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Criticality of the O(2) model with cubic anisotropies from nonperturbative renormalization
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We study the O(2) model with Z4-symmetric perturbations within the framework of the nonperturbative
renormalization group (RG) for spatial dimensionality d = 2 and 3. In a unified framework we resolve the
relatively complex crossover behavior emergent due to the presence of multiple RG fixed points. In d = 3
the system is controlled by the XY , Ising, and low-T fixed points in the presence of a dangerously irrelevant
anisotropy coupling λ. In d = 2 the anisotropy coupling is marginal and the physical picture is governed by
the interplay between two distinct lines of RG fixed points, giving rise to nonuniversal critical behavior, and an
isolated Ising fixed point. In addition to inducing crossover behavior in universal properties, the presence of the
Ising fixed point yields a generic, abrupt change of critical temperature at a specific value of the anisotropy field.
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I. INTRODUCTION

Universality is a hallmark of second-order phase transitions
[1,2] and its explanation may be viewed as a major success of
renormalization group theory. There are, however, well known
cases, where the critical properties are actually not universal.
Commonly recognized examples include systems with long-
ranged interactions [3], interfacial unbinding transitions in
d = 3 [4], some spin glass transitions [5], or the eight vertex
model [6]. In the RG framework universality emerges as a
consequence of the existence of isolated fixed points associ-
ated with a unique set of relevant perturbations characterized
by their scaling dimensions. One way of avoiding the emer-
gence of universality appears when the fixed point features a
marginal operator. In such situations the flow diagram may
exhibit a line of fixed points and the critical exponents may
vary continuously depending on the system parameters and
the thermodynamic fields.

In this paper we address the classical O(2) model with
perturbations which explicitly break the symmetry from O(2)
to Z4. From the perspective of the general theory of continu-
ous phase transitions this system is interesting and somewhat
unusual both in dimensionality d = 3 and 2. In the former
case the anisotropy field λ acts as an irrelevant operator
and the critical behavior is governed by the standard XY
(Wilson-Fisher) fixed point. However, λ gaps the Goldstone
mode in the low-T phase and gives rise to the emergence
of one additional length scale which diverges at the critical
point. This leads to the effect of distinct susceptibility and
correlation length exponents depending on the side from
which the phase transition is approached. In dimensionality
d = 2 the anisotropy stabilizes the long-range ordered phase
and is known to be a marginal perturbation at the Kosterlitz-
Thouless (KT) phase transition occurring at λ = 0. This leads
to the appearance of two additional fixed-point lines emerging
towards positive and negative values of λ from the vicinity of
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the end point of the KT fixed-point line located at λ = 0 and
T < TKT . The existence of these lines renders the exponents
characterizing the transition at λ �= 0 nonuniversal. The two-
dimensional O(2) model with Z4 anisotropies is also of high
experimental relevance in a number of contexts. For a broad
and useful exposition we refer to Ref. [7]. In addition, both
for d = 2 and 3 in the critical regime the system is equivalent
to the Ising model for specific choices of the model couplings.
These features lead to rich crossover phenomena and in d = 2
raise an interesting question concerning the relation between
the Ising fixed point and the above-mentioned fixed-point line.
The purpose of the present paper is to analyze this interplay
and to understand the evolution of the RG flow diagram of
the system upon lowering the dimensionality from d = 3 to
2 in a nonperturbative RG framework, which allows for an
(approximate) capturing of the essential features both in d =
2 and 3 and resolving the rich crossover phenomena.

The paper is structured as follows. In Sec. II we set the
context for the present paper by giving an overview of the
most important results obtained earlier for this system within
different approaches both in d = 3 and 2. In Sec. III we
present the formulation of the model applied in our analysis,
while in Sec. IV we review the nonperturbative RG frame-
work, which is followed by derivation and discussion of the
RG flow equations. Certain features of the system can be
elucidated from the analysis of the asymptotic forms of flow
equations. In Sec. V we present our results obtained from
the numerical integration of the RG equations in a simple
truncation varying dimensionality between d = 2 and 3. We
give a summary of our results in Sec. VI.

II. OVERVIEW OF KEY EARLIER RESULTS

In their seminal paper [8] José et al. analyzed the two-
dimensional XY model, to which they added p-fold anisotropy
terms of the form

∑
i hp cos(pθi), where i enumerates the

lattice sites, θi is the corresponding angular variable, while
p characterizes the anisotropy field. Relying on the Villain
approximation they investigated the relevance of the
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symmetry-breaking perturbations hp along the line hp = 0 in
the low-T (KT) phase. They found

4 � 2πKeff � 1
4 p2 (1)

as the condition for the stability of the spin-wave theory with
respect to a p-fold degenerate perturbation and vortices. In the
above Keff is the renormalized stiffness. The first inequality
yields the usual KT instability temperature. The relation (1)
implies the existence of a KT-like phase for a regime of tem-
peratures also for nonvanishing anisotropy field hp provided
p > 4. For p = 4 this regime becomes degenerate (for a given
value of h4) to a single point. The emergent picture yields (at
least for small h4) a marginal operator associated with the
presence of the anisotropy. As a result José et al. [8] pre-
dicted nonuniversal exponents along the transition line in the
(T − h4) plane. Significantly later the two-dimensional XY
model with cubic anisotropies was addressed by extensive
Monte Carlo simulations [9,10] performed on the square
lattice XY model. These studies confirmed the nonuniversal
character of the critical exponents along the transition line
for h4 �= 0, but, interestingly, disagreed with Ref. [8] on the
very structure of the phase diagram, pointing towards the
stability of the KT phase for sufficiently low h4 and yielding a
picture similar to that obtained for higher values of p. Another
controversial aspect concerns the range of conceivable values
of critical exponents for this class of models. In particular,
Ref. [8] predicted the divergence of the order-parameter ex-
ponent β for vanishing h4 (β ∼ h−1

4 ), so that in principle
the set of allowed values of β is unbounded from above.
However [7], experimentally observed values fall within a
window β ∈ [1/8, 0.23] and point towards the existence of an
upper bound on β. Reference [7] attributed this to suppression
of the predicted nonuniversal criticality by finite-size scaling
properties of the two-dimensional XY model and identified
the value β ≈ 0.23 as the effective critical exponent of the
pure XY model due to finite system size. The length scale of
the onset of the true critical singularities at small h4 is then
extremely large, and at realistic system sizes they become
overshadowed by the KT-type scaling. Our present paper is
consistent with this point of view. We also note that very
recently [11] the picture of Ref. [8] was confirmed in an exact
analysis implementing conformal invariance.

For d = 3 the XY model with cubic anisotropies was
(presumably) first addressed by Aharony [12] within the ε

expansion. The perturbative RG approach for this system
was later significantly developed by Carmona et al. [13]
In particular, they identified the fixed points present in the
phase diagram and investigated their stability upon varying
the number of field components. In a relatively recent study
[14] Léonard and Delamotte employed nonperturbative RG
to address a generic mechanism leading to distinct exponents
characterizing the critical behavior approaching the transition
from high and low temperatures. They analyzed the O(2)
model with discrete anisotropies as an illustrative example of
this phenomenon, which had long before been observed by
Nelson [15]. In the present paper we employ a framework
similar to Ref. [14] to investigate the evolution of the system
as the dimensionality of the system is reduced from d = 3
anticipating the appearance of nonuniversal critical features
for dimensionality d approaching 2 [16].

FIG. 1. Contour plots of the effective potential for the pure O(2)
model (left panel) and the O(2) model with a Z4 anisotropy τ given
by Eq. (3) (right panel). In the latter case the ground state is fourfold
degenerate with the minima located at the φ1 = 0 and φ2 = 0 axes.

III. MODEL

We consider the d-dimensional classical O(2) model sup-
plemented with a cubic anisotropy term

S[φ] =
∫

dr
[

u0

8

(
2ρ − α2

0

)2 + λ0

2
τ + 1

2
|∇φ|2

]
. (2)

with a (real) two-component order-parameter field φ =
φ(r) = (φ1(r), φ2(r)). The O(2) invariant ρ and the Z4 invari-
ant τ are defined as follows:

2ρ = |φ|2 = φ2
1 + φ2

2 , τ = φ2
1φ

2
2 . (3)

The uniform contribution involves two quartic couplings: The
usual O(2) coupling u0 and the anisotropy strength λ0. We
observe that Eq. (2) is invariant under a rotation of the field φ

by π
4 followed by the transformation u′

0 = u0 + λ0, λ′
0 = −λ0,

α′2
0 = α2

0
u′

0
u0

. In consequence (for |λ0| < u0), we can assume
λ0 > 0 without loss of generality. We concentrate on the situ-
ation with symmetry breaking at mean-field level, where α2

0 >

0. The units are chosen so that the coefficient of the gradient
term in Eq. (2) is 1

2 . Note that our definition of τ differs from
that of Refs. [13,14], which adopted τ = φ4

1 + φ4
2 . The two

definitions correspond to picking reference frames related by
a rotation. One advantage of the present choice is that the
minima of the effective potential U (ρ, τ ) = u0

8 (2ρ − α2
0 )2 +

λ0
2 τ are located on the lines φ1 = 0 and φ2 = 0 as illustrated

in Fig. 1. In the absence of the anisotropy (λ0 = 0) Eq. (2)
reduces to the standard O(2) model, which may exhibit long-
range order only for d > 2 [17]. The algebraic KT phase
occurs for d = 2 if α2

0 is sufficiently large. As soon as λ0 > 0,
the O(2) degeneracy of the ground state becomes reduced to
discrete fourfold degeneracy as illustrated in Fig. 1, and the
occurrence of true long-range order is then permissible down
to dimensionality d = 1+.

IV. NONPERTURBATIVE RG APPROACH

We employ the one-particle irreducible variant of non-
perturbative renormalization theory to investigate the model
defined by Eq. (2). This is very suitable for the present
problem, allowing for capturing the distinct scaling regimes
and associated crossover behavior as the system is evolved
from the short to long observation scales. We consider the
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flowing effective action �k[φ], which interpolates between
the bare action [Eq. (2)] and the thermodynamic free energy
G[φ] as the flow parameter k, implemented as an infrared
momentum cutoff, is reduced from the UV cutoff scale k = �

towards zero. The quantity �k[φ] also acts as the generating
functional for one-particle irreducible vertex functions in the
presence of the IR regulator. The idea to continuously in-
tegrate fluctuations out of the partition function via the RG
flow is implemented by deforming the propagators so that the
fluctuation modes with momentum lower then the cutoff scale
(q < k) acquire an artificial mass of order k2. The scale k may
then be continuously varied, leading to the evolution of �k[φ]
governed by the Wetterich equation [18]

∂t�k[φ] = 1
2 Tr

{
∂t Rk

[
�

(2)
k [φ] + Rk

]−1}
, (4)

where �
(2)
k [φ] is the second field derivative of �k[φ] and Rk

denotes the cutoff function added to the inverse propagator to
damp the modes with q < k. The trace sums over momenta
and field components, while t = log(k/�). The Wetterich
framework was successfully used in a diversity of contexts
over the last years (for reviews see, e.g., [19–23]).

The functional differential equation given by Eq. (4)
can hardly ever be solved exactly. Here we resort to the
approximation scheme known as the derivative expansion
[19,22,24,25]. This classifies the symmetry-allowed terms in
�k[φ] according to the number of derivatives (or momentum
powers in Fourier space). We parametrize �k[φ] as

�k[φ] =
∫

dr
{

Uk (ρ, τ ) + 1

2
Zk|∇φ|2 + 1

8
Yk (∇|φ|2)2

}
, (5)

where we neglect the dependence of Zk and Yk on ρ and τ .
In the low-temperature phase the effective potential features
four degenerate minima corresponding to the ground states.
In the present simple truncation we parametrize Uk (ρ, τ ) by
expanding around one of them up to the lowest sensible order:

Uk (ρ, τ ) = uk

2
(ρ − ρ0,k )2 + λkτ

2
, (6)

where ρ0,k = 1
2α2

k describes the flowing distance of the min-
imum from the origin. This approximation level allows for a
degree of analytical understanding of the flow and for a rather
straightforward resolution of the crossover behavior by direct
integration of the RG equations.

Within the approximation defined by Eqs. (5) and (6)
the problem of integrating Eq. (4) becomes reduced to the
analysis of a set of five coupled integrodifferential equations
governing the flow of the couplings {α2

k , uk, λk, Zk,Yk}. In d =
3 an analogous approach was employed in Ref. [14] with ma-
jor focus on the hexagonal rather than cubic anisotropy. In that
work the effective potential expansion [Eq. (6)] was pushed to
higher order. This [at least for the pure O(N ) models] allows
for obtaining results convergent to the complete derivative ex-
pansion for d close to 3 (but not for d approaching 2). On the
other hand, we retain the Yk coupling in the present treatment.
This is known [26] to significantly improve the quality of the
approximation for d = 2. On the technical level, accounting
for Yk distinguishes between momentum-dependent terms in
the longitudinal and transverse directions. The present func-
tional RG truncation does not explicitly invoke vortices [27].

In consequence, for λ = 0 the line of fixed points in the
low-T phase is recovered only approximately in the form
of quasifixed points unless the regulator is fine tuned [28].
This issue was first investigated in Refs. [29,30], and recently
was revisited in a sequence of works [26,28,31,32] providing
insightful understanding of the flow and proposing avenues
for improvements. In particular, Ref. [32] showed how the
hierarchy of functional RG flow equations can be reduced to
the Kosterlitz-Thouless RG equations. On the other hand, the
functional RG framework serves as a particularly convenient
tool in situations involving rich crossover phenomena [14,33–
37], and (at the cost of working at a truly functional level)
is capable of computing also nonuniversal aspects of specific
microscopic models [38,39].

With the parametrization specified by Eqs. (5) and (6) the
regularized propagator is given by[

�
(2)
k

]−1
i, j

= Gi(q) = δi, j

m2
i + Ziq2 + Rk (q2)

, (7)

where i, j ∈ {1, 2}. In our convention i = 1 corresponds to
the longitudinal mode and i = 2 corresponds to the transverse
mode. The flowing masses and Z factors are given by

m2
1 = uα2, m2

2 = λα2,

Z1 = Z + Y α2, Z2 = Z. (8)

We suppressed the k dependencies in our notation for clarity.
We observe that the essential role of the anisotropy coupling
λ is to give the transverse mode a mass. At the level of
higher-order vertex functions one can easily show that λ will
influence the vertices with an even number of transverse legs.
We also introduce the single-scale propagators

G′
i(q) = −G2

i ∂t R (9)

and the operator Dt = (∂t R)∂R.

A. Flow equations

The derivation of the flow equations follows a standard
procedure (see, e.g., Ref. [19]). The flow of α2 is extracted
from the condition d

dt U
′(ρ, τ )|ρ=α2/2,τ=0 = 0. The flow of the

masses follows from first differentiating Eq. (4) twice with
respect to the field φi, and evaluating at a uniform field con-
figuration, thus deriving a flow equation for the longitudinal
and transverse components of �

(2)
k . Subsequently, taking the

limit q → 0 yields the flow of the masses m2
i . The flow of

Z1 and Z2 is obtained from expanding the flow of �
(2)
k in the

external momentum and picking the coefficients of order q2.
The resulting flow equation for α2 reads

∂tα
2 = −1

u

∫
q
{[u + 2U (q)]G′

1(q) + (u + 2λ)G′
2(q)}, (10)

while the flow of the masses is given by

∂t m
2
1 = −

∫
q
{[u + 2U (q)]G′

1(q) + (u + 2λ)G′
2(q)}

− α2
∫

q
{[u + 2U (q)]2G′

1(q)G1(q)

+ (u + 2λ)2G′
2(q)G2(q)}, (11)

052106-3



ANDRZEJ CHLEBICKI AND PAWEL JAKUBCZYK PHYSICAL REVIEW E 100, 052106 (2019)

∂t m
2
2 = − m2

2

m2
1

∫
q
{[u + 2U (q)]G′

1(q) + (u + 2λ)G′
2(q)}

− 3m2
2

∫
q
[2U (q) + λ]Dt [G1(q)G2(q)]. (12)

We introduced
∫

q = ∫ dq
(2π )d and U (q) = u + Y q2. We relegate

the expressions for the flow of Z factors to the Appendix.
Upon putting λ = 0 we recover the flow equations well
studied for the O(2) model [19,22,26,40]. The presence of
the mass of the transverse mode underlies the mechanism
discussed in Ref. [14] responsible for generating the unequal
critical exponents in the low- and high-temperature phases.
There is a clear asymmetry between the properties of the flow
of the two masses. If m2

2 = 0 at some scale, it will never be
generated. The converse is obviously not true. It is worth
noting that when putting λ = u, Y = 0 the flow equations
of the longitudinal and transverse masses become identical
and the property λ = u remains conserved by the flow. More-
over, the resulting equations are equivalent to the correspond-
ing flow of the Ising [O(1)] universality class (at the same
level of approximation). This means that, if (initially) λ = u,
the phase transition is bound to fall in the Ising universality
class. This conclusion holds true also beyond the present
approximation level and at any dimensionality. This is also
consistent with the results of Ref. [13], which identified an
Ising-type fixed point in the flow diagram. Another simpli-
fication occurs in the high-anisotropy limit λ → ∞, where
the transverse fluctuations are suppressed. It is then easily
shown that the flow of α, u, and Zσ is equivalent to that
corresponding to the O(1) model. We note, however, that
the present truncation level is probably not quite reliable to
address the regime of strong anisotropies and postpone this
case to future studies. In d = 2 and for λ = 0 the IR scaling
of the Goldstone propagator follows G2 ∼ k2−η. Its coupling
to the longitudinal mode gives rise to similar asymptotic IR
scaling of the longitudinal mode G1 as well. This behavior be-
comes suppressed by the presence of the anisotropy λ, which
is a relevant coupling for low Teff = α−2

0 and destabilizes
the KT-like phase towards formation of long-ranged order.
For small λ0 this effect may occur only at asymptotically
low scales. For Teff approaching the critical value (and small
λ0) the flow exhibits very slow evolution controlled by the
KT (quasi)fixed-point line before crossing over to another
regime, controlled by another (quasi)fixed-point line. This is
demonstrated by the numerical solution presented in the next
section. In the following we will work with the dimensionless
variables defined as

κ̃= k2−d Zα2, ũ= kd−4Z−2u, λ̃ = kd−4Z−2λ, Ỹ = kd−2Z−1Y,

(13)

in terms of which fixed-point behavior is transparent.

B. Note on the scaling laws

Presence of the dangerously irrelevant coupling λ influ-
ences the scaling laws relating the critical exponents which
characterize the correlation functions. We rederived these
relations following the line of reasoning of Ref. [14] (see also

[41]). We obtained

ν ′ = ν(1 + y/2),

γ + = ν(2 − η),
(14)

γT = γ + + νy,

γL = γ + + νy
4 − d − η

2
,

where γT and γL are the critical exponents for the transverse
and longitudinal susceptibilities, γ + controls the susceptibil-
ity divergence when the critical point is approached from the
high-temperature phase, η is the anomalous dimension, while
y is the scaling exponent for λ at the XY fixed point (i.e., λ̃ ∼
ky). The quantities ν and ν ′ denote the critical exponent for
the longitudinal and transverse correlation lengths. Equations
(14) are valid for arbitrary anisotropies (not necessarily cubic)
and for any d provided λ remains an irrelevant variable. The
last of the relations of Eqs. (14) differs from the form given in
Ref. [14] by the η present in our expression.

The modification of the scaling laws as compared to the
pure O(N ) case may be traced back to the fact that there
exist two large length scales associated to the two directions
in the field space. They are determined by the RG scales at
which the flow departs from the XY and the low-temperature
fixed points, respectively [14]. The latter scale is always
infinite in the absence of anisotropies. Observe that [14], quite
counterintuitively, the difference between the susceptibility
exponents grows upon increasing y so that the less relevant
the perturbation the larger the difference between the critical
indices and the deviation from the isotropic case.

V. INTEGRATION OF THE RG FLOW

We now present the results obtained from numerical inte-
gration of the flow equations in the simple truncation defined
in Sec. IV A. We implement the exponential cutoff [19]

Rk (q2) = A
Zkq2

eq2/k2 − 1
, (15)

where we take A = 2 [28]. We solve the flow equations
discussed in Sec. IV A with the initial condition provided
by Eq. (2). We identify the ordered phase by the condition
limk→0 α2 > 0. On the other hand, for the high-temperature
phase the flowing order parameter α reaches zero at a finite
value of k. For a given fixed initial value of u = u0 we
evaluate the critical line λ0,u(α0). The quantity α−2

0 = Teff

may be understood as an effective temperature of the model.
From the analysis of the flow equations in Sec. IV A it is
clear that precisely one point (corresponding to λ0 = u0) on
the continuum of the critical line is a representative of the
Ising universality class. Except for this the critical behavior
in d = 3 is controlled by the Wilson-Fisher fixed point with
the dangerously irrelevant coupling λ, while in d = 2 one
expects the fixed-point line discussed in Ref. [8]. It is perhaps
of particular interest to understand the relation between this
fixed-point line and the distinct Ising fixed point.
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FIG. 2. The critical line λ0,u(α0) computed for a sequence of
values of u0 in d = 3. For low anisotropies the critical value of Teff is
practically constant. The sudden drop of Teff occurs at λ0 ≈ u0, where
the transition is in the Ising universality class. The same feature
occurs for d = 2 (see Fig. 6).

A. Results in d = 3

In Fig. 2 we present the phase diagrams computed for the
model defined by Eq. (2) in the simple truncation in d = 3 for
a sequence of values of u0. A striking (and counterintuitive)
feature is the sudden drop of Teff at larger values of λ0,
precisely corresponding to λ0 = u0, where the transition is in
the Ising universality class. This feature of the phase diagram
is understood from the flow by observing that the positions
of the Ising and XY fixed points in the flow diagram are
very different. The pronounced decrease of Teff upon rising
λ0 towards u0 is then a consequence of continuity of the flow.
Figure 2 provides an example manifestation of crossover of a
nonuniversal thermodynamic quantity (the critical line) due to
an interplay between two RG fixed points. The magnitude of
this effect depends strongly on the value of u0. Another mani-
festation of this crossover behavior is identified by inspecting
the critical exponents. As an illustrative example in Fig. 3
we plot the transverse mass as a function of T c

eff − Teff and
observe the crossover of the corresponding critical exponent

FIG. 3. Renormalized transverse mass m2 (inverse transverse
susceptibility) as a function of T c

eff − Teff for a sequence of values of
λ0 and u0 = 1. Upon varying λ0 away from λ0 = u0 the correspond-
ing exponent γT crosses over from the Ising behavior (the upper, blue
curve) to the XY value.

FIG. 4. The flowing anomalous dimension η as a function of
the renormalization scale s = log(�/k). The plot shows two scaling
plateaus described by the Ising (the upper curve) and XY universality
classes. For the illustration we chose the quartic coupling u0 = 5
close to its fixed-point value.

γT between two values related to the Ising and XY fixed
points.

Crossover behavior manifests itself also by varying the
observation scale. For the present situation we exemplify this
in Fig. 4 by plotting the anomalous dimension η versus the
cutoff scale. It exhibits two scaling plateaus describing the
Ising and XY universality classes. The specific values of η

differ from the accurate ones by a factor of order 2, which is
due to truncation (see, e.g., Ref. [33] for comparison).

Leaving aside the Ising-XY crossover we now demonstrate
the effect of the anisotropy on the RG flow in the low-T phase
[14]. Figure 5 illustrates the crossover between the scaling
behavior controlled by the critical XY (Wilson-Fisher) and
the low-T (Nambu-Goldstone) fixed points (both located at
λ̃ = 0). We plot the flow of ũ and Ỹ , where the fixed-point
behavior is clearly visible.

For an initial condition somewhat below the critical tem-
perature the flow first converges to the vicinity of the Wilson-
Fisher fixed point, from which it departs at a scale k of the
order of the inverse correlation length ξ−1 of the longitudinal
mode. The subsequent part of the flow is controlled by the
Nambu-Goldstone fixed point, which, for λ = 0, is never left
down to k = 0. However, if λ �= 0, the flow departs from this
fixed point at another critical scale k = ξ ′−1 related to the
transverse mode. The presence of these two scales divergent
at the phase transition is the source of the generic mechanism
leading to distinct critical exponents in the low- and high-
temperature phases [14].

In the next section, we discuss evolution of this picture
when dimensionality is changed to d = 2, where, according to
earlier studies, one expects a deformation of the flow diagram
involving appearance of distinct fixed-point lines describing
the KT phase and the phase transition at λ �= 0.

B. Results in d = 2

We now discuss the results obtained in the simple trunca-
tion for d = 2. We recall [26,28–31] that the present approach
does not stricto sensu capture the KT phase transition, which
(due to approximation) is rounded to a very sharp crossover.
The correlation length becomes huge (but is still finite) and
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FIG. 5. Illustration of the crossover between the behavior controlled by the critical XY and the low-T fixed points. For an initial condition
somewhat below the critical temperature the flow first converges to the vicinity of the Wilson-Fisher fixed point, from which it departs at a scale
k of the order of the inverse correlation length ξ−1 of the longitudinal mode. The subsequent part of the flow is controlled by the T = 0 fixed
point, which, for λ = 0, is never left down to k = 0. However, if λ �= 0, the flow departs from this fixed point at another critical scale k = ξ ′−1

related to the transverse mode. The presence of these two scales divergent at the phase transition forms the basis of the generic mechanism
leading to distinct critical exponents in the low- and high-temperature phases [14].

the KT line of fixed points is visible as a “quasifixed” point
line, where the flow becomes very slow, but ultimately, at
very large RG times, ends up in the high-temperature phase.
A similar phenomenon occurs, in the present truncation, for
the fixed-point line at λ > 0. We begin with plotting the phase
diagram—see Fig. 6, which may be compared to the case of
d = 3. The behavior of the critical line at λ0 ≈ u0 is very
similar to the case d = 3 and may be understood as a signature
of the Ising fixed point. For small λ our result apparently
indicates an approach of Teff towards a constant value, which
is consistent with the results of Ref. [8] obtained from the
Villain model. However, within an alternative (presumably
less reliable) approach based on the Migdal transformation,
Ref. [8] provided another estimate of the critical line:

λc
p(T ) ∝ e−AT 2eB/T

, (16)

which is not possible to exclude using our numerical data.
As concerns the flow, a schematic illustration of the picture
emergent in our approximation is presented in Fig. 7. In
addition to the KT (quasi)fixed-point line at λ̃ = 0 we identify
a similar line extending towards large λ. A system tuned

FIG. 6. The critical line λ0,u(α0) computed for a sequence of
values of u0 in d = 2. The sudden drop of Teff occurs precisely at
λ0 ≈ u0, where the transition is in the Ising universality class. The
effect is similar to the one observed for d = 3 (see Fig. 2).

to the critical point (at some λ0 > 0) approaches the line,
and exhibits a regime of very slow flow along the line. We
note that the entire (quasi)fixed line is located in the regime
λ̃ < ũ. The regime λ0 > u0 is beyond the scope of the present
paper. The behavior of the system for the special choice of the
initial condition λ0 = u0 (and α0 tuned to the critical value)
corresponds to the Ising universality class in full analogy to
the case of d = 3. However, for small λ0 an intermediate KT
scaling sets in so that the flow first proceeds along the KT
line and crosses over to the scaling controlled by the line
at λ̃ only at low scales. This crossover scale diverges for
small λ0. This behavior is well illustrated in Fig. 8, where
we plot ũ versus the cutoff scale. In an exact calculation we
expect exact fixed-point behavior along the line at λ̃ > 0 in
accord with Ref. [8]. Note, however, that the existence of
this line is fully established only for small anisotropies. The
other worthwhile observation is that the (quasi)fixed-point
line obtained by us is located for λ̃ significantly smaller than
ũ. The two (quasi)fixed-point lines are well identified in the
flow diagram in the (λ̃, κ̃−1, ũ) space, and we present the

FIG. 7. A schematic illustration of the picture obtained within
the present approximation in d = 2. The flow diagram features two
(quasi)fixed-point lines, which in an exact calculation should turn
into exact fixed points. The line located at λ̃ = 0 corresponds to the
algebraic KT phase. The line emerging towards large λ characterizes
the critical points with nonuniversal exponents. A system tuned to
criticality approaches the line and exhibits a very slow flow along
it. A single point on this line corresponds to an exact fixed point.
The locus λ̃ = ũ is controlled by the Ising fixed point, completely
detached from the (quasi)fixed-point line.
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FIG. 8. Flow of ũ for a sequence of values of the initial
anisotropy coupling. For sufficiently low λ0 (e.g., the lowest, blue
curve) the flow rapidly approaches the KT (quasi)fixed-point line
and remains in its vicinity for a substantial RG time. Subsequently it
crosses over to the behavior governed by the finite λ̃ (quasi)fixed-
point line from which it ultimately departs due to numerical lim-
itations. The crossover scale diverges for λ0 → 0. For sufficiently
large λ0 the KT scaling is not visible and the flow immediately runs
towards the finite λ̃ fixed-point line (see, e.g., the highest, green
curve).

projections in Figs. 9 and 10. Generically, all the critical flows
converge to one universal line in the (λ̃, κ̃−1, ũ) space, which
they follow up to a point determined by numerical accuracy
of tuning to the critical point and integrating the flow. The
crossover scale between the KT and critical (finite λ̃) behavior
diverges for λ0 → 0. It is not hard to imagine pushing it to
values way below the scale controlled by the system size in
simulations. This explains the presence of the (apparent) KT
phase in Monte Carlo data.

We finally discuss the critical exponents. The values ob-
tained at the present approximation level may serve only as
a crude estimate. The applied approximation level allows,
however, for observing signatures of nonuniversality. This
is demonstrated by plotting the transverse and longitudinal
susceptibility exponents as a function of anisotropy in Fig. 11.
The obtained values are (almost) equal and vary with λ0.
This is contrasted to the results obtained in d = 3, where
the exponents are (as expected) different from each other and
independent of λ0.

FIG. 9. Projections of the numerically obtained RG flow di-
agrams demonstrating the (quasi)fixed-point lines. (Compare to
Fig. 8.) The (almost) vertical locus represents the KT fixed-point line,
which crosses over to the tilted line followed by all the plotted curves,
corresponding to the finite λ̃ fixed-point line. In the final part of the
flow the curves depart from the (quasi)fixed-point line and go into
the low-T phase.

FIG. 10. Projection of the RG flows from Fig. 9 on the (κ̃−1, λ̃)
plane.

One feature concerning the limit λ0 → 0 in d = 2 cannot
be accounted for by the present functional RG truncation.
This is related to the essential singularity of the correlation
length of the pure O(2) model, which is not captured by the
applied approximation and requires going at least to second
order in complete derivative expansion [28]. This deficiency
has impact on the system also for λ0 �= 0. Indeed, reasoning
by continuity, the nonuniversal correlation length exponent
ν should diverge for vanishing λ0. By scaling laws this
implies also the divergence of the susceptibility and order-
parameter-β exponents. This divergence, predicted by Ref. [8]
(see also Ref. [42]), is not captured by the present simple
truncation, and, in the present framework, requires a higher-
order treatment. We leave this, together with an accurate
resolution of the exponents (including the scaling exponent
of the anisotropy coupling λ), to future work.

VI. SUMMARY AND PERSPECTIVE

We employed a simple truncation of the nonperturbative
renormalization group to analyze the impact of Z4-symmetric
perturbations on the critical behavior of the O(2) model in
dimensionality d = 3 and 2. This allowed us to treat the two
rather different situations in a unified framework and resolve
the relatively complex crossover behavior arising due to the
interplay of distinct RG fixed points. Both for d = 2 and 3 in
the parameter space there exists a (one-dimensional) domain

FIG. 11. Transverse and longitudinal susceptibility exponents as
a function of anisotropy λ0 for d = 2 (left panel) and d = 3 (right
panel). In d = 2 the obtained exponents are (almost) equal, but show
dependence on λ0. In d = 3 the two exponents are different, but
universal. The range of λ0 is chosen small to avoid any possible
interference with the Ising fixed point.
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of attraction of the Ising fixed point, the presence of which
manifests itself in specific values of the critical exponents, but
also via an abrupt variation of the critical temperature as a
function of the anisotropy coupling. In three dimensions, apart
from the special situation λ0 = u0, the flow at asymptotically
low scales is controlled by the Wilson-Fisher fixed point.
However, due to the presence of the dangerously irrelevant
anisotropy coupling, the Goldstone mode acquires a gap and
the critical exponents differ depending on the side from which
the phase transition is approached [14]. This behavior may
also be understood by realizing the existence of two distinct
divergent scales controlling the flow in regimes corresponding
to the vicinity of the critical (XY ) and the low-T fixed
points. Therefore, the complete picture in d = 3 involves the
interplay of three fixed points and the rich related crossover
behavior.

In d = 2, in addition to the Kosterlitz-Thouless fixed-point
line and the above-mentioned Ising fixed point, there exists a
separate line of fixed points emerging towards the regime of
large anisotropy couplings. Within the present treatment (in an
analogy with the Kosterlitz-Thouless phase) this is captured
approximately by a flow regime characterized by very slow
running of the couplings in the form of the quasifixed points.
The RG flow finds itself between the isolated Ising fixed
point and the two lines. For small anisotropy coupling the
critical trajectories follow the close vicinity of the KT line
down to an RG scale where they cross over to the critical
fixed-point line. This crossover scale diverges for vanishing

anisotropies so that the flow becomes dominated by the KT
line down to extremely low RG scales. This picture gives a
natural explanation of the KT-like behavior observed in Monte
Carlo simulations of the lattice XY model at sufficiently small
anisotropies.

There are natural extensions of this paper worth inves-
tigating in the near future. These involve a more accurate,
functional parametrization of the flowing effective action,
avoiding expansion of the flowing effective potential Uk (ρ, τ )
in the invariants ρ and τ . In d = 2 this would allow for
capturing the KT transition (including the essential singularity
of the correlation length) and therefore an accurate resolution
of the limit λ → 0. We expect that such a truncation would
in fact give a very accurate picture at λ > 0. This is because
vortices, which are hard to capture by the present approach,
are actually not relevant for a description of physics at finite
anisotropies. The other observation is that the existence of the
line of fixed points at λ �= 0 is firmly established only in the
limit λ → 0. The present framework (at the functional level)
is by no means restricted to this regime. In particular, it might
be very interesting to investigate the case λ0 > u0 and the
emerging relation to the p-state clock models [43].
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APPENDIX

Here we quote the flow equations for the Z factors Z1 and Z2 corresponding to the longitudinal and transverse modes,
respectively. We introduce R(n,m)(y) := dn+mRk (y)

dyndkm . The flow equations read

∂kZ1 = Y

u

∫
q

G2
1(q)2U (q)R(0,1) +

∫
q

G3
1(q)α2

{
1

2
[u + 2U (q)]2

(
R(1,1) + 2

d
q2R(2,1)

)
+ 2R(0,1)Y

[
2u + 4U (q) + 2

d
q2Y

]

+ 2
2

d
q2Y [u + 2U (q)]R(1,1)

}

−
∫

q
G4

1(q)α2

{
2

2

d
q2[u + 2U (q)]2(Z1 + R(1,0))R(1,1) + 3

2
[u + 2U (q)]2

(
Z1 + R(1,0) + 2

d
q2R(2,0)

)
R(0,1)

+ 6
2

d
q2[u + 2U (q)](Z1 + R(1,0))R(0,1)

}

+
∫

q
G5

1(q)4α2 2

d
q2[u + 2U (q)]2(Z1 + R(1,0))2R(0,1) + Y

u

∫
q

G2
2(q)(u + 2λ)R(0,1)

+
∫

q
G3

2(q)α2

[
1

2
(u + 2λ)2

(
R(1,1) + 2

d
q2R(2,1)

)
+ 2Y (u + 2λ)R(0,1)

]

−
∫

q
G4

2(q)α2(u + 2λ)2

[
2

2

d
q2(Z2 + R(1,0))R(1,1) + 3

2

(
Z2 + R(1,0) + 2

d
q2R(2,0)

)
R(0,1)

]

+
∫

q
G5

2(q)4α2 2

d
q2(u + 2λ)2(Z2 + R(1,0))2R(0,1)
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and

∂kZ2 = −
∫

q
Y R(0,1)(q2)G2

2(q) +
∫

q
6α2 2

d
q2[2λ + U (q)]2R(0,1)(q2)[Z + R(1,0)(q2)]2G4

2(q)G1(q)

+
∫

q
2α2 2

d
q2[2λ + U (q)]2R(0,1)(q2)[Z + R(1,0)(q2)]2G3

2(q)G2
1(q)

−
∫

q
4α2 2

d
q2[2λ + U (q)]2R(1,1)(q2)[Z + R(1,0)(q2)]G3

2(q)G1(q)

−
∫

q
2α2[2λ + U (q)]2R(0,1)(q2)

(
Z + R(1,0)(q2) + 2

d
q2R(2,0)(q2)

)
G3

2(q)G1(q)

−
∫

q
α2[2λ + U (q)]2R(0,1)(q2)

(
Z + R(1,0)(q2) + 2

d
q2R(2,0)(q2)

)
G2

2(q)G2
1(q)

+
∫

q
α2[2λ + U (q)]2

(
R(1,1)(q2) + 2

d
q2R(2,1)(q2)

)
G2

2(q)G1(q).
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