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Starting from Landauer’s slogan “information is physical,” we revise and modify Landauer’s principle stating
that the erasure of information has a minimal price in the form of a certain quantity of free energy. We establish
a direct link between the erasure cost and the work value of a piece of information and show that the former is
essentially the length of the string’s best compression by a reversible computation. We generalize the principle by
deriving bounds on the free energy to be invested for—or gained from, for that matter—a general computation.
We then revisit the second law of thermodynamics and compactly rephrase it (assuming the Church-Turing-
Deutsch hypothesis that physical reality can be simulated by a universal Turing machine): Time evolutions
are logically reversible—“the future fully remembers the past (but not necessarily vice versa).” We link this
view to previous formulations of the second law, and we argue that it has a particular feature that suggests its
“logico-informational” nature, namely, simulation resilience: If a computation faithfully simulates a physical
process violating the law, then that very computation procedure violates it as well.
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I. INTRODUCTION

In 1961, Rolf Landauer famously stated “Information is
physical” [1]: Despite the success of Shannon’s making in-
formation an abstract concept (that can be viewed and un-
derstood independently of its particular physical realization),
Landauer—while not questioning the power of that abstract
view—recalls that all information storing, treatment, and
transmission is ultimately a physical process and, thus, subject
to physical laws. A specific law relevant in this context is the
second law of thermodynamics. Its consequence for informa-
tion processing has been called Landauer’s principle [2]: “The
erasure of N bits of information costs at least an amount of
NkT ln 2 (k being Boltzmann’s constant) of free energy that
must be dissipated as heat into the environment of temperature
T .” (Note that this heat dissipation is crucial for the argu-
ment: It represents the compensation required for avoiding
a violation of the second law despite an entropy decrease in
the memory device through the erasure process.) Conversely,
erased strings have a work value (see, e.g., Refs. [3,4]): By,
e.g., encoding an erased bit string of length N in the particle’s
position of a gas within a box, where the particle’s position is
on the left half for the value 0 and on the right half otherwise,
and by placing a piston in the center, NkT ln 2 of free energy
can be extracted from the environment, “randomizing” the
original string.

In this article, we modify and generalize Landauer’s prin-
ciple in the following respects: First, it is claimed that the
erasure cost is proportional not to the length of the string
to be erased, but of its best compression—given the entire
knowledge of the erasure device (Sec. IV). We obtain these
results from the bounds we acquire on the work value of
information (Sec. III) and a direct connection between erasure
cost and work value of any piece of information. Second, we
generalize these results to a lower bound on the free-energy
cost, or value, of a general computation (Sec. V). Our findings

are modifications of known results (see e.g., Refs. [4–7])
to the constructive setting—where all involved processes are
imagined to be carried out by a Turing machine. Furthermore,
we give a lower bound on the free-energy gain possible from
certain computations—a bound that matches the cost of the
inverse computation. We look at the use of the erasure cost
as an intrinsic randomness measure in the context of quantum
correlations (Sec. VI). Having these results at hand, we finish
by proposing a computational version of the second law of
thermodynamics (Sec. VII). This comes with a speculation
about which of its trait is the reason why such a version exists
in the first place. Candidates are its “encoding independence”
and “simulation resilience:” If a computation simulates a pro-
cess violating the second law, then that computing procedure
cannot be closed but must dissipate “junk” bits onto the other
parts of the tape or heat into the environment. Thus, the
violation of the law by a process carries over to its simulation.
The reason is that a degree of freedom is represented by a
degree of freedom.

II. WORK VALUE: STATE OF THE ART

While other results (see, e.g., Refs. [8–13]) on the work
value of information focus on using information reservoirs to
generate energy flows, the below described results and this
article focus on the work value of information—being in form
of random variables or bit strings—per se. As opposed to dis-
cussing the role of information in thermodynamic processes,
we discuss the thermodynamics processes of information.

A. Bennett’s view

Bennett [5] claimed the work value of a string S, W (S), to
be proportional to the difference between its length, �(S), and
the length of the shortest program that produces S. The latter
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is called the Kolmogorov complexity of S, denoted by K (S)
[14]. Expressed mathematically, this amounts to

W (S) = [�(S) − K (S)]kT ln 2. (1)

Bennett’s argument is that S can be logically, hence, thermo-
dynamically [15] reversibly mapped to the string P||000 · · · 0,
where the symbol || denotes concatenation, and P is the
shortest program generating S. The length of the generated
0-string is �(S) − K (S).

It was already pointed out by Zurek [16] that while it is
true that the reverse direction exists and is computable by a
universal Turing machine, its forward direction, i.e., obtaining
P from S, is uncomputable. This means that a “demon”
that could carry out this work-extraction computation on S
does not exist (if the Church-Turing hypothesis is true); the
Kolmogorov complexity is an uncomputable value. We will
see, however, that Bennett’s value is an upper bound on the
work value of S. Bennett also links the string’s erasure cost to
its probabilistic entropy [17].

B. View of Dahlsten et al.

Dahlsten et al. [4,6] follow Szilárd [3] in putting the knowl-
edge of the demon extracting the work at the center of their
attention. More precisely, they claim W (S) = �(S) − D(S),
where the “defect” D(S) is bounded from above and below
by a smooth Rényi entropy of the distribution of S from the
demon’s viewpoint, modeling its ignorance. Building on these
results and in the same probabilistic spirit, the cost of erasure
[18] as well as of general computations [7] have been linked to
entropic expressions of (conditional) probability distributions.

III. WORK EXTRACTION AS DATA COMPRESSION

In the following, we model work extraction to be an
algorithm executed by a “demon with knowledge.”

A. The model

We assume the demon to be a universal Turing machine U ,
the memory tape of which is sufficiently long for the inputs
and tasks in question, but finite. The tape initially contains S,
the string the work value of which is to be determined, X , a
finite string modeling the demon’s knowledge about S, and
0s for the rest of the tape. After the extraction computation,
the tape contains, at the bit positions initially holding S,
a (shorter) string P plus 0�(S)−�(P), whereas the rest of the
tape is (again) the same as before the work extraction. The
operations are logically reversible and can, hence, be carried
out thermodynamically reversibly [15]. Logical reversibility
is the ability of the same demon to carry out the backward
computation step by step, i.e., from P||X to S||X . We denote
by W (S|X ) the maximal length of an all-0-string extractable
logically reversibly from S, given the knowledge X , times
kT ln 2, i.e.,

W (S|X ) := [�(S) − �(P)]kT ln 2 (2)

if P’s length is minimal.

RZ RZ
(S, X)

0 . . .

⊕

j

RU RU
(Z(S, X), X)

0 . . .

⊕

j

0 . . . 0 . . .

FIG. 1. Schematic circuit of thermodynamically neutral com-
pression with helper. The circuit RZ implements the compression
algorithm Z with Toffoli gates only, is the same circuit in reverse
order. Then again, the circuit RU implements the corresponding
decompression algorithm with Toffoli gates only, and is its
reverse. The symbols j and j′ represent the “junk” that arises from
implementing the circuits with Toffoli gates only.

B. Lower bound

We show that every specific data-compression algorithm
leads to a lower bound on the extractable work: Let Z be a
computable function

Z : {0, 1}∗ × {0, 1}∗ −→ {0, 1}∗ (3)

such that

(A, B) �→ (Z (A, B), B) (4)

is injective.1 We call Z a data-compression algorithm with
helper. Then we have

W (S|X ) � [�(S) − �(Z (S, X ))]kT ln 2. (5)

This can be seen as follows. First, note that the function

A||B �→ Z (A, B)||0�(A)−�(Z (A,B))||B (6)

is computable and bijective. From the two (possibly irre-
versible) circuits which compute the compression and its
inverse, one can obtain a reversible circuit for the function
such that no further input or output bits are involved: This
can be achieved by first implementing all logical operations
with Toffoli gates and uncomputing the “junk” [19] in both
circuits. The resulting two circuits now still have the property
that the input is part of the output. As a second step, we
can simply combine the two such that the first circuit’s first
and second outputs become the second’s second and first
inputs, respectively. Roughly speaking, the first computes
the compression and the second reversibly uncomputes the
raw data (see Fig. 1). The combined circuit has only the
compressed data plus the 0s as the output, sitting on the bit
positions carrying the input before. (This circuit is roughly as
efficient as the less efficient of the two irreversible circuits for
data compression and decompression, respectively.) A typical
example for an algorithm that can be used here is universal
data compression à la Ziv-Lempel [20].

C. Upper bound

We have the following upper bound on the extractable
work:

W (S|X ) � [�(S) − KU (S|X )]kT ln 2, (7)

1The set {0, 1}∗ is the set of all finite but arbitrarily long bit strings.
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S X 00 . . . 0 00 . . . 0

S X S 00 . . . 0

00 . . . 0 X S 00 . . . 0

FIG. 2. The demon uses X as program to produce a second copy
of S, which thereafter is used to generate 0�(S) via the reversible
operation S ⊕ S (bitwise addition modulo 2).

where KU (S|X ) is the conditional Kolmogorov complexity
(with respect to the universal Turing machine U ) of S given
X , i.e., the length of the shortest program P for U that outputs
S, given X . The reason is that the extraction demon is able
only to carry out the computation in question (logically, hence,
thermodynamically) reversibly if it is able to carry out the
reverse computation as well. Therefore, the string P must be
at least as long as the shortest program for U generating S if
X is given.

Although the same is not true in general, this upper bound
is tight if KU (S|X ) ≈ 0. The latter means that X itself can be
seen as a program for generating an additional copy of S. The
demon can then bitwisely XOR this extra S to the original
S (to be work-extracted) on the tape, hereby producing 0�(S)

reversibly to replace the original S, at the same time saving
the new one, as reversibility demands (see Fig. 2). When
Bennett’s “uncomputing trick” is used—allowing any com-
putation by a Turing machine to be made logically reversible
[19]—then a history string H is written to the tape during the
computation of S from X such that after XORing, the demon
can, in a (reverse) stepwise manner, uncompute the generated
copy of S and end up in the tape’s original state—except
that the original S is now replaced by 0�(S): This results in
a maximal work value matching the (in that case trivial) upper
bound.2

2Let us compare our bounds with the entropy-based results of
Refs. [4,6]: According to the latter, a demon knowing S entirely is
able to extract maximal work: W (S) ≈ �(S)kT ln 2. What does it
mean to “know S”? The knowledge can consist of (a) a copy of S
or of (b) the ability to compute such a copy with a given program
P, or (c) it can determine S uniquely without providing the ability
to compute it. The constructive as opposed to the entropic groups
of results are in accordance in cases (a) and (b) but in conflict in
case (c): For instance, assume the demon’s knowledge about S is: “S
equals the first N bits �N of the binary expansion of �,” where, �

is the so-called halting probability [21] of a fixed universal Turing
machine A (e.g., the demon U itself). Although there is a short
description of S in this case, and S is thus uniquely determined in an
entropic sense, it is still incompressible, even given that knowledge:
KU (�n | “It is bits 1–n of TM A’s halting probability”)≈n: No work
is extractable according to our upper bound. Intuitively, this gap

FIG. 3. The energy cost of a general computation.

IV. REVISING LANDAUER’S PRINCIPLE

Here we revise Landauer’s principle to give a lower and an
upper bound on the erasure cost.

A. Connection to work value

For a string S ∈ {0, 1}N , let W (S|X ) and Cerasure(S|X ) be its
work value and erasure costs, respectively, given an additional
string X (a “catalyst” which remains unchanged, as above).
Then

W (S|X ) + Cerasure(S|X ) = NkT ln 2. (8)

To see this, consider first the combination extract-then-
erase. In the extraction process we gain W (S|X ) of free energy
and consequently have to erase N bits. Since this is one
specific way of erasing, we have

Cerasure(S|X ) � NkT ln 2 − W (S|X ). (9)

If, on the other hand, we consider the combination erase-then-
extract, this leads to

W (S|X ) � NkT ln 2 − Cerasure(S|X ). (10)

We spend Cerasure(S|X ) of free energy to erase the string and
use all of the string as “fuel.”

B. Bounds on the erasure cost

Given the results on the work value above, as well as
the connection between the work value and erasure cost, we
obtain the following bounds on the thermodynamic cost of
erasing a string S by a demon, modeled as a universal Turing
machine U with initial tape content X .

Landauer’s principle, revisited. Let Z be a com-
putable function, Z : {0, 1}∗ × {0, 1}∗ −→ {0, 1}∗, such that
(A, B) �→ (Z (A, B), B) is injective. Then we have

KU (S|X )kT ln 2 � Cerasure(S|X )

� �(Z (S, X ))kT ln 2. (11)

The first inequality follows from Eq. (8) in combination with
the upper bound (7), the second from Eq. (8) and the lower
bound (5).

opens up whenever the “description complexity” is smaller than the
Kolmogorov complexity. (Note that a self-reference argument, called
the Berry paradox, shows that the notion of “description complexity”
is problematic and can never be defined consistently for all strings.)
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V. GENERALIZING LANDAUER’S PRINCIPLE

Erasure as well as work extraction can be seen as special
cases of a computation with a given input and an output. Here
we generalize Landauer’s principle and discuss the work cost
and work value of a general computation; i.e., we generalize
the already obtained bounds on the cost (minimal amount of
free energy that has to be used) and value (maximal amount
of free energy that can be gained) to general computation.
Assume that a (universal) Turing machine performs a com-
putation such that the initial content of the tape is A and X
(plus a corresponding finite number of 0s) and the final state
is B and X (where X can be seen, again, as a “catalyst”).
Depending on A, B, and X , this computation can have a work
cost or value, respectively. If it has some work cost, then the
party performing the computation has to invest free energy
that will be dissipated as heat to the environment during the
computation. In the case that the computation has some value,
heat from the environment is transformed to free energy.

A. The energy cost of a general computation

The following result is an algorithmically constructive
modification of entropic results [7] and a generalization of less
constructive but also complexity-based claims [22].

Work cost of a general computation. (see Fig. 3) Let Z be
a computable function, Z : {0, 1}∗ × {0, 1}∗ → {0, 1}∗, such
that (V,W ) �→ (Z (V,W ),W ) is injective. Assume that the
Turing machine U carries out a computation such that A is
its initial state, C1 the first intermediate state, C2 the second,
etc., up to Cn, and B is the final state. Then the energy cost
of this computation with side information X (always on the
tape), CU (A →{Ci} B | X ), is at least

CU
(
A →{Ci} B

∣∣ X
)
� kT ln 2

{
KU (A|X )

−
n∑

i=1

[�(Z (Ci, X )) − KU (Ci|X )] − �(Z (B, X ))
}
. (12)

Proof. Let us consider the computation from (A, X ) to
(C1, X ). According to the above [see expression (11)], the
erasure cost of A, given X , is at least KU (A|X )kT ln 2. One
possibility of realizing this complete erasure of A is to first
transform it to C1 (given X ), and then erase C1—at cost at
most �(Z (C1, X ))kT ln 2. Therefore, the cost to get from A
to C1 given X cannot be lower than the difference between
KU (A|X )kT ln 2 and �(Z (C1, X )) · kT ln 2. The statement fol-
lows by summing all contributions of the individual comput-
ing steps. QED.

Note that if no intermediate results are specified, the bound
simplifies to

CU (A → B | X )

� [KU (A|X ) − �(Z (B, X ))]kT ln 2 (13)

(see also Ref. [23]).

B. The energy value of a general computation

We consider the work value of a computation from A to
B, given X . More specifically, this is, a computation that

starts with (A, X ) and finishes with (B, X ), where B is freely
choosable by the computation among all strings with a given
complexity KU (B|X ). The work value is denoted by WU (A →
B | X ), and it is bounded from below as follows.

Work value of a general computation. Let Z be a com-
putable function, Z : {0, 1}∗ × {0, 1}∗ → {0, 1}∗, such that
(V,W ) �→ (Z (V,W ),W ) is injective. The work value of a
computation from A to B, given X , is bounded from below
by

WU (A → B | X ) � [KU (B|X ) − �(Z (A, X ))] kT ln 2. (14)

Proof. The cost of erasing A, given X , is at most
�(Z (A, X )) kT ln 2 (see expression (11)). We use a stretch
of the resulting all-0-string of some length N for gaining
NkT ln 2 free energy. The resulting string of length N is
then used as a program for the universal Turing machine U ,
with additional input X , and where the computation is made
logically reversible using Bennett’s “uncomputing” trick [19];
let B be the resulting string. Then KU (B|X ) � N . QED.

C. Combination

Consider the following “circular computation,” given X :

A −→ B −→ A. (15)

The free-energy gain of computing B from A is at least

[KU (B|X ) − �(Z (A, X ))] kT ln 2, (16)

whereas the cost for computing A back from B is at least this
same amount. The identity of the two bounds is not very sur-
prising; it implies that the bound on the work value is “at least
as tight” as the one for the cost of the inverse computation,
since otherwise a perpetuum mobile of the second kind results.

VI. “RANDOMNESS” AND QUANTUM CORRELATIONS

Landauer’s revised principle suggests that the erasure cost
of a piece of information is an intrinsic, context-free, physical
measure for its randomness independent of probabilities and
counterfactual statements (that “some value could just as well
have been different”).3 This can be tested in a context in
which randomness is central: Bell correlations [24] predicted
by quantum theory. In a proof of principle, it was shown [25]
that in essence, a similar mechanism as in the probabilistic
setting arises: If the correlation is nonlocal, the inputs are
incompressible, and nonsignaling holds, then the outputs must
be highly complex as well.

Before we describe some of the findings of Ref. [25] in
more detail, we introduce the required notation. For an infinite
string a = (a1, a2, . . . ), we define its “truncation” a[n] :=
(a1, a2, . . . , an, 0, 0, . . . ): the string a where all symbols after
the nth are set to 0. The expressions K (a) and K (a | b), where
b is an infinite string as well, denote the functions

K (a) : N → N, with n �→ K (a[n] ), (17)

3Moreover, such a point of view allows one to discuss randomness
on operational grounds.
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K (a | b) : N → N, with n �→ K (a[n] | b[n] ). (18)

An incompressible string a has the property

K (a) ≈ n :⇐⇒ lim
n→∞

K (a[n] )

n
= 1, (19)

and a computable string a the property

K (a) ≈ 0 :⇐⇒ lim
n→∞

K (a[n] )

n
= 0. (20)

Intuitively, the shortest program that prints an incompressible
string consists of that very same string, and the shortest
program that prints a computable string has a constant length.
Moreover, we say two functions f and g mapping natural
numbers to natural numbers, where g �≈ 0, satisfy f ≈ g if and
only if

lim
n→∞

f (n)

g(n)
= 1. (21)

Having this notation at hand, the result stated above is the
following. Let (a, b, x, y) be a tuple of four infinite binary
strings, where

(1) the PR-box condition [26] is satisfied:

xi ⊕ yi = aibi for all i ∈ N, (22)

(2) both “input” strings a and b are independent and
incompressible: K (a, b) = K (a) + K (b) ≈ 2n,

(3) the no-signaling condition is satisfied:

K (x | a) ≈ K (x | a, b), and (23)

K (y | b) ≈ K (y | a, b). (24)

It follows from these conditions that the “output” strings
are not computable—even if conditioned on the “input”:

K (x | a) = �(n) and K (y | b) = �(n). (25)

While this stated result assumes the existence of correlations
not attainable by quantum means [27], the same article proves
an analogous statement for quantum correlations, e.g., for the
quantum violations of the chained Bell inequalities [28,29].

These results allow for a discussion of quantum corre-
lations without the usual counterfactual arguments used in
derivations of Bell inequalities (combining in a single formula
results of different measurements that cannot actually be car-
ried out together). Furthermore, this potentially opens the door
to novel functionalities, namely, complexity amplification and
expansion [30]. What results is an all-or-nothing flavor of the
Church-Turing hypothesis [31]: Either no physical computer
exists that is able to produce non-Turing-computable data–or
even a “device” as simple as a single photon can.

VII. THE SECOND LAW AS LOGICAL REVERSIBILITY

In Landauer’s principle, the price for the logical irre-
versibility of the erasure transformation comes in the form of a
thermodynamic effort. (Since the amount of the required free
energy, and heat dissipation, is proportional to the length of
the best compression of the string, the latter can be seen as a
quantification of the erasure transformation’s irreversibility.)
In an attempt to harmonize this somewhat hybrid picture, we

invoke Wheeler’s [32] “It from Bit: Every it—every particle,
every field of force, even the spacetime continuum itself—
derives its function, its meaning, its very existence entirely
... from the apparatus-elicited answers to yes-or-no questions,
binary choices, bits.” This is an antithesis to Landauer’s
slogan, and we propose the following synthesis of the two:
If Wheeler motivates us to look at the environment as being
a computation as well, then Landauer’s principle may be
read as “The necessary environmental compensation for the
logical irreversibility of the erasure of S is such that the
overall computation, including the environment, is logically
reversible: no information ever gets completely lost.”

Second law, logico-computational version. Time evolutions
of closed systems are injective: Nature computes with Toffoli,
but no AND or OR gates.

Note that this fact is a priori asymmetric in time: The future
must uniquely determine the past, not necessarily vice versa.
In case the condition holds also for the reverse time direction,
the computation is called deterministic, and randomized oth-
erwise.

Logical reversibility is a simple computational version
of a discretized second law, and it has implications resem-
bling the traditional versions of the law: First, it leads to
a “Boltzmann-like” form, i.e., the existence of a quantity
essentially monotonic in time. More specifically, the logical
reversibility of time evolution implies that the Kolmogorov
complexity of the global state at time t can be smaller than the
one at time 0 only by at most K (Rt ) + O(1) if Rt is a string
encoding the time span t . The reason is that one possibility
of describing the state at time 0 is to give the state at time
t , plus t itself; the rest is an exhaustive search using only
a constant-length program simulating forward time evolution
(including possible randomness).

Similarly, logical reversibility also implies statements re-
sembling the version of the second law due to Clausius:
“Heat does not spontaneously flow from cold to hot.” The
rationale here is explained with a toy example: If we have a
circuit—the time evolution—using only (logically reversible)
Toffoli gates, then it is impossible that this circuit computes
a transformation mapping a pair of strings to another pair
such that the Hamming-heavier of the two becomes even
heavier while the lighter gets lighter.4 A function accentuating
imbalance, instead of lessening it, is not injective, as the
following counting argument shows.

“Clausius” toy example. Let a circuit consisting of only
Toffoli gates map an N (= 2n)-bit string to another. We con-
sider the map separately on the first and second halves and
assume the computed function to be conservative, i.e., to
leave the Hamming weight of the full string unchanged at
n (conservativity can be seen as some kind of first law, i.e.,
the preservation of a quantity). We look at the excess of 1s
in one of the halves (which equals the deficit of 1s in the
other). We observe that the probability (with respect to the
uniform distribution over all strings of some Hamming-weight
couple (wn, (1 − w)n), where the first half has wn 1s and the

4The Hamming weight of a binary string S is the number of 1s
in S.
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second (1 − w)n) of the imbalance substantially growing is
exponentially weak. The key ingredient for the argument is
the function’s injectivity. Explicitly, the probability that the
weight couple goes from (wn, (1 − w)n) to ((w + �)n, (1 −
w − �)n)—or more extremely—for 1/2 � w < 1 and 0 <

� � 1 − w, is ( n
(w+�)n

)( n
(1−w−�)n

)
( n
wn

)( n
(1−w)n

) = 2−�(n). (26)

The example suggests that logical reversibility might be the
“Church-Turing manifestation” of the second law: If reality is
computed by a Turing machine, then physical laws correspond
to properties of such computations—as in the case of the
second law: logical reversibility. If we assume for a moment
that the second law of thermodynamics has indeed such a
simple Church-Turing manifestation, it is a natural question
in how far this already makes the law special. In fact, the law
does have a peculiar related property, encoding independence:
Since the second law deals with degrees of freedom, and
a degree of freedom will correspond, in another encoding,
to a degree of freedom again, it is either respected in both
encodings or violated in both. (In comparison: It cannot be
decided by just looking at a running program whether the
simulated system “violates or respects Kepler’s laws”—that
would crucially depend on how masses and their position
are represented by the code.) Hand in hand with this comes
the property of simulation resilience. Let us take again the
example of Kepler’s laws: If a program simulates planets
moving in, say, square orbits, this does not mean that the
program execution, viewed as a physical process, is by itself
problematic—the laws of gravity are not simulation resilient.
If, in sharp contrast to this, we simulate a system, e.g., the
microstate sequence of a steam engine, then that simulation
process violates the second law just as the simulated system
does: With respect to the second law of thermodynamics, the
simulation of “reality” is just as good as “reality” itself.

VIII. CONCLUSION

We start from Landauer’s principle, stating that the erasure
of information requires an amount of free energy, to be

dissipated as heat into the environment, proportional to the
number of independent binary degrees of freedom of that
information. Specifically, the use of reversible data com-
pression, imagined to be carried out by Fredkin and Tof-
foli’s ballistic computer, implies that the necessary amount
is proportional to the length of the best compression of the
information into a binary string (and not to the length of the
original string, as often stated). We generalize and broaden the
scope of the principle, and its converse, to lower bounds on the
free-energy cost of—or gain from—a general computation:
the bounds on cost versus gain are in accord.

Landauer derived, in 1961, his principle from the second
law of thermodynamics. We close the circle by formulat-
ing a simple “Church-Turing version” of that law: logical
reversibility of the overall computation, including the envi-
ronment. This fact alone implies variants of the historical
versions of the second law, due to Boltzmann, Clausius,
and also Kelvin; it is perhaps equivalent to theirs, certainly
simpler. The arising belief that the law is rather logical than
physical in its nature is nourished by two properties of the
second law: its encoding independence and its simulation
resilience.

Confronted with the relevance of the second law of thermo-
dynamics in computation, and with its simulation resilience,
let us close with the (provocative) question whether Lan-
dauer’s “Information is physical” should be replaced by “The
second law of thermodynamics is not physical.”

ACKNOWLEDGMENTS

We thank Charles Bédard, Claus Beisbart, Sophie
Berthelette, Paul Boes, Gilles Brassard, Časlav Brukner,
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