. For a comprehensible theoretical analysis about quan-
tum coherence and quantum correlation see Fan et al. [14]
and the references therein.

References [3] to [11] date back almost 20 years ago or
more. In all these works, the second derivatives of the FPE
for the Wigner function W (p, q, t ) in the whole phase space
are given in terms of the different diffusion functions of the
system. It should be said that the generalized diffusion has not
been calculated in these works.

A more recent search for related researches yields that
the detailed article of 2011 by Fleming et al. [15], the 2017
one by Carlesso et al. [16] and that of 2018 by Shen et al.
[17], to name a few, shows numerical results for the standard
deviation and its relation to the generalized diffusion. Their
results along with those of this investigation will be analyzed
later in Sec. III.

Recently, a rather simple method [18] based on Ref. [7]
was developed to analyze the system in the configuration
space. There, the FPE of the reduced Wigner function W (q, t ),
its standard deviation and the generalized diffusion are prop-
erly defined in terms of the temperature, the friction damping
and the characteristic quantum frequency of the bath.

This article will use the results of Ref. [18] to provide a
methodology to calculate the standard deviation associated
with the reduced Wigner function in the configuration space,
the diffusion function appearing in its FPE, and their compar-
ison to those of the continuum limit. It differs from previous
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calculations because of the inclusion in the description of
the system initial quantum preparation. It will be shown
that the generalized diffusion is negative for specific values
of the friction coefficient of the Ohmic thermal bath as the
already predicted [15]. However, it shows new features be-
cause of the initial system preparation. It is mathematically
consistent with the physics of the problem having a simple
explanation in terms of an interplay of the susceptibilty of the
system to the external field and, the quantum entanglement
of the particle position with the reservoir quantum noise. The
classical time-dependent diffusion term is directly obtained
from the constitutive equations of the quantum scenario. It
also shows a similar behavior although in a lesser magnitude.

The paper is structured as follows. In Sec. II is summarized
the theoretical framework of this proposal. The methodology
used in the calculations and the discussion of the numerical
results is presented in Sec. III. The paper concludes in Sec. IV
with a set of general remarks and a prospective for future
research.

II. RELEVANT EQUATIONS

For the purpose of better comprehension, a brief account
of the main equations is given below [18]. This will allow to
identify the different terms contributing to the final expres-
sions of the diffusion term and the standard deviation of the
reduced Wigner function W (q, t ). This last function is also the
conditional probability p(q, t |q0) to find the particle at {q, t}
given that at initially was in q0.

The dynamics for the position q(t ) of a particle with
mass M, subjected to an external potential ω2

0q2(t )/2, in
contact with an Ohmic bath of quantum harmonic oscillators
at temperature T with a friction coefficient γ , is given by the
following quantum Langevin equation (QLE):

q̈(t ) = −γ q̇(t ) − ω2
0

M
q(t ) + 1

M
ξ (t ), (1)

where the quantum noise ξ (t ) is characterized by a zero mean
and correlation functions

〈ξ (t − s) ξ0〉 = −
(

γ M

2β

)
ν sinh

[
1

2
ν(t − s)

]−2

+ i γ M h̄ δ̇(t − s), (2a)

〈ξ (t )q0〉 = −2 γ

β

∞∑
n=1

νn

(νn+λ1)(νn+λ2)
e−νnt . (2b)

Here, h̄ is the Planck constant divided by 2π , β = (kBT )−1,
kB is the Boltzmann constant, νn = nν with ν = 2π (h̄β )−1,
and λ1,2 = (γ ± (γ 2 − 4ω2

0/M )1/2 )/2.
The probability distribution function associated with the

QLE is the Wigner function W (p, q, t ) which in turn is the
representation in phase space of the full quantum master
equation for the density matrix operator [7].

The Laplace transformation of Eq. (1) gives the result

q̇(t ) = v(t ) + ϕv(t ), (3)

where v(t ) = χ̇q(t )q0 + χ̇v(t )v0 is the mean drift velocity with
v0 being its initial value. The noise ϕv(t ) is a functional of ξ (t )
and the susceptibilities χq(t ) and χv(t ) are, respectively,

ϕv(t ) = 1

M

∫ t

0
dsχ̇v(t − s)ξ (s), (4a)

χq(t ) = e−γ t/2

(
cosh

[
ω t

2

]
+ γ

ω
sinh

[
ω t

2

])
, (4b)

χv(t ) = 2

ω
e−γ t/2 sinh

[
ω t

2

]
, (4c)

ω2 = γ 2 − 4ω2
0

M
. (4d)

The FPE associated to the probability distribution in the
configuration space p(q, t ), which is also the reduced Wigner
function W (q, t ), is given by [18]

∂ p(q, t )

∂t
= −(t )

∂

∂q
[q p(q, t )]+1

2
DQ(t )

∂2 p(q, t )

∂q2
, (5a)

(t ) = χ̇q(t )

χq(t )
= d ln χq(t )

dt
, (5b)

DQ(t ) = σ̇Q(t ) − 2 σQ(t ) (t ), (5c)

σQ(t ) = σ1(t ) + kBT

M
χ2

v (t ). (5d)

σ1(t ) =
∫ t

0
dt ′D1(t ′), (5e)

D1(t ) = 2

[ ∫ t

0
〈ϕv(t )ϕv(t ′)〉dt ′ + χq(t )〈ϕv(t )q(0)〉

]
. (5f)

Function (t ) is a hydrodynamic-like drift frequency and
DQ(t ) and σQ(t ) are the generalized diffusion of the bath
and the standard deviation of the reduced Wigner function,
respectively.

A. Noise correlation functions

From now on, all quantities will be expressed by scaling
energy, position, and time by the parameters (ω2

0q2
0 ), q0 and

M1/2ω−1
0 , respectively.

As is is seen from Eqs. (5c) and (5d), σQ(t ) and DQ(t ) de-
pend on the correlation functions 〈ϕv(t − s) ϕ0〉 and 〈ϕv(t ) q0〉,
respectively. In particular,

〈ϕv(t − s) ϕ0〉 =
∫ t

0
χ̇v(t − x) dx

∫ s

0
χ̇v(s − y)

×〈ξ (x − y) ξ0〉 dy. (6)

Then, having used Eq. (2a) it is found

〈ϕv(t )ϕ0〉 = −γ T
∫ t

0
χ̇v(t − x) dx

∫ s

0
χ̇v(s − y)

×
[
ν

2
csch2(x − y) + i

2π

ν
∂xδ(x − y)

]
dy. (7)

This is a complicated integral to solve due to the singularity
shown by csch(x − y) at x = y. To bypass this inconvenience,

052117-2



GENERALIZED DIFFUSION OF QUANTUM BROWNIAN … PHYSICAL REVIEW E 100, 052117 (2019)

it is appealed to Eq. (3), from which

〈ϕv(t − s) ϕ0〉 = 〈v(t − s)v0〉 − χ̇v(t )〈v(s)v0〉
−χ̇v(s)〈v(t )v0〉 − χ̇q(t )〈v(s)q0〉
−χ̇q(s)〈v(t )q0〉 + χ̇v(t )χ̇v(s)

〈
v2

0

〉
+[χ̇v(t )χ̇q(s) + χ̇v(s)χ̇q(t )]〈v0q0〉
+χ̇q(t )χ̇q(s)

〈
q2

0

〉
. (8)

These correlations are easily obtained in terms of the position
correlation function, i.e., [6]

〈v(t − s)v0〉 = − ∂2

∂t2
〈q(t )q0〉|t=t−s, (9a)

〈v(t )v0〉 = − ∂2

∂t2
〈q(t )q0〉, (9b)

〈v(t )q0〉 = ∂

∂t
〈q(t )q0〉, (9c)

〈v0q0〉 = ∂

∂t
〈q(t )q0〉|t=0, (9d)

where 〈q(t )q0〉 is given by [6,19]

〈q(t )q0〉 = S(t ) + iA(t ), (10a)

S(t ) = π

2 γ ω
T

{
cot

[
πλ2

ν

]
e−λ2t

− cot

[
πλ1

ν

]}
e−λ1t − �(t ), (10b)

A(t ) = −π T

ω ν
sinh[ω t]e−γ t/2, (10c)

�(t ) = 2 γ T
∞∑

n=1

νn

(νn + λ1)(νn + λ2)
, (10d)

where λ1,2 = (γ ± ω)/2. The first term of Eq. (10a) describes
how the particle is driven away from equilibrium by the
external potential while the second, the relaxation when the
random force holding it away from equilibrium is released.

The dispersion 〈v2
0〉 diverges logarithmically because the

Ohmic system depends on a frequency-independent damping
with a nonvanishing value at infinite. Considering a thermal
bath with a high frequency cutoff as in real systems, this
inconvenience is solved. It is the so-called Drude regular-
ization in which the damping has a finite memory ωD, the
Drude frequency, so that at very short times of order 1/ωD the
system behaves Ohmic. This line of reasoning leads to that the
dispersions needed in Eq. (8) are [6,9]

〈
q2

0

〉 = 2 T
∞∑

n=1

1

1 + ν2
n + γ νn

, (11a)

〈
v2

0

〉 = 2 T
∞∑

n=1

ωD + νn + γ ωD νn(
1 + ν2

n

)(
ωD + νn

) + γ ωD νn
. (11b)

To complete the set of correlation functions necessary for
the calculation, the second correlation of Eq. (5f) still needs
to be defined. This is given by

〈ϕv(t )q0〉 = −2 γ T
∫ t

0
χ̇v(t − x)〈ξ (x)q0〉 dx. (12)

As before, this equation can be rewritten by using Eq. (3),
i.e.,

〈ϕv(t )q0〉 = 〈v(t )q0〉 − χ̇v(t )〈v0q0〉 − χ̇q(t )
〈
q2

0

〉
, (13)

where

〈v0q0〉 = 〈v(t )q0〉|t=0. (14)

In summary, the diffusion DQ(t ) and the standard deviations
σQ(t ) are easily calculated as derivatives of the correlation
function 〈q(t )q0〉 instead of solving the multidimensional
integral given by Eqs. (7) and (12), respectively. They are only
given in terms of the friction damping, the temperature, and
the quantum timescale 1/ν.

B. Continuum limit

The classical Markovian case is obtained by setting
〈ξ (t − s) ξ0〉 = 2 γ T δ(t − s). In this scenario, the correlation
〈ϕv(t − s) ϕ0〉 is [20]

〈ϕv(t − s)ϕ0〉clas

= T

2ω2
e−(γ+ω)(t+s)[γ 2(1 − eωs)

×(eωt − 1) + γ ω(eω(t+s) + e(γ+ω)s − eωt+γ s − 1)

+ω2(eωs − 1)(eωt + eωs)], (15)

from which the diffusion term and the standard deviation
according to Eqs. (5c) and (5d) are, respectively,

Dclas(t ) = 4 T

γ + ω coth
[

ω
2 t

] , (16a)

σclas = T

[
1 − e−γ t

ω2
((γ 2 − 2) cosh[ωt]

+γ ω sinh[ω t] − 2)

]
. (16b)

The FPE given by Eq. (5a) is identical to the one obtained
by Adelman et al. [3] for the classical generalized Langevin
equation if the quantum contribution is dismissed. It differs
from the phenomenological equation of Chandrasekhar [1] in
that the diffusion coefficient is not a constant but a generalized
function of time. The diffusion term given by Eq. (5c) has not
been explicitly developed in terms of the parameters of the
model. To the knowledge of the author, Eq. (16a) has not been
reported in the literature although it is a natural result coming
from the dynamics. It will allow to examine the dependence
of the classical generalized diffusion with the frequency ω.
Equation (16b) reduces to the classical result by adding the
term T χ2

v (t ) to the standard deviation appearing in Eq. (213)
of Ref. [1].

III. DISCUSSION OF THE RESULTS

Unfortunately there is no experimental data to compare to
the quantum description. However, the order of magnitude
of the friction coefficient at temperatures where quantum
effects are important can be approximately inferred from
experiments at room temperature. Thus, Zchang [21] found
that for polystyrene spherical particles of radius 0.5 μm
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FIG. 1. Real and imaginary parts of the position correlation
function 〈q(t )q(0)〉 versus time t for γ values of 1.0 (solid black),
2.0 (dotted red), and 4.0 (dot-dashed blue); T = 0.053 and ν = 107.

and mass of 54.9 pKg [22] immersed in water (viscos-
ity η = 1.002 μm2s−1) at 293.15 K trapped in an optical
tweezer, the stiffness of the trap is ω2

0 = 1.6 μKg s−2. Consid-
ering these values gives a friction damping γ of 17.17 MHz
and ω0 M−1/2 = 53.98 KHz. Using the scale parameters and
assuming the bead is initially located 100 μm off the center
of the potential, the reduced temperature is of 25.28 and the
reduced friction coefficient is 318.06, respectively. This value
of γ says that the classical dynamics is highly overdamped.

As it was shown above, all calculations in the quantum
approach depend on the position correlation function. Their
outcomes depend on the value of the frequency ω =

√
γ 2 − 4

from which three responses of the dynamics to the value
of γ can be found. Namely, periodic (γ < 2; ω imaginary),
aperiodic (γ = 2; ω = 0), and overdamped (γ > 2, ω real). It
will be arbitrarily supposed that the stiffness of the trap has
a value of 18.2 mKg s−2 and the temperature is 70 K. For the
same M and q0 used before, γ values of 1, 2, and 4 requires the
bath should has hypothetical friction coefficients of 5.75, 11.5,
and 53.98 GHz, respectively. The reduced temperature will be
0.053 and frequency ν = 107. This choice of parameters will
allow to compare the dynamics around the aperiodic behavior.

This is exemplified in Fig. 1 where the position correlation
function 〈q(t )q0〉 is plotted for γ values of 1 (solid black),
2 (dotted red), and 4 (dot-dashed blue), respectively. It can
be seen in the two panels of the figure that γ = 2 defines
a separation domain where the oscillatory behavior of the
correlation function begins. Even though the imaginary con-
tributions (bottom panel) are negligible in comparison to the

FIG. 2. Standard deviations σQ(t ) versus t for the curves de-
scribed in Fig. 1.

real counterparts, at large times (not shown) the overdamped
case (dot-dashed blue curve) becomes much smaller than the
other two. These features do not produce a significant change
in σQ(t ), except in their magnitudes. However, the diffusion
term in the imaginary ω scenario will be very different. This
is discussed next.

The statistics of random complex numbers require that the
standard deviation, in addition to being positive, must also
be equal to the sum of the standard deviations of real and
imaginary parts. It means that the calculations should be done
on each component of the position correlation function so that
σQ(t ) is the sum of the two contributions. The diffusion term
DQ(t ) follows according to Eq. (5c). The real part of these two
functions is concerned with the spreading of the probability
density due to the external potential and interference effects
due to the quantum coherence, while the imaginary part to the
dissipation by the quantum thermal bath.

Figure 2 shows the standard deviation up to t = 10. The
time dependence of the real and imaginary contributions are
always positive. From the graph it seems that σQ(t ) reaches
a maximum, however, it is a continuous growing function of
time. It means that the initial equilibrium distribution is widen
with the position as time progresses so at very large values of
t there is no a preferable position for the particle to be found.
This is a consequence of the quantum entanglement with the
heat bath. Frequency ω changes the magnitude of the function
with no visible effect wether or not ω be real or imaginary.
The significance of γ < 2 in the dynamics is better viewed by
examining the time-dependent diffusion.

It is generally accepted that equilibrium classical negative
diffusion coefficients would denote process of “concentra-
tion” as opposed to diffusion. Thus, entropy is decreasing.
That means, it is not a random walk problem but additional
forces are acting opposing to diffusion process resulting in
concentration. This paradigmatic vision of diffusion is not
fulfilled in the periodic quantum case, even in the classical
one, as it will be demonstrated next.

A system at equilibrium under the effect of an external
force is prohibited to have negative diffusion because of the
Stokes-Einstein relationship D = kBT/γ . The particle can-
not move against the field. However, for a nonequilibrium
situation there is not any fundamental principle that disal-
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lows it to occur. This is what was found in several classi-
cal problems such as in the coupled phase response of an
ensemble of oscillators [23], overdamped Brownian motion
through a “corridor” with periodic and symmetric obstacles
[24], random walk in which the step directions taken by the
walker are correlated with previous ones [25], and Brownian
motion biased by a potential in a layered domain with un-
biased transitions between [26]. Although, according to the
authors, those specific dynamical models can mimic specific
Brownian motion problems, unfortunately, negative diffusion
has so far not been experimentally observed. However, for the
quantum Brownian motion it was found in 2011 by Fleming
et al. [15] that for a given set of model parameters and
initially particle states uncorrelated with the environment, the
diagonal position element of the covariance matrix accom-
panying W (p, q, t ) oscillates as time progresses. Using the
relationship of it with the diffusion term, it was predicted
that it shows negative values. This feature seems to indicate
that a generalized diffusion showing negative values is a trait
own to the quantum Brownian motion. However, as it will be
proved later, the negativeness even persists in the classical
regime for a definite set of parameters. Although the 2017’s
Carlesso et al. research [16] worked out the same problem
for an overdamped regime in the Heisenberg picture, it would
not be discarded that a negative diffusion would be found
for an underdamped bath. Very recently, in 2018 Shen et al.
[17] showed that for an external force given by an electric
field and uncorrelated initial preparation, the time-dependent
coefficient related to the generalized diffusion of the master
equation under the rotating wave approximation also shows
a fluctuating covariance matrix. The main difference of these
works with the one presented in this research is the inclusion
of the correlation between the bath noise and the initial par-
ticle position. In most of physical situations such correlations
are present and therefore they have to be taken into account.
In a work due to Karrlein et al. [27] it was shown that
switching the interaction at t = 0, uncorrelated system, affects
the dynamics at long times: the classical limit of Adelman
et al. [3] is not recovered and the Fokker-Plank operator
terms differ with those of the correlated. Additionally the
work by Štelmachovič et al. [28] showed that the parameters
describing an uncorrelated system-bath entanglement “cannot
be determined by performing a local measurement on the
initial state of the system,” that is to say, on the Brownian
particle. Fonseca Romero et al. [29] illustrate that for several
examples of open quantum systems.

Under the premise of existence of an initial particle-bath
entanglement, the results reported here describe in more detail
the physical picture of the problem under consideration.

This is revealed in the top of Fig. 3 for γ = 1. The middle
panel shows the function for γ of 2 (dotted red) and 4 (dot-
dashed blue), while the bottom panel has short scale to show
the value DQ(0).

The top panel shows negative values of DQ(t ) at some
time intervals and strong discontinuities, as well. Besides the
quantum contribution there is an additional one coming from
the susceptibility χq(t ) in the (t ) function given by Eq. (5b).
It is shown in the inset of the figure for γ = 1. It does not
approach to a long–time limit and is a very discontinuing
function for γ < 2 with poles and zeros along the real time

FIG. 3. Quantum generalized diffusion DQ(t ) versus t for the
curves described in Fig. 1. The inset in the top panel shows the time
dependence of (t ) for γ = 1. The bottom panel is an enlargement
at short times.

axis. The quantum entanglement from the standard deviation
modifies its magnitude while (t ) provides the discontinuous
oscillatory character to DQ(t ) and its brief partial negativity
for short time lapses as well. The quantum contribution is
due to the effect of the cloud of the thermal bath oscillators
surrounding the particle. It generates a relevant role in the
dynamics, particularly at low temperatures. This nontrivial
effect was pointed out by Nieuwenhuizen et al. [11] in the
derivation of the full space Wigner function W (x, p, t ) for
the generalized quantum Brownian motion. In any case, this
“strange” dynamical response of DQ(t ) is mainly due to the
contribution of (t ). This feature in the periodic regime is the
main result of this work. It will be shown later that it is also
be observed in classical systems.
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FIG. 4. Classical standard deviations σclas(t ) versus t for γ val-
ues of 200 (solid black), 250 (dotted black), 318 (dashed blue), and
400 (dot-dashed red); T = 25.2. The inset corresponds to γ of 0.5
(solid black), 1.0 (dotted black), 2 (dotted blue), and 4 (dot-dashed
red) at T = 2.

Then, it should be said that the periodic result found in this
proposal is own to the physics of a nonequilibrium stationary
system due to the absence of a temporal finite limit in DQ(t ).

There is another striking feature in the quantum approach
shown in the bottom panel of Fig. 3. It concerns with the
initial value of DQ(t ), which is not zero as expected. It is
primordially due to the initial preparation of the system. In
other words, to the correlation of the quantum noise with the
initial position of the Brownian bead.

The classical counterpart for σQ(t ) is shown in Fig. 4
for γ lying around 318 corresponding to the overdamped
system mentioned in the beginning of this section. No special
characteristics are observed except the value predicted by the
equipartition principle at very large values of t . However, this
function is sensitive to the value of ω. For a hypothetical
classical system at T = 2 and γ values of 0.5, 1, 2, and 4,
the inset of Fig. 4 shows oscillations in the periodic regime at
specific times.

The associated Dclas(t ) is presented in Fig. 5. The inset
shows the corresponding effect of (t ) for imaginary ω. It

FIG. 5. Classical diffusion Dclas(t ) versus t for the curves de-
scribed in Fig. 4.

has similarities with the quantum and tells that the Markovian
classical Brownian motion will also predict transient negative
diffusion during times lapses of the dynamics if and only
if it is periodic, that is, γ is less than 2. It has physical
consistency, although the discontinuity and negativeness of
D(t ) might seem “un-physical” in the paradigmatic context
of the problems of equilibrium diffusion and concentration
processes mentioned above.

In summary, results for an imaginary ω could probably be
achieved in the quantum scenario due to the requirement of
low temperatures to reach that particular dynamic state. The
relevance of the theoretical prediction on both regimes depend
on its experimental confirmation.

IV. CONCLUDING REMARKS

The results for the calculation of the generalized diffusion
DQ(t ) of a Brownian particle interacting with a bath of
quantum harmonic oscillators have been presented. They are
anchored on strong mathematical and physical grounds.

It was found that the bath spread out the initial equilibrium
probability and modifies the positiveness of the diffusion term
during brief period of time when the system behaves periodic.
The nature of it is that the dynamics is own of a stationary
nonequilibrium system with a strong contribution coming
from the periodic and discontinued frequency (t ).

Additionally, the initial behavior of DQ(t ) is finite in con-
trast to the classical result. It is ascribed to the correlation of
the quantum noise and the initial position of the particle. At
any time and ω value, the entanglement of the bath with the
particle will substantially modified the dynamics in compari-
son with the classical one. As it was mentioned in Ref. [18],
the quantum description reduces correctly to classic when the
quantum noise is white.

The negative aspect of the generalized diffusion function in
periodic systems went unnoticed in the classical bibliography
of the Brownian motion, despite the fact that Adelman et al.
[3] made an analysis of it. In general, the standard devi-
ation, mean square displacement, the Gaussian probability
distribution, and the long time diffusion limit, to cite a few,
were among the main properties to determine, mainly in the
overdamped regime or high friction limit. No mention of
the characteristics of the generalized diffusion in the under-
damped or periodic scenario has so far been documented.

The results obtained are mathematically consistent and
their validity will depend on the experimental feasibility of
building a quantum system under these conditions.

Finally, there could be a potential extension of this inves-
tigation. It has to do with the similarities shared by Eq. (5a)
with the FPE of an Ornstein-Uhlenbeck process (OUP) with
variable coefficients [30,31]. In fact, by means of Ito’s rule
[31], the c-number dynamics can also be interpreted as the
following first-order stochastic differential equation

q̇(t ) = −(t ) q(t ) + √
DQ(t ) ζ (t ), (17)

where ζ (t ) is a Gaussian zero mean delta correlated white
noise. Its solution provides the variance of its Gaussian proba-
bility distribution from which DQ(t ) is calculated by Eq. (5c).

In this respect, the dynamics of the QLE is simplified to
an OUP, Eq. (17), with the ubiquitous white noise term. The
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quantum contribution is propagated by the time-dependent
diffusion function DQ(t ) and the response of the system to the
external field by the frequency (t ). Since it is well known
that the applicability of this stochastic scheme to classical
problems as anomalous diffusion, exit, and first passage times
and dynamic relaxation, to name a few, then it potentially
could be extended to the quantum scenario. It is not a method-
ology to replace it, but instead, it is an excellent theory to
analyze the quantum contribution to some other problems of

physical interest. The only requirement is that generalized
diffusion DQ(t ) and frequency (t ) must have been first
determined from the solution of the QLE in the configuration
space.
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