
PHYSICAL REVIEW E 100, 052103 (2019)
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The problem of eliminating fast-relaxing variables to obtain an effective diffusion process in position is solved
in a uniform and straightforward way for models with velocity a function jointly of position and fast variables.
A more unified view is thereby obtained of the effect of environmental inhomogeneity on the motion of a
diffusing particle, in particular, whether a drift is induced, covering both passive and active particles. Infinitesimal
generators (equivalently, drift-diffusion fields) for the contracted processes are worked out in detail for several
models.
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I. INTRODUCTION

Thirty years ago, van Kampen [1] investigated the effects
of environmental inhomogeneity in models of random motion
of passive particles. In general, the problem continues to
attract interest [2–8] and has been especially revived for active
matter [9–13]. Cates and Tailleur [14] and Vuijk et al. [15],
in particular, studied variants of a model to be taken up
here. Consider, for instance, a micron-sized particle propelling
itself via chemical reactions using fuel from the environment,
at a speed increasing with fuel concentration. Random torques
cause its direction of motion to wander (time scale ∼1 s), so
that its motion is diffusive on longer time scales. Will a fuel
concentration gradient cause drift? If so, then the mechanism
would seem to be rather different than for a passive particle.

This paper presents a unified perspective for velocity
models—models for which velocity is given as a function
of continuous position and fast-relaxing variables. I show
how to eliminate the fast variables to obtain the infinitesimal
generator for a positional diffusion (meaning with drift) in the
Markovian limit by a uniform and natural method. Drift is just
a part of this contraction problem. Although the infinitesimal
generator is interconvertible with a Fokker-Planck-type equa-
tion, being a dual, or adjoint formulation, the method given
here seems significantly simpler than methods which work
with a probability density from the beginning. Significant
generalizations of both the active particle model mentioned
above and the Langevin-Kramers model of a Brownian parti-
cle discussed by van Kampen are treated in detail, together
with a coupling of them. All those belong to the class of
quasilinear velocity models, for which practical formulas
for drift-diffusion fields are given, requiring a handful of
tensor fields on position space expressing simple properties
of the original velocity model and its fast equilbria. Intuition
suggests that, all other things being equal, a passive Brownian
particle drifts toward lower velocity damping while the simple
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active particle drifts toward higher fuel concentration. Suit-
ably embellished, these are the only two general mechanisms
of gradient-induced drift for quasilinear models, and the same
is arguably roughly true for general velocity models.

Zoom out now to situate that contraction problem in a
broader idea of coarse-graining. Diffusions, characterized by
drift (u) and diffusion (D) coefficients, and Markovian random
processes with continuous sample paths, are essentially the
same thing. Therefore, to make a diffusion approximation
of something (a simple random walk, for an elementary
example) is to approximate it by a Markovian process with
continuous sample paths. If the process as given lacks Marko-
vianity, then it may display it approximately over longer
time scales—a temporal coarse-graining is called for. The
processes treated in this paper have a velocity determined
jointly by position and some fast variables, that is, with
quickly decaying correlations. They belong to this first general
category. If the process as given has discontinuous sample
paths (a so-called hopping model [1,2,16,17], for instance),
then it might be approximable as continuous after a spatial
coarse-graining. Those are outside the purview of this paper.
A seeming third category comprises discrete time Markovian
processes, such as the archetypal random walk. However,
viewed as time-homogeneous continuous-time processes, as
they must be to prepare for a diffusion approximation, they
are non-Markovian. Therefore, they too conform to the rule of
temporal or spatial coarse-graining to obtain Markovianity or
continuous paths.

Here is a content guide. Section II reviews the afore-
mentioned equivalence of diffusions with Markovian with
continuous paths, and the observable-centered (“Heisenberg
picture”) semigroup formalism we will use. Section III solves
the contraction problem—elimination of fast variables—for
a general velocity model, leading to expressions for the in-
finitesimal generator of the contracted process in terms of
time correlation functions in fast-equilibrium [see Eqs. (15)–
(17)]. Section IV elaborates the Langevin-Kramers model,
to one with arbitary tensor parameters, and a simple model
of an active particle, to one with fully anisotropic rotational
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diffusion characteristics, as well as a coupling of the two. The
elaborated models are fit into the framework of (quasilinear)
models describable in terms of intrinsic drift (〈v〉fst), decay
rate (�), velocity transformation (σ ), and kinetic (K), tensor
fields. A general conclusion here is that drift which is not
already implied by fast equilibrium is due to derivatives of
either � or σ . Section V makes contact with the more com-
mon Fokker-Planck perspective, discussing the relationship of
(u, D) with drift and diffusive currents is discussed, as well as
position-conditional mean instantaneous velocity.

II. BACKGROUND: FELLER PROCESSES AND
SEMIGROUPS ON MANIFOLDS

This Section is a quick review of some standard lore
[18,19], with two principal objectives. First, to introduce the
semigroup formulation which will be used subsequently. This
is a description which focuses on the evolution of observables
rather than a probability density. It stands in relation to what
might loosely be called a Fokker-Planck–type formulation
as the Heisenberg picture in quantum mechanics stands to
the Schrödinger picture. Secondly, and concurrently, to recall
the equivalence between Markov processes with continuous
sample paths and diffusions.

For a Markov process X on a manifold M, and with Xt

denoting the state of the system (a point in M) at time t ,
operators Pt are defined via

(Pt f )(p) = Ep[ f (Xt )] = 〈 f (t )〉p, (1)

this being the expectation of f (Xt ) assuming initial state
p. The Markovian no-memory property is expressed by
the Chapman-Kolmogorov equation PsPt = Pt+s (s, t � 0),
which can also be read as saying that (Pt )t∈[0,∞) comprises
a semigroup. A Feller semigroup is one which maps C0(M)
(continuous functions tending to zero at infinity) into itself
and is strongly continuous with respect to supremum norm,
and its (infinitesimal) generator Z is defined by Z f :=
limt↓0

1
t (Pt f − f ), with domain the subspace of C0(M) on

which the limit exists. The generator and semigroup are re-
lated by d

dt Pt f = ZPt f , solution to which is formally written
as Pt = exp tZ . Assuming as well that C∞

c (M) ⊂ dom Z (so
far, all is all consistent with a jump process) and that all
sample paths are continuous, Z is guaranteed to be a second-
order differential operator. In a coordinate chart x : U → Rn,

Z = ui(x)
∂

∂xi
+ Di j (x)

∂2

∂xi∂x j
, (2)

where

ui(x0) := Z
[(

xi − xi
0

)
χ

]
,

2Di j (x0) := Z
[(

xi − xi
0

)(
x j − x j

0

)
χ

]
, (3)

and χ ∈ C∞
c (U ) equals one on some neighborhood of x0.

Here and throughout, summation convention is followed for
matching upper and lower indices. Equations (3) provide the
interpretation of (u, D). Exactness of the second-order form
goes back to a 1931 paper of Kolmogorov [20]. Now, while
ui∂i is covariant, Di j∂i∂ j is not. This has the slightly confus-
ing consequence that Di j transforms as a twice-contravariant

tensor, but the drift has an anomalous term in its coordinate-
transformation rule:

uα (y) = ∂yα

∂x j
u j (x) + ∂2yα

∂x j∂xk
D jk (x). (4)

This curious fact indicates that (u, D) should be thought of as
a unit, not two fully distinct things.

In the converse direction to the conclusion represented by
Eq. (2), suppose given a differential operator as generator of a
semigroup (Pt ). If Pt bears interpretation as the semigroup
associated with a stochastic process on M—a probability
measure or coherent system of starting-point-indexed prob-
ability measures on paths [0,∞) → M—then the process
is perforce Markovian (Chapman-Kolmogorov equation) and
has continuous sample paths since Z f (x) = 0 whenever f
vanishes on any neighborhood of x. Further, as already seen,
Z must in that case be second order.

The semigroup formulation is convenient for calculating
multi-time correlation functions. For example, with initial
measure μ and t1, t2 � 0,

Eμ

[
f2

(
Xt1+t2

)
f1

(
Xt1

)] = 〈 f1(t1) f2(t1 + t2)〉μ
=

∫
μ(dx)Pt1 f1Pt2 f2(x). (5)

In the final expression, time ordering must be observed, and
Pt1 acts on everything to its right (i.e., f1Pt2 f2).

A general Markov process on M can be thought of as a
continuous motion occasionally interupted by unanticipated
jumps. Later, we will discuss adding jumps to our prototype
models, but will do no concrete calculations, hence do not
introduce any notation for them.

III. CONTRACTION OF VELOCITY MODELS

This section constructs the contraction of a general velocity
model, with special attention to the Markovian limit. The
generator Z , equivalently drift-diffusion fields (u, D) of the
contracted process, are expressed in terms of time correlation
functions in the fast equilibrium. As concrete examples to
keep in mind, simple prototypes will be described first.

A. Prototypes

We introduce some very simple concrete models as ex-
amples. They live on product spaces Rd

x × F , where the first
factor is for position and the second for some internal, fast
degrees of freedom.

A0: F = Rd
v is velocity space and the generator is

ZA0 − γ (x)vi ∂

∂vi
+ D(x)�v + vi ∂

∂xi
, (6)

where � is the d-dimensional euclidean laplacian. This is
nothing but the Langevin-Kramers model for a particle in a
thermal bath, except that there is no assumption that anything
is thermal, so the fluctuation-dissipation link is broken and γ

and D are functions of x (as emphasized in the notation). The
drift in Model A0 was investigated already decades ago [1,21].

B0: F = Sd−1, the unit sphere in Rd , so a point ξ in F
can be thought of as a unit vector in Rd . B0 has infinitesimal
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generator

ZB0 = D(x)�S + v0(x)ξ i ∂

∂xi
, (7)

where �S is the Laplace-Beltrami operator on the sphere.
As motivation, consider that this can model a self-powered
colloidal particle which propels itself by consuming fuel in
its environment. The concentration of fuel, hence its speed
v0 varies with the position-dependent concentration. At the
same time, its direction of motion ξ is subject to Brownian
wandering represented by the first term of Z . Variants of this
model were investigated relatively recently [14,15].

In Sec. IV these models will be significantly elaborated.
But the simple examples are a good thing to keep in mind
during the following abstract development.

B. Slow and fast degrees of freedom

The general and natural geometrical setting for our inves-
tigation is as follows. Q is a manifold, the configuration, or
base, manifold, representing slow degrees of freedom of the
system—position in the concrete models. πE : E → Q is a
fiber bundle over Q with typical fiber F . F represents fast de-
grees of freedom. Conventionally, coordinates or points in the
fibers will be denoted by ξ . In the case of models A0 and B0,
E is just a product bundle, with Q = Rd

x . Several motivations
can be adduced for working in the manifold setting. Certainly
there are interesting cases of particles moving in noneuclidean
geometries, in a lipid bilayer membrane, for example. Fast
variables, such as orientational variables, are perhaps even
more likely to inhabit noneuclidean spaces. Model B of this
paper is an example. Also, since the questions at issue are
local in position, the mathematical overhead involved is fairly
light, while nonuniform parameters are very natural in arbitary
coordinates.

What determines the rate of change of position is the
velocity, of course. ξ may simply be velocity, as for Model
A0. In any case, the velocity is a function v(x, ξ ) of the fast
and slow coordinates. Thus, v : E → T Q is a bundle map.
The basic assumption made about the fundamental Markov
process is that it have a generator of the form

Z = Zfst + vi(ξ, x)
∂

∂xi
, (8)

where Zfst generates a fiber-preserving semigroup Pt
fst (the

state never moves out of the fiber it started in) in each
fiber. The structure of Eq. (8) explains the name “velocity
model.” In addition, the fast processes are assumed to attain
equilbrium on the time scale τ :

Pt
fst f = 〈 f 〉fst + O(e−t/τ ). (9)

That is, 〈·〉fst represents a fiber-by-fiber equilibrium depending
on base position (in Q).

The smaller τ compared to our observation time scale for
the contracted process, the closer the latter is to Markovian.
In order to access the Markovian limit in a formal way, we
scale Zfst up by a large factor, scaling down the time required
to reach fast equilibrium. That alone would have the effect
of rendering all fluctuations negligible, so a rescaling of the
velocity is also needed. With temporary “old and new” labels

for clarity, we take

Zfst,new := 1

ε
Zfst,old,

vnew(ξ, x) − 〈vold〉fst := ε1/2(vold(ξ, x) − 〈vold〉fst ). (10)

For infinitesimal ε, the contracted process is Markovian, and
therefore, according to Sec. II, fully characterized by drift-
diffusion fields (u, D) on Q. An overbar on a symbol indicates
that it pertains to a contracted process.

C. Contracted semigroup

The fast generator Zfst generates a fast semigroup Pfst and
drives the system toward the fast equilibrium 〈 〉fst. These are
all black boxes to us. In such generality, there are very few
options of how to proceed. Take the clutching term

δZ = v · ∂x := vi(x, ξ )
∂

∂xi
, (11)

from Z , and put it into the Duhamel-Dyson formula as a
perturbation:

PT = PT
fst +

∫ T

0
Ps(δZ )PT −s

fst ds

= PT
fst +

∫
0�t1�T

Pt1
fst(δZ )PT −t1

fst

+
∫

0�t2�t1�T
Pt2

fst(δZ )Pt1−t2
fst (δZ )PT −t1

fst + · · · (12)

So far, this resembles perturbation expansions for evolution
operators as they occur in many fields, quantum mechanics
notably. However, we wish to apply this to functions of posi-
tion (in Q) alone, thereby constructing a contracted semigroup
P

t
with generator Z . To that end, examine the structure of the

nth term of the expansion:∫
0�tn�···�t1�T

Ptn
fst(δZ )Ptn−1−tn

fst (δZ ) · · ·

Pt2−t3
fst (δZ )Pt1−t2

fst (δZ )PT −t1
fst . (13)

The integrand is a string of operators, Ps
fst and (δZ ),

each of which potentially acts on everything to its
right. If ετ 
 tk − tk−1, then that action is effectively the
same as taking the fast-equilibrium value. Thus, the in-
tegrand reduces to a product of clusters of the form
〈 sequence of δZ’s within times ∼ετ 〉fst. The entire perturba-
tion expansion thus reduces, formally, to a sum over all
(ordered) products of clusters as the cluster positions range
over the interval [0, T ]. That is, P

T = exp(TZ ), with

Z =
∞∑

n=1

〈Sn〉fst,

S1 = v · ∂x, (14)

Sn+1 = (v · ∂x )
∫ ∞

0
Pt (Sn − 〈Sn〉fst ).

Insofar as we are interested in the Markovian limit, however,
this is overkill. Each factor of δZ carries a factor ε−1/2 in
the v, and each integration

∫ ∞
0 Pt

fst · · · dt brings another factor
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ε. Formally, then, 〈S1〉fst = 〈v〉fst · ∂x = O(1), and, for n � 0,
〈Sn+2〉fst = O(εn/2). Therefore, in the limit ε ↓ 0, we obtain
the Markovian generator

ZMarkovian = 〈v〉fst∂x +
∫ ∞

0
dt

〈
(ṽ∂x )Pt

fstṽ∂x
〉
fst, (15)

using the abbreviation

ṽ := v − 〈v〉fst.

(The subtraction of the first 〈v〉fst on the second line is allowed
since what it multiplies has zero fast expectation value.)
Henceforth, we are interested only in this Markovian limit and
therefore drop the subscript.

Now, recalling once again that the derivatives in Eq. (15)
act on everything to the right and matching against the gen-
eral form Eq. (2), the drift-diffusion fields of the contracted
process in the Markovian limit are revealed:

u = 〈v〉fst +
∫ ∞

0
dt 〈ṽ(0)(∂xṽ(t ))〉fst (16)

and

D = 2
∫ ∞

0
dt Sym 〈ṽ(0) ⊗ ṽ(t )〉fst, (17)

where “Sym” indicates symmetrization on the tensor indices.
Verification that these formulas conform to the coordinate-
transformation law Eq. (4) is straightforward.

IV. PROTOTYPES ELABORATED

This Section explores various ways to elaborate the proto-
type models A0 and B0. Rather than doing so in an uncon-
strained fashion, the aim is to preserve a simplicity of the
relevant correlation functions. Thus, in preparation we define
a restricted class of velocity models with a convenient and
fairly intuitive set of parameters: intrinsic drift (〈v〉fst), decay
(�), velocity transformation (σ ), and kinetic (K) tensors.
Definitions follow.

A. Quasilinear models

Quasilinear models are defined by two conditions.
(a) The velocity function has a factorized form:

ṽi(ξ, x) = σ i
j (x)ṽ j

0(ξ ); (18)

(b) ṽ decays exponentially, on average:

Zfstṽ
i = −�i

j ṽ
j, (19)

where � is a position-dependent linear operator with spectrum
in the right complex half-plane Re z � τ−1.

Condition (b) implies that

Pt
fstṽ = e−t�ṽ.

The calculations for u and D under these assumptions are
similar, the latter being slightly easier. For u (16), we have

u − 〈v〉fst =
∫ ∞

0
〈ṽ(0)∂x ṽ(t )〉fst

=
∫ ∞

0
〈(ṽ(0)∂x ) exp(−t�)ṽ〉fst (20)

= 〈(ṽ∂x )�−1ṽ〉fst. (21)

Now, according to the factorization condition (a), ∂x here is
oblivious to ṽ0, so we can rearrange factors and put it before
the derivative. The result will be correct in any specific coor-
dinate system. (Vide infra for comment about transformation
properties.) With the definition

K := 〈ṽ ⊗ ṽ〉fst, (22)

we obtain

ui − 〈vi〉fst = (σ−1)k
s Ks j ∂

∂x j

[
(�−1)i

lσ
l
k

]
, (23)

2D
i j = (�−1)i

kKk j + (�−1) j
kKik . (24)

The expression for the generator corresponding to this
(u, D) pair is actually hardly less compact than either. It is

Z = (〈vi〉fst + (σ−1K )k j ∂ j (�−1σ )i
k

)
∂i. (25)

Here, the alternative notation for derivatives is meant to
emphasize that ∂ j is an operator that operates on everything
to its right, not just the parenthesized expression immediately
following. Written in terms of fast-equilibrium correlations,
this is

Z = 〈vi〉fst∂i + 〈
ṽ j∂ j (�

−1)i
k ṽ

k
〉
fst∂i. (26)

This expression is valid with only condition (b) imposed, but
that is not the reason it is written here. Equation (26) exhibits
general coordinate covariance, whereas Eq. (25) does not.
The reason is that, in the latter, a factor ṽ0 was moved in
front of a derivative so that we could write things in terms of
K . ṽ0 itself is not position-dependent, but with a change of
coordinates, it will generate a jacobian factor which may be,
but which is invisible in Eq. (25).

Before moving on to concrete models, a few observations
are in order about the significance of Eqs. (23) and (24).
(i) Apart from 〈v〉fst, there are two basic mechanisms to
produce drift in a quasilinear model: gradients of either the
decay tensor � or the velocity scaling tensor σ . These two
are precisely the mechanisms whereby drift is generated in
the prototypes A0 and B0, respectively. (ii) In contrast to the
case of a generic velocity mdoel, the quasilinear parametriza-
tion allows a precise statement of that sort. Still, it seems
reasonable to say that something roughly like that holds in
general. (iii) Derivatives of K do not enter. Therefore, we
cannot say that inhomogeneity generically induces drift. This
is not in conflict with the existence of thermophoresis [22].
Temperature-dependent free energy of interaction with the
surrounding medium can contribute to 〈v〉fst. (iv) The only
information required directly about the fast equilibria is that
encoded in 〈v〉fst and K , which is to say, not very much.

B. Model A

Now, we briefly investigate what sorts of physically plau-
sible elaborations can be made of Model A0 (later, B0) from
Section III A without spoiling the quasilinearity conditions
(18) and (19). The first, most obvious way to modify Model
A0 is simply to make all the scalar coefficients tensors. Thus,
Model A is defined by the fast generator (γ , f , and D are
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functions of x alone)

ZA,fst = (
f j − γ

j
i vi

) ∂

∂v j
+ Di j ∂2

∂vi∂v j
. (27)

Here, f has the interpretation of some kind of external force. γ
is allowed to be anisotropic and may have partially rotational
character, and D is symmetric and positive, but otherwise un-
constrained. With regard to the anisotropies, this is not written
down with any specific physical system in mind, but one may
imagine motion in an anisotropic medium, e.g., nematic liquid
crystal, a magnetic field, and random excitation coming from
an anisotropic nonthermal source such as ultrasonic pulses.

Three of the quasilinear parameters follow immediately:

σ ≡ I, 〈v〉fst = γ −1 f , � = γ . (28)

Finally, demanding 〈ZA(ṽ ⊗ ṽ)〉fst = 0 gives the equation

�K + K� = 2D, (29)

which determines K implicitly, and has a unique solution
given the spectral restrictions on �. In fact, writing K and
D as bilinear forms, Eq. (29) says K (�v,w) + K (v,�w) =
2D(v,w). The solution is K (v,w) = ∫ ∞

0 2D(e−t�v, e−t�

w) dt , which is manifestly symmetric and positive, since
D is.

Multiplying Eq. (29) by �−1 and �−1
from left and right,

respectively, yields

D
i j = (�−1)i

k (�−1) j
mDkm, (30)

bypassing K . Unfortunately, K is still needed for u, and no
tidy formula appears available in general. Three special cases
will be considered.

Model A1: γ = γsI is proportional to the identity (subscript
“s” for “scalar”). Then, the foregoing quickly leads to

ZA1 = (
γ −1

s f i + γ −1
s Di j ∂ j γ

−1
s

)
∂i. (31)

We might try to further specialize by supposing D is scalar.
That makes no sense in general, but if Q has a riemannian
metric g, we may suppose Di j and Ki j proportional to gi j .
Write Ki j = T gi j , so Di j = (T/γs)gi j ; this can be viewed
as a definition of T . Essentially, this is Model A0 with an
external force. The result here is easily seen to agree with
that obtained by van Kampen in Section 4 of Ref. [1] after
notational translation.

Model A2: Q is equipped with a riemannian metric g and
Ki j = T gi j . The interpretation of this is that fast-equilibrium
is thermal equilibrium at position-dependent temperature
T (x), and relies on something outside the model itself for
its justification. Thus, the formula for K is given by fiat, and
implies the restriction

Di j = T

2
[γ i j + γ ji], (32)

where one index of γ is raised with g in the usual way. From
this, we easily obtain

ZA2 = (
(γ −1 f )i + T gk j ∂ j (γ −1)i

k

)
∂i. (33)

Model A3: � has a full complement of smoothly vary-
ing position-dependent (complex!) eigenvectors labeled

by α = 1, . . . , d:

�i
kθ

k
α = λαθ i

α. (34)

With projection operators defined as

Pα = θα ⊗ θα (35)

by use of the dual basis (θα )d
1 to the basis (θα )d

1 ,

θα
i θ i

β = δαβ, (36)

we obtain

� =
d∑

α=1

λαPα, �−1 =
d∑

α=1

1

λα

Pα. (37)

Now, we can proceed to write everything else in terms of
the eigenvalues λα and projections Pα . The results are not
particularly transparent, but from Eq. (40) below, one at least
gets some sense of how derivatives of both the eigenvalues and
the eigendirections contribute to the drift. The kinetic tensor is

Ki j =
d∑

α,β=1

2DkmPi
αkP j

β m

λα + λβ

, (38)

the contracted diffusion tensor is

D
i j =

d∑
α,β=1

DkmPi
αkP j

β m

(λα + λβ )2
, (39)

and the contracted drift is

ui = (γ −1)i
k f k +

d∑
α,β,γ=1

DnmPk
α nP j

β m

λα + λβ

∂

∂x j

(
λ−1

γ Pi
γ k

)
. (40)

Consider briefly some additional elaborations that would
preserve quasilinearity without writing formulas for the pa-
rameters. First, D can be made velocity dependent. Second, a
variety of jumps can be included—a mean zero jump distribu-
tion would contribute to K , while jumps with probability den-
sity depending on a scattering angle and fractional decrease of
|v| would contribute to �.

C. Model B

The elaboration of Model B0 is perhaps more interesting.
As for Model A2, we assume here that Q is a riemannian
manifold. The prototype, B0, was defined on the sphere bundle
Q × Sd−1; ξ was just a unit vector in that case. Implicitly,
the particle was supposed to have only a single distinguished
axis, that along which it propels itself. The full Model B will
be defined on the associated orthonormal frame bundle; ξ

will be an entire orthonormal frame keeping track of all the
orientational degrees of freedom. Consider a particle shaped
like a brick. This is easy to talk about and visualize, but an
ellipsoid, or even more complicated shape with appropriate
reflection symmetries, will have the same type of rotational
characteristics. A brick has three principal axes for its hy-
drodynamic properties with, as a result, distinct rotational
diffusion coefficients about each of them. A dynamically inert
dot painted on one of each pair of opposite faces of the brick
allows unambiguous definition of an oriented axis and hence
the association of a distinct orthonormal frame with each
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particle configuration. In the d-dimensional case, the body-
frame αβ plane has its own distinct orientational diffusion
coefficient Dαβ (Dβα = Dαβ , diagonal entries zero).

This picture is intuitively simple. However, some notation
needs to be set up to write down formulas. Given a reference
frame (e1, . . . , ed ), each body frame can be identified with the
rotation matrix ξ in SO(d ) which brings the reference frame
into coincidence with it. That is, ξ ∈ SO(d ) is identified with
the frame (ξ1, . . . , ξd ), where ξn is the nth column of ξ with
components ξ i

n. Now, let �αβ; θ� denote the rotation by angle
θ in the reference αβ plane, and define the operators L̃αβ for
α �= β via

(L̃αβ f )(ξ ) := d

dθ
f (ξ�αβ; θ�)|θ=0. (41)

This differentiates with respect to rotation about the local,
configuration-dependent, αβ plane for each ξ . For computa-
tional purposes, it is useful to note that L̃αβ is a derivation:
L̃αβ ( f g) = (L̃αβ f )g + f (L̃αβg); and

L̃αβξ = ξEαβ, (42)

where Eαβ is a matrix with αβ component equal to 1, βα

component equal to −1 and all other components zero.
Finally, we can write down the generator for fully

anisotropic orientational diffusion:

ZB,fst =
∑
α<β

Dαβ L̃2
αβ. (43)

To finish the specification of the model, assume that the
velocity is along e1 in the reference configuration, so that its
direction in configuration ξ is ξ1, and the velocity map is

vi(ξ, x) = σ i
j (x)ξ j

1 . (44)

It may seem that there is no possible physical interpretation
for nonscalar σ , but it will be put to good use in Sec. IV D.

For Model B, the fast process induced on the tangent space
TxQ via the velocity map v(·, x) is not generally Markovian.
To see that, suppose that D1,2 is much larger than all other
orientational diffusion coefficients. And, suppose that we have
observations of v at two times with a delay of order D−1

1,2.
Then, we have a good idea of where the local 2-axis is and can
expect the velocity to keep moving approximately in the 1-2
plane for the near future. Nevertheless, the induced process
is quasilinear, as follows from a straightforward calculation
yielding

ZB,fst ξ1 = −(d − 1)Drotξ1,

with the definition

Drot := 1

d − 1

∑
1<β

D1β. (45)

In case D1β = Drot for 2 � β � d , the motion of the
orientation ξ1 is ergodic, other rotational degrees of freedom
are decoupled, and the model effectively reduces to the
prototype B0.

Along with σ (x), given a priori, the quasilinear parameters
are then

�i
j (x) = (d − 1)Drot δ

i
j,

Ki j (x) = 1

d
σ i

kσ
jk . (46)

Substitution into the quasilinear Eq. (25) yields

ZB = 1

d (d − 1)
σ

j
k ∂ j

σ i
k

Drot
∂i. (47)

The formula for K follows from 〈ξ j
i ξ k

i 〉fst = δ jk/d , or more
strongly from equidistribution of ξ1 over Sd−1 in fast equi-
librium, which the reader may consider evident enough.
For a more formal derivation, consider 0 = 〈ZB,fstξ

j
i ξ k

i 〉fst =∑
n Din[〈ξ j

n ξ k
n 〉fst − 〈ξ j

i ξ k
i 〉fst]. This implies that 〈ξ j

i ξ k
i 〉fst =

(
∑

n Din)−1 ∑
n Din〈ξ j

n ξ k
n 〉fst is independent of i (each of a set

of expectations is a weighted average of the others). Two
appeals to orthogonality of ξ after summing, first over i and
then over j = k, show that 〈ξ j

i ξ k
i 〉fst = δ jk/d .

Due to the interest for run-and-tumble particles [14], ad-
dition of jumps to the model are now briefly considered. In
keeping with the operative symmetries, the jump rate measure
ν(ξ ; dη) (rate of transitions ξ �→ dη) is required to have a
well-defined form with respect to the body frame, and to be
invariant under reflection ri through the hyperplane normal to
the body axes ξi, i = 2, . . . , d:

ν(ξ ; ξ dη) = ν0(dη), ν0(ri dη ri ) = ν0(dη). (48)

With |ν| = ∫
ν0(dη) denoting the total jump rate, the associ-

ated contribution to the generator is defined via

Zjmp f (ξ ) = −|ν| f (ξ ) +
∫

f (ξη)ν0(dη). (49)

In particular, using reflection symmetry in the second equality,

Zjmpe1 = −|ν|e1 +
∫

ηe1ν0(dη) = −α|ν|e1, (50)

where 0 � α � 2. For scattering which sends e1 uniformly
over the sphere or pure reversal, α = 1 or 2, respectively. In
the Markovian limit, therefore, jumps simply make an additive
contribution to the effective diffusion coefficient (and thence
to �). Drot is already an effective quantity insofar as the
various D1β are not necessarily equal. With jumps, it should
be replaced by

Drot + α|ν|
d − 1

.

D. A two-stage contraction

Now, consider combining two velocity models, 1 and 2.
A trivial way to do this is to define a (sum) velocity model
via v(ξ1, ξ2, x) = v1(ξ1, x) + v2(ξ2, x), where the fast parts of
models 1 and 2 are independent. Then the sum model is not
quasilinear, but that is not a problem, because each of models
1 and 2 makes its own separate contribution to ū and D̄ (i.e.,
we should add ū and D̄).

If models 1 and 2 have very different relaxation times,
however, then a more interesting possibility—two-stage
contraction—emerges. Let us consider an example con-
structed from Models A2 and B. It will be essentially the
same model as treated by Vuijk et al. [15], except that we
allow inhomogeneous T and Drot. Following that source, the
model is motivated as follows. Consider an active colloidal
particle (∼1 μm) a self-generated thrust f0 in the direction
ξ1 moving in a liquid. Ordinarily, the velocity would simply
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be some scalar multiple of that, in fact ( f0/mγ )ξ1, where
γ −1 is the viscous relaxation time for velocity, which, for
a micron-sized particle in aqueous medium, is of order 1
μs. Really, we should understand that velocity as the out-
put of a Langevin-Kramers model with the external driving
force being the particle’s self-generated thrust. But, what if
the damping tensor γ is not a simple scalar? The scenario
envisaged by Vuijk et al. (loc. cit.) is a charged particle in
a magnetic field, but we do not commit to that and allow
general γ .

Since the relaxation time of the Model A2 velocity in this
scenario is of order 10−6 times that of the thrust direction, we
first eliminate the Model A2 variables. According to Eq. (33)
(m = 1), that gives

ZA = f0(γ −1ξ1)i∂i + T gk j ∂ j (γ −1)i
k∂i.

The second term does not depend on ξ so we set it aside
temporarily. The coefficient in the first term is now taken
as the velocity function of Model B: vi(x, ξ1) = f0(γ −1ξ1)i,
equivalently, σ = f0γ

−1, where both f0 and γ are position-
dependent. Inserting this data into Eq. (47) immediately yields

ZB = f0

d (d − 1)
(γ −1) j

k ∂ j
f0(γ −1)i

k

Drot
∂i.

Adding this to the set-aside piece of ZA gives the fully
contracted generator

Z =
[

f0

d (d − 1)
(γ −1) j

k ∂ j
f0(γ −1)i

k

Drot
+ T gk j ∂ j (γ −1)i

k

]
∂i.

(51)

Note that all parameters here ( f0, γ , T , Drot, and g) are po-
tentially position-dependent. In the case of three-dimensional
euclidean space with uniform T , Drot, and f0, this agrees with
Eq. (12) of Ref. [15], where it was obtained by very different
methods. (Note, γ i

j here corresponds to γ�i
j of Vuijk et al.)

V. CONTACTING THE FOKKER-PLANCK PERSPECTIVE

This section makes contact with the Fokker-Planck per-
spective. Section V A takes a look at the current and asks what,
if anything, the approach taken here says about splitting it into
drift and diffusion parts. Section V B returns to the methods
of Sec. III to derive the conditional (on position) mean instan-
taneous velocity. Throughout, Q is assumed to be equipped
with a riemannian metric g. That allows the definition of a
scalar probability density ρ with respect to volume measure
d� = √|g|dx1 · · · dxn. Thus, ρ is independent of coordinates.

A. Fokker-Planck equation and currents

This subsection considers a diffusion which may not have
come from contraction, so the overbars on (u, D) have been
dropped.

Via integration by parts, the time evolution of the expecta-
tion of test function f (x) is found to be

d

dt
〈 f 〉ρ =

∫
ρ(ui∂i + Di j∂i∂ j ) f d�

=
∫

f (− Div J ) d�. (52)

This is simply an implicit way of writing the the Fokker-
Planck equation ∂ρ

∂t = − Div J . Here,

Ji[ρ] := uiρ − Div(ei · Dρ), (53)

is the probability current density with ei the unit vec-
tor field along the ith coordinate direction and DivV =
|g|− 1

2 ∂i(|g| 1
2 V i ) denotes the covariant divergence of the con-

travariant vector field V . A possibly more aesthetically pleas-
ing way to express the current density is implicitly via∫

ηiJ
i d� =

∫ {[
ui + �i

k jD
k j

]
ηi + Di j∇ jηi

}
ρd�, (54)

where ∇ j denotes a covariant derivative and �i
jk is a Christof-

fel symbol. Since the anomalous terms in the transformations
of u and � cancel, the object in square brackets is a genuine
covariant vector field.

The expression for the current is trivially rearranged as

Ji[ρ] =
(

ui − ∂Di j

∂x j

)
ρ − Di j |g|− 1

2
∂

∂x j

(|g| 1
2 ρ

)
. (55)

The literature seems to show a preference for rearranging the
right side of (53) as (55) and identifying the first term as the
total drift, with −∂Di j/∂x j being an “extra drift” [1]. I argue
now against that identification, recognizing that, insofar as
only the total current is physically relevant, it is a relatively
low-stakes issue. Let us move to euclidean space to keep
matters simple, and visualize the density ρ as an ensemble of
noninteracting particles. “Drift” ought to refer to a propensity
of any one of these particles to move in a particular direction.
According to the defintion Eq. (3), u dt provides us with an
unbiased estimate of where a randomly selected member of
the ensemble will go, while D dt quantifies the uncertainty.
Furthermore, there is nothing strange about a diffusive current
arising from a gradient of D with uniform ρ. Consider the
familiar, elementary explanation of ordinary diffusive current:
a plane P separates a low-density region on the left from
a high-density region on the right. Particles move randomly
away from wherever they are. More particles randomly move
across from right-to-left than vice versa, hence a diffusive
current. If now we have equal densities, but more vigorous
random motion on the right (larger D), then a right-to-left
current will again arise. Thus, it is perfectly proper to consider
(∇D)ρ a contribution to diffusive current. All this may have
a whiff of “Itô versus Stratonovich” [23] about it. However,
since the approach taken here has neither the need for an
interpretational rule that a Langevin equation does, not the
complication of having a general probability distribution from
the beginning, it is difficult to see any interpretational wiggle
room.

B. Conditional mean instantaneous velocity

Now suppose a velocity model with contracted probability
density ρ(x) which is well-aged (i.e., has been freely evolving
for many fast-relaxation times τ ). What is the joint distri-
bution of position and velocity? References [14,15] used a
direction calculation of that joint distribution to find Fokker-
Planck equations for Model B variants. The method of Sec. III
avoided it, but it is nevertheless a question of independent
interest. One’s first thought might be that the joint distribution
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takes the factorized form

(ρ � ρfst )(x, v) := ρ(x)ρx
fst(v), (56)

where ρx
fst denotes the fast-equilibrium distribution at x. Ac-

tually, the distribution over v is slightly skewed from this,
even in the Markovian limit. We will not work out the full
distribution, but only the first moment 〈ṽ〉x

ρ = 〈v〉x
ρ − 〈v〉x

fst.
Since ρ is a distribution only over x, this requires some
explanation. In accordance with the preceding discussion, the
expectation with respect to ρ(x) of a function g of both x and
v should be read as

〈g(x, v)〉ρ = 〈PT g〉ρ�ρfst , (57)

while for g a function on TxQ, 〈g〉x
ρ is the corresponding

distribution conditioned on position being x. The PT operator
in Eq. (57) means that the velocity has had a chance to
equilibrate with the “environment” described by the position
distribution ρ. A little reflection should convince one that
the current density is related to the instantaneous velocity
expectation via

J[ρ] = 〈v〉ρ ρ. (58)

(For one-stage contraction; two stages is a bit more compli-
cated.) The only real question is whether the framework of
Sec. III is able to deliver this conclusion. In order to calculate
the first moment 〈ṽ〉x

ρ of the conditional mean instantaneous
velocity, it will be enough to compute

〈PT ṽi f 〉ρ�ρfst , (59)

for an arbitrary test function f (x) of position only. Now, recall
Eq. (12),

PT � PT
fst +

∫ T

0
PT −t

fst (v∂x )Pt
fst dt .

Pfst is oblivious to f , so the first term gives a contribution∫
ρ(x) f (x)〈ṽi〉x

fst d� = 0 to Eq. (59). The next term is more
interesting. Since T is infinitely large compared to the fast
relaxation time, we obtain (with an integration-by-parts in the
final step)

〈PT ṽi f 〉ρ�ρfst =
〈∫ ∞

0
dt〈v j∂ j[ṽ

i(t ) f ]〉x
fst

〉
ρ

=
∫

ρ

{(
ui − 〈v〉i

fst

)
f − D

i j ∂ f

∂x j

}
d�

=
∫

f

{(
ui − 〈v〉i

fst

) − 1

ρ
Div(ei · Dρ)

}
ρd�.

Since f is an arbitrary test function, we conclude that

〈vi〉·ρ = ui − 1

ρ
Div(ei · Dρ). (60)

Comparing this to Eq. (53) for the probability current density,
one see that Eq. (58) is indeed verified.

All this prompts one to ask which kind of measurement
would be expected to yield the drift velocity u, which the
instantaneous velocity 〈v〉ρ . The calculations used here to
find them both involved evolving the system for a time
T � τ , however, that evolution served very different purposes
in the two cases. Suppose the system is started (or found)
at x. Then, u is the expected average velocity of the system
over the subsequent time T � τ . If now the system has a
probability density ρ (perhaps we have calculated this for a
time T ′ � T via the Fokker-Planck equation from an initial
point mass at x), then our expectation of the instantaneous
velocity of the system, regardless of its actual position, is 〈v〉ρ .
“Instantaneous” here means that the measurement is done over
a time small (or at worst, comparable to) τ .

VI. CONCLUSION

By means of a “Heisenberg picture” approach, elimina-
tion of fast variables was carried out in general for velocity
models, resulting in a general expression for the infinitesimal
generator Z , equivalently, the drift-diffusion field (u, D), of
the contracted diffusion process on position space in terms
of time correlation functions in fast-equilibrium. Compared
to Chapman-Enskog type expansions, which work in the
“Schrödinger picture,” the method seems to be simpler and
more automatically general. Information about the distribu-
tion of fast variables, which comes naturally with Chapman-
Enskog expansions, is also available in the current approach, if
desired (Sec. V B). Examination of the subclass of quasilinear
models showed that drift, other than that already present in
fast-equilbrium, traces to derivatives of either velocity decay
(�) or the dependence of velocity on fast variables (σ ). The
first of these is exemplified by the humble Brownian particle
in a viscosity gradient, and the second by the active particle in
a fuel concentration gradient.

ACKNOWLEDGMENTS

I thank Prof. Vincent H. Crespi for critical reading and
suggestions. This work was funded by the Penn State MR-
SEC, Center for Nanoscale Science, under National Science
Foundation Award No. DMR-1420620.

[1] N. G. van Kampen, J. Phys. Chem. Solids 49, 673 (1988).
[2] M. Christensen and J. B. Pedersen, J. Chem. Phys. 119, 5171

(2003).
[3] E. Bringuier, Phys. A: Stat. Mech. Appl. 388, 2588 (2009).
[4] M. Yang and M. Ripoll, Phys. Rev. E 87, 062110 (2013).
[5] A. I. Livshits, Phys. Lett. A 380, 1891 (2016).
[6] A. Bhattacharyay, Phys. A: Stat. Mech. Appl. 515, 665

(2019).

[7] M. Baldovin, A. Vulpiani, A. Puglisi, and A. Prados, Phys. Rev.
E 99, 060101(R) (2019).

[8] I. Abdoli, H. D. Vuijk, J.-U. Sommer, J. M. Brader, and A.
Sharma, arXiv:1908.03101.

[9] Y. Hong, N. M. K. Blackman, N. D. Kopp, A. Sen, and D.
Velegol, Phys. Rev. Lett. 99, 178103 (2007).

[10] P. J. Butler, K. K. Dey, and A. Sen, Cellular Molecular
Bioengineering 8, 106 (2015).

052103-8

https://doi.org/10.1016/0022-3697(88)90199-0
https://doi.org/10.1016/0022-3697(88)90199-0
https://doi.org/10.1016/0022-3697(88)90199-0
https://doi.org/10.1016/0022-3697(88)90199-0
https://doi.org/10.1063/1.1597476
https://doi.org/10.1063/1.1597476
https://doi.org/10.1063/1.1597476
https://doi.org/10.1063/1.1597476
https://doi.org/10.1016/j.physa.2009.03.010
https://doi.org/10.1016/j.physa.2009.03.010
https://doi.org/10.1016/j.physa.2009.03.010
https://doi.org/10.1016/j.physa.2009.03.010
https://doi.org/10.1103/PhysRevE.87.062110
https://doi.org/10.1103/PhysRevE.87.062110
https://doi.org/10.1103/PhysRevE.87.062110
https://doi.org/10.1103/PhysRevE.87.062110
https://doi.org/10.1016/j.physleta.2016.03.042
https://doi.org/10.1016/j.physleta.2016.03.042
https://doi.org/10.1016/j.physleta.2016.03.042
https://doi.org/10.1016/j.physleta.2016.03.042
https://doi.org/10.1016/j.physa.2018.10.017
https://doi.org/10.1016/j.physa.2018.10.017
https://doi.org/10.1016/j.physa.2018.10.017
https://doi.org/10.1016/j.physa.2018.10.017
https://doi.org/10.1103/PhysRevE.99.060101
https://doi.org/10.1103/PhysRevE.99.060101
https://doi.org/10.1103/PhysRevE.99.060101
https://doi.org/10.1103/PhysRevE.99.060101
http://arxiv.org/abs/arXiv:1908.03101
https://doi.org/10.1103/PhysRevLett.99.178103
https://doi.org/10.1103/PhysRevLett.99.178103
https://doi.org/10.1103/PhysRevLett.99.178103
https://doi.org/10.1103/PhysRevLett.99.178103
https://doi.org/10.1007/s12195-014-0376-1
https://doi.org/10.1007/s12195-014-0376-1
https://doi.org/10.1007/s12195-014-0376-1
https://doi.org/10.1007/s12195-014-0376-1


DRIFT-DIFFUSION PROCESSES RESULTING … PHYSICAL REVIEW E 100, 052103 (2019)

[11] Y.-M. Byun, P. E. Lammert, Y. Hong, A. Sen, and V. H. Crespi,
J. Phys. Condens. Matter 29, 445101 (2017).

[12] X. Zhao, K. Gentile, F. Mohajerani, and A. Sen, Acc. Chem.
Res. 51, 2373 (2018).

[13] M. N. Popescu, W. E. Uspal, C. Bechinger, and P. Fischer, Nano
Letters 18, 5345 (2018).

[14] M. E. Cates and J. Tailleur, Europhys. Lett. 101, 20010
(2013).

[15] H. D. Vuijk, J.-U. Sommer, H. Merlitz, and J. M. Brader,
arXiv:1908.02577.

[16] N. G. van Kampen, Stochastic Processes in Physics and
Chemistry (North-Holland Publishing, Amsterdam/New York,
1992).

[17] S. Smith, C. Cianci, and R. Grima, J. R. Soc. Int. 14, 20170047
(2017).

[18] C. W. Gardiner, Handbook of Stochastic Methods, for Physics,
Chemistry and the Natural Sciences, 2nd ed., Springer Series in
Synergetics Vol. 13 (Springer-Verlag, Berlin, 1985).

[19] O. Kallenberg, Foundations of Modern Probability, Probability
and Its Applications (Springer-Verlag, New York, 1997).

[20] A. Kolmogoroff, Math. Ann. 104, 415 (1931).
[21] D. L. Ermak and J. A. McCammon, J. Chem. Phys. 69, 1352

(1978).
[22] R. Piazza and A. Parola, J. Phys. Condens. Matter 20, 153102

(2008).
[23] N. G. van Kampen, J. Stat. Phys. 24, 175 (1981).

052103-9

https://doi.org/10.1088/1361-648X/aa88f1
https://doi.org/10.1088/1361-648X/aa88f1
https://doi.org/10.1088/1361-648X/aa88f1
https://doi.org/10.1088/1361-648X/aa88f1
https://doi.org/10.1021/acs.accounts.8b00286
https://doi.org/10.1021/acs.accounts.8b00286
https://doi.org/10.1021/acs.accounts.8b00286
https://doi.org/10.1021/acs.accounts.8b00286
https://doi.org/10.1021/acs.nanolett.8b02572
https://doi.org/10.1021/acs.nanolett.8b02572
https://doi.org/10.1021/acs.nanolett.8b02572
https://doi.org/10.1021/acs.nanolett.8b02572
https://doi.org/10.1209/0295-5075/101/20010
https://doi.org/10.1209/0295-5075/101/20010
https://doi.org/10.1209/0295-5075/101/20010
https://doi.org/10.1209/0295-5075/101/20010
http://arxiv.org/abs/arXiv:1908.02577
https://doi.org/10.1098/rsif.2017.0047
https://doi.org/10.1098/rsif.2017.0047
https://doi.org/10.1098/rsif.2017.0047
https://doi.org/10.1098/rsif.2017.0047
https://doi.org/10.1007/BF01457949
https://doi.org/10.1007/BF01457949
https://doi.org/10.1007/BF01457949
https://doi.org/10.1007/BF01457949
https://doi.org/10.1063/1.436761
https://doi.org/10.1063/1.436761
https://doi.org/10.1063/1.436761
https://doi.org/10.1063/1.436761
https://doi.org/10.1088/0953-8984/20/15/153102
https://doi.org/10.1088/0953-8984/20/15/153102
https://doi.org/10.1088/0953-8984/20/15/153102
https://doi.org/10.1088/0953-8984/20/15/153102
https://doi.org/10.1007/BF01007642
https://doi.org/10.1007/BF01007642
https://doi.org/10.1007/BF01007642
https://doi.org/10.1007/BF01007642

