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In this paper, we study DNA breathing dynamics in the presence of an external periodic force by proposing
and inspecting several probability distribution functions (PDFs) of relevant Brownian functionals which specify
the bubble lifetime, reactivity, and average size. We model the bubble dynamics process by an overdamped
Langevin equation of broken base pairs on the Poland-Scheraga free energy landscape. Introducing an effective
time-independent description for timescales larger than T̃ = 2π

ω
(where ω is the frequency of external periodic

force) and using an elegant backward Fokker-Planck method we derive closed form expressions of several PDFs
associated with such stochastic processes. For instance, with an initial bubble size of x0, we derive the following
analytical expressions: (i) the PDF P(t f |x0 ) of the first passage time t f which specifies the lifetime of the DNA
breathing process, (ii) the PDF P(A|x0) of the area A until the first passage time, and it provides much valuable
information about the average bubble size and reactivity of the process, and (iii) the PDF P(M ) associated with
the maximum bubble size M of the breathing process before complete denaturation. Our analysis is limited to two
limits: (a) large bubble size and (b) small bubble size. We further confirm our analytical predictions by computing
the same PDFs with direct numerical simulations of the corresponding Langevin equations. We obtain very good
agreement of our theoretical predictions with the numerically simulated results. Finally, several nontrivial scaling
behaviors in the asymptotic limits for the above-mentioned PDFs are predicted, which can be verified further
from experimental observation. Our main conclusion is that the large bubble dynamics is unaffected by the
rapidly oscillating force, but the small bubble dynamics is significantly affected by the same periodic force.
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I. INTRODUCTION

Brownian motion in the presence of an external time-
dependent field is ubiquitous in geophysical, environmental,
and biophysical processes. One can identify numerous geo-
physical and environmental processes which occur under the
crucial effect of external time dependence and stochastic forc-
ing, e.g., the change between the snow-storage and snow-melt
phases [1,2], outbreak of water-borne diseases [3,4], the life
cycle of tidal communities [5–7], and many more. Stochastic
models with time-dependent drift and constant diffusion terms
are extensively used in the study of neuroscience [8–10]. An-
other important area where the same kind of time-dependent
drift can arise is in the time evolution of stock prices in
finance [11,12]. In this respect several interesting questions
of wide interest can be raised, such as (i) the probability of
finding the system in a certain domain at a certain instant
(survival probability), (ii) the PDF of time P(t f |x0) at which
the system exits a certain domain the first time (known as
first passage time t f ) starting from an initial value x0, (iii)
the PDF of area P(A|x0) before the first passage time, (iv)
the PDF P(M ) of the maximum value of a Brownian motion
(BM) process before its first passage time, and (v) the joint
probability distribution P(M; tm) of the maximum value M
and its occurrence time tm before the first passage time of
the BM process. The first passage time statistics for a Wiener
process with an exponential time-dependent drift term are
analyzed in the context of neuron dynamics in Refs. [13,14].
Also, recent studies of DNA unzipping under periodic forcing

need to be mentioned [15–17]. Recently, Molini et al. [18]
made a study on first passage statistics of BM with purely
time-dependent drift and diffusion terms using a method of
images.

In the present study, we investigate several PDFs relevant
to different Brownian functionals associated with the DNA
unzipping process in the presence of an external periodic
forcing. We basically consider two different type of periodic
forcing which are experimentally accessible: (a) case I:
f (x, t ) = f0 cos(ωt ) and (b) case II: f (x, t ) = f0x cos(ωt ).
There are several mechanisms which can lead to unzipping
of the double-stranded DNA, for example, heating [19],
changing the pH of the environment [20], and application
of external force [21–23]. This phenomenon is usually
referred to as DNA denaturation. The process starts by
locally separating the double strand into single strands to
form loops, or bubbles. These bubbles fluctuate in size
through stepwise zipping and unzipping of the base pairs.
It is very much essential to unzip a specific region of base
pairs for all physiological processes involving DNA to
occur, e.g., for replication, transcription, and protein binding.
Recent experimental development allows us to make direct
observation of the dynamics of a single DNA molecule
[24,25], which ensures intense research in the field of DNA
breathing dynamics under an external forcing. Also, one
can investigate force-induced separation of double-stranded
DNA at various temperatures using the recently developed
single-molecule force spectroscopy and dynamical force
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spectroscopy [24,25]. For a detail understanding of the
replication and transcription processes one needs to study the
force-induced separation of double-stranded DNA into single-
stranded DNA. Furthermore, in living organisms, the DNA
denaturation process is sometimes naturally driven by various
enzymes and proteins, which can be thought of as forced
unzipping of the two strands of the double helix. In this sense
the artificial force-induced separation of the double-stranded
DNA is a tool to mimic and understand such processes.

There are several theoretical aspects of DNA breathing
dynamics, and various methods have been employed to inves-
tigate different features of the bubble dynamics. One can name
several techniques: the master-equation approach [26–28], a
stochastic Gillespie scheme [29], the Fokker-Planck equation
approach [30,31], stochastic dynamics simulations [32,33],
and the quantum-Coulomb method [34,35]. We basically con-
sider the breathing dynamics as a random walk in the one-
dimensional coordinate x, the number of broken base pairs.
In our model we ignore heterogeneity in the DNA structure,
and this enables us to think of the random walk as a noisy
overdamped motion at a finite temperature T on the Poland-
Scheraga free energy landscape, F (x) = γ0 + γ x + ckBT ln x
(all the terms are defined later). One can think of a crossover
scale xch (defined later), and this implies that the random walk
takes place in a potential ∼ ln x for small bubbles (x < xch).
On the other hand, the potential grows linearly with x for
large bubbles (x > xch). Obviously, the dynamics should be
different in these two regimes.

As a matter of fact, one of the objectives of this work is
to advertise for the use of the well-studied backward Fokker-
Planck (BFP) method [36–39] and the path decomposition
(PD) method [39], which can enable us to derive all the above-
mentioned quantities P(t f |x0), P(A|x0), P(M ), and P(M, tm).
Both the BFP and PD methods are based on the Feynman-Kac
formalism [40], and both of them are used for exploring DNA
breathing dynamics under time periodic forcing. Both the
techniques are extensively used in studying many aspects of
classical Brownian motion, as well as for exploring different
problems in computer science and astronomy [36,41,42]. We
extended the applications of these elegant methods to study
the Brownian functionals for a BM process of DNA breath-
ing dynamics with purely time-dependent drift and constant
diffusion. Unlike the standard Fokker-Planck (FP) treatment
[43–46], which yields distribution functions directly, we de-
rive and solve differential equations for the Laplace trans-
forms of various Brownian functionals in the BFP method.
On the other hand, we can utilize the PD method to calculate
the distribution functions of interest by splitting a represen-
tative path of the dynamics into parts with their appropriate
weightage of each part separately. This fact is justifiable by
considering the Markovian property of the dynamics.

Although we are employing an external periodic force,
the problem can be reduced to an effective time-independent
dynamics by following the method of Sarkar and Dattagupta
[47]. The influence of a high frequency field on a classical
particle was analyzed by Kapitza [48]. Then the work of
Kapitza was more generalized by Landau and Lifshitz [49].
Rahav et al. further extended these effective dynamics for
quantum systems [50,51]. As we have mentioned, our model

can be described by an overdamped Langevin equation, but
Jung [52] and Sarkar and Dattagupta [47] described the effec-
tive time-independent dynamics for an overdamped Brownian
motion with an external rapidly oscillating periodic forcing.
We follow the method introduced by Sarkar and Dattagupta
[47]. Basically, the motion can be separated into a “slow part”
and a “fast part” that makes a very rapid motion about the slow
motion. As a result, the slow motion feels an effective time-
independent potential due to the rapid motion. In our problem
the DNA breathing process occurs in a microsecond [24,25],
and we are applying a terahertz field. Thus, the DNA breathing
process, which is occurring on a Poland-Scheraga potential,
can observe an additional effective time-independent potential
due to the external rapid periodic forcing.

The paper is organized as follows. In Sec. II, we discuss our
model of the DNA breathing process with an external terahertz
periodic field. Then we discuss several distribution functions
of interest and their relevances. The BFP and PD methods are
explained in short. Our discussions are limited to two regimes:
(i) large bubble and (ii) small bubble. Furthermore, we in-
vestigate the DNA breathing dynamics under the influence
of two types of rapidly oscillating periodic force—(a) case I:
f (x, t ) = f0 cos(ωt ) and (b) case II: f (x, t ) = f0x cos(ωt ). In
Sec. III, we discuss several PDFs for our stochastic model of
DNA breathing dynamics under a rapidly oscillating periodic
forcing in the large bubble limit. The small bubble dynamics
is illustrated in Sec. IV. We conclude our paper in Sec. V.

II. MODEL, METHODS, AND MEASURES

A. Model

At finite temperature, the overdamped Langevin equation
which governs the stochastic dynamics of the DNA breathing
process under a rapidly oscillating periodic forcing is given by

dx

dτ
= −D

dF (x)

dx
+ f (x) cos(ωτ ) + ξ̃ (τ ), (1)

where f (x) is either a constant f0 or a linear function of x, i.e.,
f0x, F (x) = γ0 + γ x + ckBT ln x is the Poland-Scheraga free
energy. Here, γ0 is the free energy barrier to form the initial
bubble, while the term γ x stands for the free energy required
in breaking x base pairs. The entropy loss in forming a closed
polymer loop is taken into account by the term ckBT ln x,
where kB is the Boltzmann constant, T is the temperature,
while c is a constant determined by the model of the interac-
tion between loops [53]. The parameter γ = γ1(Tm − T )/Tm,
with γ1 = 4kBTr , Tr being the reference temperature and Tm

the melting temperature, is defined as that temperature at
which half of the DNA molecules denatured. Further, ξ̃ (τ )
is a Gaussian white noise with 〈ξ̃ (τ )〉=0 and 〈ξ̃ (τ )ξ̃ (τ ′)〉=
2DkBT δ(τ − τ ′), where D is a kinetic coefficient which has
dimension (kBT )−1 s−1. Using the Poland-Scheraga free en-
ergy F (x) = γ0 + γ x + ckBT ln x in the Langevin equation
(1) and redefining the time variable t = 2DkBT τ , we get the
following equation:

dx

dt
= C2 − C1

x
+ f (x)

2DkBT
cos

(
ωt

2DkBT

)
+ ξ (t ), (2)

where C1 = c/2, C2 = γ (T − Tm)/(2kBT Tm), 〈ξ (t )〉=0,
〈ξ (t )ξ (t ′)〉 = δ(t − t ′). For simplicity we assume that
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D = 1/2 and kBT = 1. This results in

dx

dt
= C2 − C1

x
+ f (x) cos(ωt ) + ξ (t ). (3)

B. Effective Langevin dynamics

In this section our main goal is to derive an effective time-
independent Langevin equation for timescales larger than
T̃ = 2π

ω
of the real dynamics as described by Eq. (3). One

can actually map the real overdamped Langevin Eq. (3) by
a modified Langevin equation where the external periodic
forcing is absorbed by a modified effective potential term
Ueff (x). Sarkar et al. [47] and Jung [52] already proved that
the noise term is not affected by the external periodic forcing.
Hence, we can omit the noise term for the time being. Now,
we decompose x(t ) into a fast variable η(t ) and a slow variable
X (t ). Thus, Eq. (3) becomes

Ẋ (t ) + η̇(t ) = −F ′[X (t ) + η(t )] + f [X (t ) + η(t )] cos(ωt ).

(4)

By Taylor expanding the right-hand side of the above equa-
tion, we obtain

Ẋ (t ) + η̇(t ) = −[
F ′(X ) + F ′′(X )η + 1

2F
′′′(X )η2 + · · · ]

+ f (X ) cos(ωt ) + η f ′(X ) cos(ωt ). (5)

Since η(t ) is considered as a fast variable and f (X ) � 1, we
can demand from Eq. (5), with a very good approximation,
that

η̇(t ) = f (X ) cos(ωt ), (6)

which implies that η(t ) = f (X )
ω

sin(ωt ). Next, we take the av-
erage over time T̃ = 2π

ω
. Over this timescale one may consider

X (t ) and Ẋ (t ) to be constant. Thus, we obtain

Ẋ (t ) = −[
F ′(X ) + 1

2F
′′′(X )〈η2〉 + · · · ]

+ f ′(X )〈η cos(ωt )〉. (7)

(i) Case I: If we consider f (X ) = f0, one can show that

− 1
2F ′′′(X )〈η2〉 = f 2

0
2ω2

C1
X 3 and f ′(X )〈η cos(ωt )〉 = 0. Thus, the

effective dynamics becomes

Ẋ (t ) = C2 − C1

X

(
1 + f 2

0

2ω2X 2

)
. (8)

(ii) Case II: f (X ) = f0X , − 1
2F ′′′(X )〈η2〉 = f 2

0
2ω2

C1
X , and

f ′(X )〈η cos(ωt )〉 = 0. Hence, the effective dynamics be-
comes

Ẋ (t ) = C2 − C1

X

(
1 + f 2

0

2ω2

)
. (9)

For timescales larger than T and using the effective Hamilto-
nian method of rapidly oscillating force [47,52] one can obtain
effective time-independent overdamped Langevin equations:

(i) Case I: f (X, t ) = f0 cos(ωt ) where one obtains

dX

dt
= C2 − C1

X

(
1 + f 2

0

2ω2X 2

)
+ ξ (t ). (10)

(ii) Case II: f (X, t ) = f0X cos(ωt ) where one obtains

dX

dt
= C2 − C1

X

(
1 + f 2

0

2ω2

)
+ ξ (t ). (11)

We have chosen two particular forms of external periodic
forces f0 cos(ωt ) [case I] and f0x cos(ωt ) [case II]. These
are the model potential for the Paul trap and for rapidly
scanning optical tweezers [54] and are very much experimen-
tally realizable [55,56]. Thus, Eqs. (10) and (11) introduce
a characteristic scale xch = C1

C2
such that for small bubbles,

x〈xch, the free energy is governed by the loop-forming term
ln x, and the effective Langevin dynamics of (10) and (11)
is essentially governed by the term C1. For large bubbles
with x〉xch, the linear base-pair dissociation term γ x dictates
the dynamics, which results in the term C2 dominating the
Langevin dynamics. For T 〈Tm, the Langevin dynamics occurs
in an attractive potential for all bubble sizes, thereby ensuring
eventual bubble closure. Above Tm, large bubbles with x〉xch

grow in size under a repulsive linear potential to ultimately
yield full denaturation, while a small bubble with x〈xch may
evolve towards closure under the influence of the attractive
ln x potential. We will utilize below the length scale xch to
distinguishing between small and large bubbles.

C. Methods

In one dimension, the first passage statistics-related prob-
lem is basically formulated by considering a state variable
which evolves stochastically according to a given law in its
phase space. We are mainly concerned about the instant when
the variable leaves a certain domain for the first time. To
deal with such a problem a number of methods or approaches
are described in Refs. [36,44,45,57]. Here, we describe two
elegant methods: (i) the backward Fokker-Planck method and
(ii) the path decomposition (PD) method.

1. Backward Fokker-Planck method

Following Ref. [36], we can introduce a general description
to compute the PDF of a Brownian functional in a time
interval [0, t f ], where t f is the first passage time of the process.
Thus, one can introduce a functional to calculate different
statistical properties of a Brownian functional:

B =
∫ t f

0
U (x(τ ))dτ, (12)

where x(τ ) is a Brownian path which follows differential
equations (10) and (11) and it starts at x0 at time τ = 0
and continues up to τ = t f . Here, U (x(τ )) is a specified
function of the path and its form depends on the quantity
we are interested in calculating. For example, if we are inter-
ested in calculating the first passage time one should choose
U (x(τ )) = 1. On the other hand, for the area distribution one
should consider U (x(τ )) = x(τ ). One can easily understand
that B is a random variable which can take different values
for different Brownian paths. The main goal is to calculate
the probability distribution P(B|x0). Now, one may note that
the random variable B can only be positive for our choice of
U (x(τ )). Thus, one may consider the Laplace transform of the
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distribution P(B|x0):

Q(x0, p) =
∫ ∞

0
dT P(B|x0) exp(−pB)

=
〈
exp

[
−p

∫ t f

0
U (x(τ ))dτ

]〉
. (13)

Here, the angular bracket denote the average over all possible
paths starting at x0 = 0 at τ = 0 and ending at the first time
they cross the origin. For simplicity, we will drop the variable
p in the function Q(x0, p) in the rest of our discussion. Now, to
derive a differential equation for Q(x0), we follow the method
described in Ref. [36]. Finally, taking the averages over the
noise by using the facts 〈ξ (0)〉 = 0 and 〈ξ 2(0)〉 = 1/	τ as
	τ → 0, one obtains, to lowest order in 	τ , the backward
Fokker-Planck differential equation of Q(x0) in the Laplace
transformed space corresponding to Eqs. (10) and (11) as

1

2

d2Q(x0)

dx2
0

+
[
C2 − C1

x0

(
1 + f 2

0

2ω2x2
0

)]
dQ(x0)

dx0

− pU (x0)Q(x0) = 0 (14)

and

1

2

d2Q(x0)

dx2
0

+
[
C2 − C1

x0

(
1 + f 2

0

2ω2

)]
dQ(x0)

dx0

− pU (x0)Q(x0) = 0, (15)

respectively.
Boundary conditions. Equations (14) and (15) are valid in

the regime x0 ∈ [0,∞] with the following boundary condi-
tions: (i) As the initial position x0 → 0, the first passage time
vanishes which gives us Q(x0 = 0) = 1; (ii) on the other hand,
as x0 → ∞, the first passage time diverges, which results in
Q(x0 → ∞) = 0.

Thus, our scheme will be as follows. We can solve the
differential equations (14) and (15) with appropriate boundary
conditions as mentioned above, providing us the Laplace
transformed PDFs of various quantities which are determined
by the choice of U (x0). Now, inverting the Laplace transform
with respect to p, one can obtain the desired PDF P(B|x0). On
the other hand, the standard Fokker-Planck method adopted in
Refs. [44,45] yields the distribution function P(x, t ) directly.
Thus, these two approaches are distinct, providing comple-
mentary information.

2. The path decomposition method

The basic principle of this PD method is very simple. Let us
consider a simple continuous time Brownian motion evolving
via dz/dτ = ξ (τ ), where ξ (τ ) is a white noise with 〈ξ (τ )〉 =
0 and 〈ξ (τ )ξ (τ0)〉 = δ(τ − τ0). Our motion is Markovian and
one can assume that the maximum can occur at tm, where
tm is the time at which the maximum size of the bubble is
reached. One can break a typical path into two parts before
(left/L) and after (right/R) tm. Since the weights of the left
and right parts of tm are completely independent of each other,
the total weight of the whole path is the product of the weights
of the two split parts [36]. Here, weights WL and WR are the
weightage of the path before and after tm. As a matter of fact,

the total weight W of the whole path is

W = WL × WR. (16)

Let us denote q(z) the probability that the motion described
by dz/dτ = ξ (τ ) exits the interval [0, M] for the first time
through the origin. Now, following Ref. [39] one can obtain

q(z) = 1 − z

M
. (17)

As q(z) is giving us the probability that the maximum before
first passage time is less than or equal to M, one can obtain the
probability P(M ) by differentiating q(z) with respect to M:

P(M ) = z

M2
. (18)

Following Ref. [39], we enforce a cutoff ε by considering
z(tm) = M − ε to avoid an infinite time crossing immediately
after the first crossing and finally we take the limit ε → 0.
As, WR is the weight of a path that starts at M − ε at time
tm and exits the interval [0, M] for the first time through the
origin, one can say that WR = q(M − ε). On the left-hand side
of tm, one needs to consider the path-integral treatment with
the Feynman-Kac formula [40] which gives the weight of a
path in terms of the propagator 〈z0|e−Ĥtm |M − ε〉, since the
process propagates from z0 at τ = 0 to M at τ = tm without
crossing the level M (since M is maximum) and the level 0
(the origin) in the interval [0, tm]. Finally,

WL =
(

z0

M − ε

) ∞∑
n=1

e−Entmψn(M − ε)ψn(z0), (19)

where ψn(z) and En are the eigenfunctions and eigenenergies,
respectively, for the Hamiltonian Ĥ = − 1

2m
d2

dz2 + V (z) with
V (z) = 0 if 0 < z < M and V (z) = ∞ if z = 0 or z = M.

D. Measures

Our primary focus is on several first-passage Brownian
functionals of physical relevance. In the context of DNA bub-
ble dynamics under rapid forcing, we explore the following
PDFs:

(i) First passage time or lifetime of the stochastic process.
The first passage time PDF P(t f |x0), i.e., the PDF of
the time of touching the origin the first time with initial
starting point x0, provides information about the lifetime
of the bubble. A related quantity is the survival probability
C(x0, t ) = 1 − ∫ t f

0 P(t f |x0)dt f of the process. This survival
probability is an experimentally measurable quantity. For
example, in the context of DNA breathing dynamics C(x0, t )
can be inferred from experiments by measuring fluorescence
correlations of a tagged DNA [24,25]. For the DNA breathing
dynamics, our key stochastic variable is the number of broken
base pairs, x(t ).

(ii) Area under a path. If we consider a typical path which is
described by Eqs. (10) and (11), one can define the area under
such a path before the first passage time as A = ∫ t f

0 x(t )dt .
The interesting quantity is its PDF P(A|x0) with an initial
value x0. This quantity is of interest because it provides a
measure for the effectiveness of the corresponding stochastic
processes. Let us consider that a binding process of protein
can occur only inside the double helix, on the single-stranded
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FIG. 1. Plot of PDF of first passage time P(t f |x0 ) (a) for the case of large bubble dynamics with C2 = −2, x0 = 1.5, f0 = 1, ω = 30. (b,
c) The case of small bubble dynamics for case I and case II, respectively, with C1 = 2, x0 = 1.5, f0 = 1, ω = 20. In all figures, the black
circle denotes numerically simulated result of effective dynamics, and the black solid line is used to indicate analytical results. The blue
square with dashed line and red triangle with dashed line are used to mark the numerical results of original dynamics for the periodic force
F (x, t ) = f0 cos(ωt ) and F (x, t ) = f0x cos(ωt ), respectively.

DNA. One can think of this process as facilitated with increas-
ing bubble size as well as a sufficiently long bubble lifetime.
While the first-passage time distribution provides information
about the average bubble lifetime, it does not contain any hint
of the average bubble size before closure. Thus, it is very
much useful to propose the PDF P(A|x0) of the area A covered
till the first passage time, which provides a measure of bubble

reactivity by containing information about both size of the
bubble and its characteristic lifetime.

(iii) Maximum size M. The other useful measure for
quantifying reactivity of the process is the PDF of the
maximum bubble size before the closure of the bubble, P(M).
Again, if we assume that a protein binding process can only
take place inside the double helix and due to some geometrical
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FIG. 2. Plot of PDF of area P(A|x0) until the first passage time (a) for the case of large bubble dynamics with C2 = −2, x0 = 1.5, f0 = 1,
ω = 30. (b, c) The case of small bubble dynamics for case I and case II, respectively, with C1 = 2, x0 = 1.5, f0 = 1, ω = 20. Here, we use
the black circle to denote numerically simulated results of effective dynamics, and the black solid line is used to indicate analytical results.
Furthermore, the original dynamics for cases I and II are indicated by the blue square with dashed line and red triangle with dashed line,
respectively.

constraints, the process can happen only when the bubble is
large enough. If the timescale of this process is very short,
shorter than the average bubble lifetime, a relevant measure
for the bubble reactivity is its maximum opening before
closure.

All the above-mentioned three measures, (i), (ii), and (iii),
are derived below by following the backward Fokker-Planck
method discussed in Sec. II B.

Maximum size M and the corresponding time tm. The joint
probability distribution function P(M, tm) can be investigated
here by following the PD method, which is based on the
Feynman-Kac formalism [40] (see Sec. II C). Using this PDF,
one can further calculate the distribution function P(tm) of the
time at which the process attains its maximum size before
hitting the origin. This latter PDF is of interest because it
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FIG. 3. Plot of PDF of maximum P(M ) before first passage time (a) for the case of large bubble dynamics with C2 = −2, x0 = 1.5, f0 = 1,
ω = 30. (b, c) The case of small bubble dynamics for case I and case II, respectively, with C1 = 2, x0 = 1.5, f0 = 1, ω = 20. We consider the
black circle to denote numerically simulated results of effective dynamics, and black solid line is used to indicate the analytical results. The
blue square with dashed line indicates numerical result of original dynamics for the periodic force F (x, t ) = f0 cos(ωt ), and red triangle with
dashed line is considered to signify numerical results of original dynamics for the case F (x, t ) = f0x cos(ωt ).

provides information about the (average) time of occurrence
of the largest bubble size before closure.

E. Numerical simulation

In the present work, we study different statistical properties
of Brownian functionals related with the DNA breathing

dynamics modeled by the following overdamped Langevin
equation:

dx(t )

dt
= C2 − C1

x
+ f (x) cos(ωt ) + ξ (t ), (20)

where x(t ) is the stochastic variable of broken base pairs,
the drift term μ(x, t ) = C2 − C1

x + f (x) cos(ωt ), external
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FIG. 4. Plot of PDF of time at which maximum occurs P(tm ) before first passage time (a) for the case of large bubble dynamics with
C2 = −2, x0 = 1.5, f0 = 1, ω = 30. We also plot the PDF P(tm ) for small bubble dynamics in (b) and (c) for cases I and II, respectively, with
C1 = 2, x0 = 1.5, f0 = 1, ω = 20. In all figures, the black circle denotes numerically simulated results of effective dynamics, and we consider
black solid line to indicate analytical result at large asymptote. The blue square with dashed line and red triangle with dashed line are considered
to signify numerical results of original dynamics for the periodic force F (x, t ) = f0 cos(ωt ) and F (x, t ) = f0x cos(ωt ), respectively.

oscillating periodic force f (x) cos(ωt ), and ξ (t ) is the noise
term. We consider two different experimentally realizable and
interesting forms of f (x)—(i) case I: f (x, t ) = f0 cos(ωt )
and (ii) case II: f (x, t ) = f0x cos(ωt ). When we are solving
the exact Eq. (20) with the help of stochastic Runge-Kutta
method, we label it as real dynamics. Using the Sarkar et al.
method, one can find effective time-independent overdamped
Langevin equations [for both case I Eq. (10) and case II

Eq. (11)] as described previously. We call these effective
dynamics. We numerically solved the exact Langevin equa-
tions as well as the time-independent effective dynamics also.
The PDFs of different Brownian functionals related with
different relevant quantities to characterize the breathing dy-
namics can be numerically simulated by solving or integrating
the above-mentioned Langevin equations. We basically follow
the second-order stochastic Runge-Kutta (SRK) algorithm

052107-8



DNA BREATHING DYNAMICS UNDER PERIODIC FORCING: … PHYSICAL REVIEW E 100, 052107 (2019)

discussed in Ref. [58] to update the Brownian trajectory for
the real dynamics. The update follows the following rule:

x(	t ) = x0 + D(	t )

2T

[
F (x0) + F

(
x0 + D(	t )

T
F (x0)

)

× 	t + �0

]
	t + �0, (21)

where F (x0) = C2 − C1
x0

+ f (x0) cos(ω	t ) with f (x0) = f0

for case I and f (x0) = f0x0 for case II. One can notice that
�0 is a random number typically sampled from a Gaussian
distribution with zero mean and a width given by 〈�2

0〉 =
2D	t . For our purpose to simulate different PDFs of Brown-
ian functionals we consider 	t = 10−3. Usually we consider
2 × 105 number of paths which starts from a particular point
x0 and ends close to the origin within a preassigned tolerance
level and taking averages over all the 2 × 105 number of
realizations. Then, we calculate the required PDFs for dif-
ferent Brownian functionals to compare with our analytical
predictions. The update of the Brownian trajectory for the
effective dynamics also follows the above Eq. (21), but F (x0)
will be different compared to real dynamics. For the effective

dynamics, F (x0) = C2 − C1
x0

(1 + f 2
0

2ω2x2
0
) is for case I and for

case II it is F (x0) = C2 − C1
x0

(1 + f 2
0

2ω2 ).
Now we describe how to compute the four PDFs. To com-

pute a first-passage time distribution, we first let the system
evolve according to Eq. (21), starting from some specified
initial point. Due to restrictions arising from numerical com-
putation, we consider that when the position of particles is less
then 10−4 (tolerance level) it touches the origin and consider it
to be the first passage time of the corresponding trajectory. So
we note the corresponding time when the particle reaches that
limit for each realization and repeat the same process for all
realizations. Once we have the first-passage time data for all
realizations, data binning was carried out with a bin size of 0.1
with subsequent normalization to plot the normalized proba-
bility distribution function for the first passage time. Again,
starting from some specified initial point, we let the system
evolve as stated in Eq. (21) and the area under the curve
is computed until the first passage time for each realization
and we store the corresponding value of A. This procedure
is repeated for all realizations (2 × 105 nos.) and we store
all the corresponding areas until the first passage time. Then,
again following the data binning procedure with a bin size 0.1,
we plot the PDF for area. To compute P(M ), we update the
trajectory according to Eq. (21) and find the maximum value
of x(t ) between the starting point and the first passage time.
This procedure is repeated for all the realizations, and we store
the maximum value (M) and the corresponding time (tm) for
each realization. Again following the binning procedure we
can plot the PDF for maximum P(M ) and the PDF of the
corresponding time P(tm).

III. LARGE BUBBLE DYNAMICS

In this section we analytically derive the closed form ex-
pressions of four PDFs mentioned in Sec. II C. Our analytical
results are obtained based on the effective time-independent
Langevin equations (10) and (11) for the two cases. Since

the theoretical calculations are not exact for model (3), it is
important to test its accuracy against the true PDFs obtained
by numerically solving original dynamics Eq. (10) and (11).
First, we investigate the dynamics of large bubbles of size
x > xch. In this limit, one can neglect the term −C1

x in the
Langevin equation (3) and study the dynamics dictated by the
effective Langevin equation:

dx

dt
= C2 + ξ (t ). (22)

Thus, the corresponding backward Fokker-Planck equation
becomes

1

2

d2Q

dx2
0

+ C2
dQ(x0)

dx0
− pU (x0)Q(x0) = 0. (23)

A. First passage time PDF: P(t f |x0 )

Let us first calculate the PDF of first passage time P(t f |x0)
by substituting U (x0) = 1 in Eq. (23) and using proper bound-
ary conditions Q(x0 = 0) = 1 and Q(x0 → ∞) = 0, where
we obtain

Q(x0, p) = exp
[ − x0

(
C2 +

√
2p + C2

2
)]

. (24)

By taking the inverse Laplace transform of the above equation
(24) [59], we get the PDF of the first passage time (see
Fig. 1(a) where we found a very good agreement between
theoretical result [Eq. (25)] and numerical result)

P(t f |x0) = x0√
2πt3/2

f

exp

(
− (x0 + C2t f )2

2t f

)
. (25)

The moments 〈t k
f 〉 > are given by

〈
t k

f

〉 =
√

2

π

(
x0

|C2|
)k

(x0|C2|) 1
2 e−x0C2 Kk−1/2(x0|C2|). (26)

Now, using the fact that [60] K1/2(x) = √
π
2x e−x, the mean first

passage time can be obtained as 〈t f 〉 = x0
e−2C2x0

C2
for C2 > 0

and 〈t f 〉 = x0
|C2| for C2 < 0. Then the next step is to calculate

the survival probability, which is given by

C(x0, t ) = 1 − x0√
2π

e−C2x0

∫ t

0
dt f

e
−(

x2
0

2t f
+C2

2t f )

t
3
2
f

. (27)

If we consider C2 < 0 (with T < Tm), it can be shown that for
large t → ∞,

C(x0, t ) = 1 − C2x0

2
√

π
e−C2x0− x2

0
2t

[
�

(
−1

2

)
− �

(
−1

2
,

C2
2t

2

)]
.

(28)

B. PDF of area until the first passage time: P(A|x0)

One may understand that the PDF P(t f |x0) can supply the
important information about the lifetime of the bubble, but
it cannot give us information about the average bubble size.
The PDF P(A|x0) will supply us useful information about
the readiness to react under different conditions. So we now
discuss how to obtain the PDF P(A|x0).
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We can compute the distribution of A, i.e., P(A|x0), by
considering the following backward Fokker-Planck equation
[using Eq. (23) with U (x0) = x0)] [39,41] with boundary
conditions (i) Q(x0 → ∞) = 0 and (ii) Q(x0 = 0) = 1:

1

2

d2Q(x0)

dx2
0

+ C2
dQ(x0)

dx0
− px0Q(x0) = 0. (29)

Now, using the transformation Q(x0) = e−C2x0 ˆQ(x0), we get

d2Q̂

dx2
0

− (
2px0 + C2

2
)
Q̂ = 0. (30)

Now, applying boundary conditions (a) Q(x0) = 0 when x0 →
∞ and (b) Q(x0) = 1 when x0 → 0, we get the general
solution of Eq. (30):

Q(p, x0) =
e−C2x0 Ai

(
21/3 p1/3x0 + C2

2

22/3(p)2/3

)
Ai

( C2
2

22/3(p)2/3

) , (31)

where Ai(x) is the Airy function [61]. It is impossible to make
the exact inverse Laplace transform of Eq. (31). Hence, we
will try to get the PDF at two asymptotes.

Case I: P(A|x0) as A → 0

Q(p, x0, t ) = e−C2x0 Ai(21/3(p)1/3x0)
Ai(0)

∼ K1/3

(
2

3
21/2x3/2

0 (p)1/2

)
. (32)

Now, using the identity
∫ ∞

0
drrν−1e−αr− β

r = 2

(
β

α

)ν/2

Kν (2
√

αβ ) (33)

we get ν = 1/3, α = p, and β = 2x3
0

9 . Finally, we can obtain
the PDF P(A|x0) for A → 0:

P(A|x0) ∼ 21/3

32/3�(1/3)

x0e−C2x0

(A)4/3
e−2x3

0/9A. (34)

Case II: Following Ref. [39], one can obtain the area distribu-
tion for A → ∞:

P(A|x0) ∼
(

2C2
3

3π2A3

)1/4

e−C2x0 sinh(|C2|x0)e−(8A|C2|3/3)1/2
(35)

We have seen very good agreement with the numerical results
with that of the theoretical prediction at asymptotic limits [see
Fig. 2(a)].

C. Probability distribution of maximum P(M)

The probability distribution of maximum before first pas-
sage time, P(M ), provides important information about the
maximum bubble size before complete closure. In that sense
it is one of the important quantities to study. Let us consider
Q(x0) as the probability that a Brownian particle starting from
x0 and described by Eq. (22) exits the interval x ∈ [0, M] for
the first time through the origin. Hence, we can say that Q(x0)
is the cumulative probability that the maximum before the first
passage time is �M. Also, this function satisfies two boundary
conditions: (i) Q(x0 = 0) = 1 and (ii) Q(x0 = M ) = 0. Now,
considering φ	τ (	x) as the distribution function of a small

displacement 	x in time, 	τ → 0. Using the Markovian
property of the dynamics (14), one can write

Q(x0) =
∫

d (	x)Q(x0 + 	x)φ	τ (	x). (36)

Now, using Taylor expansion of Q(x0 + 	x) and averaging
over 	x = 2C2	τ + ξ (0)	τ with 〈ξ (0)〉 = 0 and 〈ξ 2(0)〉 =
1/	τ (to leading order in 	τ ) we obtain

d2Q

dx2
0

+ 2C2
dQ

dx0
= 0. (37)

One can easily observe that one can recover Eq. (37) from
our central Eq. (23) by considering U (x0) = 0. The solution
of Eq. (37) with the help of the above-mentioned boundary
conditions is given by

Q(x0) = sinh[C2(M − x0)]

sinh(C2M )
e−C2x0 . (38)

By differentiating Q(x0) with respect to M we obtain

P(M ) = C2 sinh(C2x0)

sinh2(C2M )
e−C2x0 . (39)

Figure 3(a) shows an excellent agreement between analytical
expression [Eq. (39)] and numerical results.

D. Joint PDF of the maximum M and corresponding
time tm: P(M, tm)

The joint distribution of the maximum bubble size M
and its occurrence time tm can be computed using the path
decomposition (PD) method discussed in Sec. II B. We can
split a typical Brownian path evolving under Eq. (22) into
two parts, before and after the time tm, and their respective
weights are WL and WR, respectively. The total weight of the
whole path W is the product of the weights for the split parts
W = WL × WR. Therefore, on the right side of t = tm one is
able to find the weight of a path WR which starts at M − ε

and leaves the interval [0, M] first time through zero can be
obtained from Eq. (38) and is given by

Q(M − ε) = sinh(C2ε)

sinh(C2M )
e−C2(M−ε). (40)

On the left-hand side of tm. We use the path-integral method
as discussed in Sec. II. The weight of the path can be given
in terms of the propagator 〈x0|e−Ĥtm |M − ε〉 by following
Feynman-Kac formula [36]:

〈x0|exp(−Ĥtm)|M − ε〉 =
∞∑

n=1

ψn(M − ε)ψn(x0)e−Entm ,

(41)
where ψn(x) is the eigenfunction of the free particle. Finally,
following [36,62,63] we obtain

P(M, tm) = 2C2Me[− (C̃2 )2

2 tm−C̃2x0]

sinh[C2M]

π

M3

×
∞∑

n=1

(−1)n+1n sin

(
nπx0

M

)
exp

(
− n2π2

2M2
tm

)
.

(42)
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One will be really tempted to recover the marginal probability
density of the maximum P(M ) by taking integration over tm,
or one can obtain marginal distribution P(tm) by integrating
over M. But it is not possible to obtain closed form expres-
sions of P(tm). But one can be able to extract the asymptotic
behavior of P(tm). The marginal distribution P(tm) can be
obtained by integrating P(M, tm) over M from x0 to infinity.
The large-tm and small-tm asymptotic behaviors of P(tm) for
C2 < 0 are discussed in Ref. [36].

(i) Large-tm asymptote:

P(tm) ∼
[

2

√
2

3
π5/6x0(C2)4/3e−(C2 )x0

]
t−5/6
m

× exp

(
− (C2)2tm

2
− 3

2
[(C2)π ]2/3t1/3

m

)
. (43)

(ii) Small-tm asymptote:

P(tm) ∼ C2Me−C2x0− C2
2

2 tm

√
2πtm sinh(C2x0)

. (44)

The asymptotic behavior in large tm matches with numerical
results [see Fig. 4(a)].

IV. SMALL BUBBLE DYNAMICS

We analyze in this section the dynamics for small bubbles,
with x < xch, at all temperatures, T 
= Tm. The analysis is also
applicable for bubbles of all sizes at precisely the melting
temperature Tm. In these cases, the logarithmic entropic term
in the free energy (1) dictates the dynamics, which results in
the Langevin equation.

Case I: F (x, t ) = f0 cos(ωt ).
The effective time-independent Langevin equation in this

case is given by

dx

dt
= −C1

x

(
1 + f 2

0

2ω2x2

)
+ ξ (t ). (45)

The corresponding backward Fokker-Planck equation can be
written as follows:

1

2

d2Q

dx2
0

− C1

x

(
1 + f 2

0

2ω2x2

)
dQ(x0)

dx0
− pU (x0)Q(x0) = 0.

(46)
Unfortunately, we are unable to derive the closed form expres-
sions for different PDFs in this case I. Hence we numerically
calculate the PDFs using both real dynamics as well as for
the effective dynamics. Then we compare simulated results of
real and effective dynamics for P(t f |x0), P(A|x0), P(M ), and
P(tm) in Figs. 1(b), 2(b), 3(b), and 4(b), respectively.

Case II: F (x, t ) = f0x cos(ωt ).
In this case, our effective Langevin equation is given by

dx

dt
= −C1

x

(
1 + f 2

0

2ω2

)
+ ξ (t ). (47)

The corresponding characteristic backward Fokker-Planck
equation which we need to solve is

1

2

d2Q(x0)

dx2
0

− C̃1

x0

dQ(x0)

dx0
− pU (x0) = 0, (48)

where C̃1 = C1(1 + f 2
0

2ω2 ), and the boundary conditions are

(i)Q(x0 → ∞) = 0 and (ii) Q(x0 = 0) = 1.

A. First passage time P(t f |x0 )

To find the closed form expression for the PDF of first
passage time we need to substitute U (x0) = 1 in the backward
Fokker-Planck equation (48), and the general solution of
Eq. (48) with the substitution U (x0) = 1 is

Q(x0) = xβ

0 [AIβ (
√

2px0) + BKβ (
√

2px0)], (49)

where Iβ (x) and Kβ (x) are the modified Bessel function of
the first and second kind, respectively, and β = C̃1 + 1/2. A
and B are arbitrary constants which are to be determined from
boundary conditions. In order to satisfy Q(x0 → ∞) = 0, one
needs A = 0, as we have Iβ (x) ∼ ex√

2πx
and Kβ (x) ∼ √

π
2x e−x.

Next, we know that Kβ (x) ∼ 2β−1�(β )
xβ for x → 0. Thus, the

second boundary condition implies B =
√

2p
C̃1+1/2

�(C̃1+ 1
2 )2C̃1− 1

2
. Thus,

we obtain

Q(x0) = xC̃1+1/2
0

(
√

2p)C̃1+1/2

�(C̃1 + 1/2)2C̃1−1/2
KC̃1+1/2(

√
2px0). (50)

In order to find the PDF P(t f |x0) one needs to take
the inverse Laplace transform of Q(x0) Eq. (50) by us-
ing the following identity of the inverse Laplace trans-
form L−1[a−n/2 pn/2Kn(2

√
ap)] = t−n−1e−a/t/2 [59], where

one finds

P(t f |x0) = x2C̃1+1
0

�(C̃1 + 1/2)2C̃1+1/2
t−C̃1−3/2

f e−x2
0/2t f . (51)

Equation (51) is compared with simulated results in Fig. 1(c).
Besides the PDF P(t f |x0), the other experimentally relevant
quantities are the moments 〈t k

f 〉 and the survival probability.
First we derive the closed form expression of moments. The
moments can be obtained from the PDF P(t f |x0):

〈
t k

f

〉 =
∫ ∞

0
t k

f P(t f |x0)dt f = x2k
0

2k

�(C̃1 − k + 1/2)

�(C̃1 + 1/2)
, (52)

which is valid for k > C̃1 + 1/2. For k < C̃1 + 1/2 the
moment 〈t k

f 〉 diverges. To obtain 〈t k
f 〉 we use the identity∫ ∞

0 xν−1 exp(−μxp) = 1
|p|μ

−ν/p�(ν/p) for Re(μ) > 0 and
Re(ν) > 0. The other quantity which is of experimental in-
terest is the survival probability or the persistence of the
bubble. The survival probability is defined as C(x0, t ) = 1 −∫ ∞

0 dt f P(t f |x0). Thus, the survival probability is given by

C(x0, t ) = 1 −
∫ t

0
dt f P(t f |x0)

= 1 − �
(
C̃1 + 1/2, x2

0/2t
)

�(C̃1 + 1/2)
, (53)

where �(s, x) = ∫ ∞
x dt t s−1exp(−t ) is the upper incomplete

function. One can easily obtain the asymptotic behavior of
C(x0, t ). In the t → ∞ limit one obtains

C(x0, t ) ≈
(
x2

0

)C̃1+1/2

(C̃1 + 1/2)�(C̃1 + 1/2)
t−C̃1−1/2, (54)
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and in the limit t → 0

C(x0, t ) ≈ 1 −
(
x2

0/2
)C̃1+1/2

�(C̃1 + 1/2)
t−C̃1−1/2e−x2

0/2t . (55)

B. Area until first passage time P(A|x0)

In this section we calculate the area under the random
Brownian motion Eq. (47) which starts at x0 and continues till
the first passage time. This quantity gives us information re-
garding the bubble’s readiness to react. We substitute U (x0) =
x0 in the backward Fokker-Planck Eq. (48) to compute the
PDF of area P(A|x0) and obtain

1

2

d2Q(x0)

dx2
0

+ C̃1

x0

dQ(x0)

dx0
− px0Q(x0) = 0. (56)

The general solution of the above equation is given by

Q(x0) =
(√

2p

3

)ν

x3ν/2
0

[
B1�(1 − ν)I−ν

(
2
√

2p

3
x3/2

0

)

+ B2(−1)ν�(1 + ν)Iν

(
2
√

2p

3
x3/2

0

)]
, (57)

where ν = (2C̃1 + 1)/3, Jν (x), Iν (x) is the modified Bessel
function of the first kind, and B1 and B2 are arbitrary constants
which need to be determined by applying boundary condi-
tions. One can notice that for large x, the modified Bessel
function of the first kind behaves like Iν (x) ∼ ex√

2πx
. Thus, the

boundary condition Q(x0 → ∞) = 0 implies B1�(1 − ν) =
−(−1)νB2�(1 + ν). Thus, we obtain

Q(x0) =
(√

2p

3

)ν

x3ν/2
0 B1�(1 − ν)

[
I−ν

(
2
√

2p

3
x3/2

0

)

− Iν

(
2
√

2p

3
x3/2

0

)]
. (58)

To satisfy the boundary condition Q(x0 = 0) = 1, we note that
as x0 → 0, one has Iν (x) ∼ 1

�(1+ν) ( x
2 )

ν
, which gives B1 = 1.

Thus, we finally have

Q(x0) =
(√

2p

3

)ν

x3ν/2
0 �(1 − ν)

[
I−ν

(
2
√

2p

3
x3/2

0

)

− Iν

(
2
√

2p

3
x3/2

0

)]

=
(√

2p

3

)ν

x3ν/2
0 �(1 − ν)

2

π
sin(νπ )Kν

(
2
√

2p

3
x3/2

0

)

=
(√

2p

3

)ν

x3ν/2
0

2

�(ν)
Kν

(
2
√

2p

3
x3/2

0

)
, (59)

where, in obtaining the second to the last line, we have used
the identity Kα (x) = π

2
I−α (x)−Iα (x)

sin(απ ) . In arriving at the last line
we use the identity �(α)�(1 − α) = π

sin(απ ) . Now, to derive
P(A|x0), we need to take the inverse Laplace transform of
Eq. (59) and using L−1[a−n/2 pn/2Kn(2

√
ap)] = t−n−1e−a/t/2

[59] we finally obtain the following by replacing ν in terms
of C̃1 :

P(A|x0) = 2(2C̃1+1)/3x2C̃1+1
0

3(4C̃1+2)/3�[(2C̃1 + 1)/3]

exp
(− 2x3

0/9A
)

A(2C̃1+4)/3
. (60)

This expression matches well with the numerical results ob-
tained by directly simulating the Langevin equation (11) and
effective dynamics [Eq. (47)] [see Fig. 2(c)].

C. Distribution of maximum before the first passage time: P(M)

The quantity we examine next is the probability density
P(M ) for obtaining a bubble of maximal size M before its
first closure, given that the initial size of the bubble is fixed
at x0 ∈ [0, M]. To do this, we closely follow the procedure
in Ref. [36]. Let q(x0) be the probability that the motion
described by Eq. (47), starting from x0 ∈ [0, M], exits this
interval for the first time through the origin, i.e., q(x0) is the
probability that the maximum before the first passage time
is �M. This quantity is important in answering the question
of how large the bubble can grow before it closes with an
initial bubble size of x0. This is of importance in calculating
the efficiency of processes that can occur inside big loops
only. It is evident from the definition of q(x0) that it satisfies
the two boundary conditions: (i) q(0) = 1 and (ii) q(M ) = 0.
Considering φ	τ (	x) as the distribution function of a small
displacement 	x in time 	τ → 0, we have

q(x0) =
∫

q(x0 + 	x)φ	τ (	x)d (	x). (61)

On Taylor expanding q(x0 + 	x) and then averaging over
	x = − C̃1

x0
	τ + ξ (0)	τ , using 〈ξ (0)〉 = 0, 〈ξ 2(0)〉 = 1

	τ
,

we finally get, to leading order in 	τ ,[
1

2

d2q(x0)

dx2
0

− C̃1

x0

dq(x0)

dx0

]
	τ = 0. (62)

Since 	τ is arbitrary we have[
1

2

d2q(x0)

dx2
0

− C̃1

x0

dq(x0)

dx0

]
= 0, (63)

and with the boundary conditions, the general solution is
given by

q(x0) = 1 −
(

x0

M

)(2C̃1+1)

. (64)

The PDF of interest is obtained by differentiating q(x0) with
respect to M,

P(M ) = (2C̃1 + 1)x2C̃1+1
0

M2C̃1+2
. (65)

In Fig. 3(c), we compare this analytic result with numerical
simulations using the real dynamics as well as the effective
dynamics and observe a very good agreement for C̃1

|C2| > x0

and C2 < 0, as expected.

D. Joint PDF of maximum M and the corresponding
time tm: P(M, tm)

In this section, we compute the joint probability distribu-
tion P(M, tm) for the motion represented by Eq. (47) with
the motion starting at x0 at time t = 0. Here M, denoting
the maximum before the first passage time t f , occurs at the
time instant tm < t f . Note that M, tm, and t f are all random
variables. To proceed further, we closely follow [39]. We have

052107-12



DNA BREATHING DYNAMICS UNDER PERIODIC FORCING: … PHYSICAL REVIEW E 100, 052107 (2019)

to find the weight of paths that start at x0, reach the level
M − ε at time tm, reach the level 0 for the first time at time
t f > tm, and have a maximum less than or equal to M for all
times intermediate between 0 and t f . Here, ε is a small cutoff
that we will eventually let go to zero. Because the motion
in Eq. (47) is Markovian, the desired weight is given by the
product of two factors: (1) WL, the weight of paths that start at
x0, reaching level M − ε at t = tm without crossing the level
M and the level 0 for intermediate times, and (2) WR, the
weight of paths that start at M − ε at t = tm and reach 0 at
t = t f (where t f > tm), without crossing the level M and the
level 0 in between. On the other hand, q(x0) in Eq. (64) is the
probability for a path starting at x0 ∈ [0, M] to exit the interval
for the first time through the origin. We can then demand that
WR = q(M − ε). Thus, the weight of the right path is

WR = 1 − (M − ε)(2C̃1+1)

M2C̃1+2
= (2C̃1 + 1)ε

M
+ O(ε2), (66)

where the last relation has been obtained assuming ε is a small
number. To describe the dynamics before tm we use a path-
integral treatment with the Feynman-Kac formula, denoting
the weight of a path in terms of the propagator 〈x0|e−Ĥtm |M −
ε〉, where Ĥ = − 1

2
∂2

∂x2 with V (x) as the potential energy. In the
small bubble case the weight of the left path is

WL ∝ exp

[
− 1

2

∫ tm

0
dτ

(
dx

dτ
+ C̃1

x

)2]

= exp

[
− C̃1 ln

(
M − ε

x0

)]
〈x0|e−Ĥtm |M − ε〉

=
(

x0

M − ε

)C̃1 ∞∑
n=1

e−Eptmψn(M − ε)ψn(x0), (67)

where ψn and En are the eigenfunction and eigenenergies of
the Hamiltonian Ĥ with the eigenvalue equation defined as

[
− 1

2

d2

dx2
+ C̃1

2

2x2

]
ψ = Eψ 0 < x < M. (68)

The general solution of the above equation is

ψn(x) = A
√

xJα (
√

2Enx) + B
√

xYα (
√

2Enx), (69)

where Jα (x) and Y −α (x) are the Bessel function of the
first and second kind, respectively, of order α and α =
1
2

√
1 + 4C̃1

2
, and A and B are arbitrary constants to be deter-

mined from the boundary conditions. Utilizing the boundary
condition ψn(x = 0) = 0, we find that B = 0. From the sec-
ond boundary condition ψn(x → ∞) = 0 we obtain

Jν (
√

2EnM ) = 0, (70)

which gives us the discrete energy values
√

2EnM = αν,n; αν,n

are the zeros of the Bessel functions. The particular solutions
are therefore given by

ψn(x) = A
√

xJν

(
ανnx

M

)
. (71)

Using the normalization condition we can also identify the
prefactor, A =

√
2

MJν+1(αν,n ) . Thus, the eigenfunction is given by

ψn(x) =
√

2x

M|Jα+1(uαn )|Jα

(
uαnx0

M

)
. (72)

Plugging in the eigenfunctions and eigenenergies in the
propagator, the probability WL in the leading order of ε is
given by

WL ∝ ε
2xC̃1+1/2

0

MC̃1+5/2

∞∑
n=1

uαn
e−u2

αntm/2M2

Jα+1(uαn)
Jα

(
uαnx0

M

)
+ O(ε2).

(73)

The weight of the complete path in the time domain [0, t f ]
with a maximum M at tm is given by the product of Eqs. (66)
and (73),

P(M, tm; ε) = B(ε)WLWR, (74)

with B(ε) = 1
2ε2 ( x0

M )C−C̃1−1/2, where C = 2C̃1 + 1 −√
1 + 4C̃1

2
/2. Finally, the joint probability distribution is

given by

P(M, tm) = (2C̃1 + 1)
xC

0

MC+3

∞∑
n=1

uαn
e−u2

αntm/2M2

Jα+1(uαn)

× Jα

(
uαnx0

M

)
. (75)

It is not possible to calculate the marginal PDF of time at
which maximum occurs P(tm), from Eq. (75). Numerically
simulated result of PDF P(tm) is plotted in Fig. 4(c).

V. CONCLUSIONS

In this work, we analyze several relevant probability dis-
tribution functions of various Brownian functionals asso-
ciated with the stochastic model for the bubble dynamics
of DNA, incorporating the effect of an external rapidly
oscillating periodic force. Based on the backward Fokker-
Planck method discussed in Ref. [36], we derive (i) the
first-passage time distribution P(t f |x0), providing informa-
tion about the lifetime of the stochastic process, (ii) the
distribution, P(A|x0), of the area A covered by the random
walk until the first passage time, measuring the reactivity
of stochastic processes, and (iii) the distribution P(M ) of
the maximum size M before first passage time, and (iv) the
joint probability distribution P(M; tm) of the maximum size
M and the time tm of its occurrence before the first passage
time was also obtained by employing the Feynman-Kac path
integral formulation. One can actually advocate for the elegant
methods adopted here by stating that the various PDFs for
different functionals can be derived by making proper choices
of a single term U (x0) in our parent differential equations
(14) and (15) with appropriate boundary conditions. We in-
vestigate separately the dynamics of small and large bubbles.
Analytical results for the PDFs at each limit nicely match with
the Langevin simulations. Our investigation discloses several
nontrivial scaling behaviors of P(t f |x0), P(A|x0), P(M ), and
P(M, tm), as summarized in Tables I and II below. The scaling
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TABLE I. Scaling behavior of the probability distribution func-
tion calculated in this work for large and small asymptotes for the
case of large bubble dynamics for both periodic driving cases.

Quantities Large asymptote Small asymptote

P(t f |x0 ) ∼ t−3/2
f e−C2x0 e−C2

2 t f /2 exp[− (x0+C̃2t f )2

2t f
]

P(A|x0) ∼ A− 3
4 e−

√
8AC3

2
3 A−4/3e−2x3

0/9A

P(M ) ∼ ∼ 1
sinh2(C2M )

1
(C2M )2

P(tm ) ∼ t
− 5

6
m exp ( − C2

2 tm
2 − 3

2 [C2π ]2/3t1/3
m ) t−1/2

m

exponents are specified either by the entropic parameter C1 =
c/2 or by the base-pair dissociation parameter C2 = γ (T −
Tm)/(2kbT Tm) and rapidly oscillating force modified entropic

parameter C̃1 = C1(1 + f 2
0

2ω2 ). Thus, all these PDFs can be

measured experimentally by using fluorescence correlation
spectroscopy [24], e.g., the maximum size distribution P(M )
for small and large bubbles separately. We expect our results
to be useful in quantifying chemical processes within DNA,
for example, protein binding to single-stranded DNA, and
for developing a deeper understanding of polymer dynamics.
It is of interest to extend our study and consider loop-loop
interactions [53] and the effects of disorder and heterogeneity

TABLE II. Scaling behavior of the probability distribution func-
tion calculated in this work for large and small asymptotes for
the case of small bubble dynamics for periodic driving F (x, t ) =
f0 cos(ωt ) (case I). The numerically fitted result in the large asymp-
tote for the periodic driving F (x, t ) = f0x cos(ωt ) is the same as that
of case I.

Quantities Large asymptote Small asymptote

P(t f |x0 ) ∼ t−C̃1−3/2
f e−x2

0/2t f

P(A|x0) ∼ A− 2
3 (C̃1+2) e−2x3

0/9A

P(M ) ∼ M−2C̃1−2 M−2C̃1−2

P(tm ) ∼ t−C̃1−3/2
m Not known

in predicting the kinetics of specific processes within DNA
bubbles.

Finally, our present work, is the extension of the previous
work on Brownian functionals [63] on DNA bubble dynamics
by incorporating the effect of two different types of external
rapidly oscillating forces. Our main observation from this
study is that the DNA bubble dynamics for the large bubble
size is unaffected by a rapidly oscillating time periodic force
in timescales larger than T̃ = 2π

ω
. On the other hand, the

small bubble dynamics is significantly affected by the external
periodic force (see the scaling behavior in table).
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