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Rotating magnetic nanorods detect minute fluctuations of magnetic field
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Magnetic nanorods rotating in a viscous liquid are very sensitive to any ambient magnetic field. We theoreti-
cally predicted and experimentally validated the conditions for two-dimensional synchronous and asynchronous
rotation as well as three-dimensional precession and tumbling of nanorods in an ambient field superimposed
on a planar rotating magnetic field. We discovered that any ambient field stabilizes the synchronous precession
of the nanorod so that the nanorod precession can be completely controlled. This effect opens up different
applications of magnetic nanorods as sensors of weak magnetic fields, for microrheology, and generally for
magnetic levitation.
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When a ferromagnetic nanorod with a magnetic moment
m is suspended in a liquid of viscosity η and a uniform
rotating magnetic field B is applied, the nanorod experiences
a magnetic torque that aligns the nanorod with the field and
a viscous drag torque which is much stronger than the torque
caused by the nanorod inertia. Planar rotation of an applied
field causes two distinct regimes of the in-plane nanorod
motion. If the field rotation frequency ω is below a certain
critical value, the nanorod moves synchronously with the
field; due to viscous drag torque, its magnetic moment lags
the field by a constant angle ψ (see Fig. 1). The greater the
rotation frequency ω, the larger is the angle ψ [1,2]. At a
critical frequency ωC = mB/�, where Г is the rotational drag
coefficient [discussed later and in the Supplemental Material
(SM) Sec. S4.2 [3]], the nanorod aligns perpendicularly to the
field and reaches its terminal angular velocity of rotation. At
ω > ωC , the field rotates faster than the nanorod, switching
the regime of rotation from a synchronous to an asynchronous
one. Hence, magnetic torque cannot be kept constant and,
as a consequence, the nanorod motion gains an oscillatory
component [1,2]. The in-plane asynchronous rotation of a
ferromagnetic nanorod in a planar rotating magnetic field
was considered predictable and has been reliably used for
many microrheological applications [4–13]. Magnetic rota-
tional spectroscopy (MRS) [4–7] takes advantage of this
characteristic oscillatory feature of rotation of inertialess rods
to characterize the rheological properties of fluids. It has
been claimed that such a nanorod—with the fixed magnetic
moment m collinear with its geometric long axis—should
remain in the plane of a rotating magnetic field and exhibit
no out-of-plane rotation [14]. This statement seems to be
prevailing in the literature and this motion has been discussed
thoroughly [4–12,15]. However, during experimental obser-
vations, even a nanorod beginning its rotation in plane, after a
long enough time, would always come out of plane and puzzle
the experimentalist [16].

*These authors contributed equally to this work.

The phenomenon of out-of-plane motion is extremely
detrimental to an experimentalist attempting to use MRS for
an accurate rheological measurement. Especially as the probe
size decreases from millimeters to hundreds of nanometers
and the probe magnetic moment drops down drastically [17],
the effect of the ambient field, e.g., the Earth’s magnetic field,
becomes significant. The component of this ambient field
orthogonal to the plane of rotation could alter the magnetic
torque to push the nanorod out of the original plane of rota-
tion. This study aims at understanding the effects of constant
out-of-plane microtesla bias fields on these dynamics. Caroli
and Pincus [18] were the first to predict the possibility of the
out-of-plane dynamics of magnetic particles subjected to a
weak rotating planar field biased by a strong field. The prob-
lem in question is significantly different: The Earth’s field may
be comparable with the applied rotating field [19]. Recently,
our group [16] reported that Ni nanorods with a magnetic
moment parallel to the nanorod long axis [20] go out of plane
during MRS experiments. The Cimurs-Cebers theory [21] of
nanorod precession caused by the deviation of the magnetic
moment from the easy axis (geometric long axis) falls short
to explain these observations [16]. We hypothesized that the
ambient field caused this out-of-plane motion of the nanorods.
We develop a theory to explain the out-of-plane motion and
verify the theoretical predictions with experimental results by
tracking the three-dimensional (3D) rotation of the rods in
a controlled 3D magnetic field. We first describe the experi-
mental observations and then formulate the theoretical model.
We then investigate the impact of the rotation frequency of
the applied field and the magnitude of the out-of-plane bias
field on the out-of-plane dynamics of rotating nanorods and
illustrate the applications of the obtained results to rheology.

A magnetic stage developed previously [16] was used to
first cancel any ambient field and then generate the in-plane
rotating magnetic field with a controlled out-of-plane bias
magnetic field (Fig. 1). We report two intriguing results: con-
tinuous precession of a nanorod forced to move by a rotating
field B in the absence of any bias field, h = 0 [Fig. 1(a)], and
with small bias fields, h �= 0 [Fig. 1(b)].

The experimental phenomena are quantified by tracking
the 3D rotation of ferromagnetic Ni nanorods (mass
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FIG. 1. (a) System of coordinates and angles used for the de-
scription of nanorod dynamics. See explanation of symbols in the
text. Time evolution of (b) in-plane and (c) out-of-plane angles for
the rotation of nanorods above a critical frequency (ωC ∼ 2.17 Hz)
in the presence of no or small bias fields (μ = 0−0.06). Offsets were
added to the data for visibility. Rods were initially oriented in plane
at θ0 = 90◦ and several different out-of-plane angles (φ0). These
rods were then subjected to rotating fields of different frequencies.
(Information corresponding to each trajectory is in the table.) The
average slopes of the trajectories in the synchronous region are
∼180/π as the time data are normalized by corresponding rotation
frequencies.

density ρ = 8.9 g/cc, magnetic moment m =
1.5×10−6 μA m2, length l = 5−10 μm, and aspect ratio
∼1/40) functionalized with polyvinylpyrrolidone following
the protocol of Ref. [20] and suspended in a 60 wt %
glycerol solution in water (η = 24 mPa s). Experiments were
performed on nanorods in bulk liquid; nanorods at or near
an interface were not used, thus avoiding any interfacial
effects. The motion of the nanorod was filmed and its
projection on the focal plane of the microscope was tracked.
The xy plane of a Cartesian system of coordinates was
associated with the focal plane; the rotating magnetic
field B = B(cos ωt, sin ωt, 0)—the so-called in-plane
component—was applied parallel to this plane, and the bias
field—the so-called out-of-plane component—was pointing
in the z direction, h = (0, 0, h) (Fig. 1). The magnitude of the
in-plane field was fixed at B = 400 μT for all experiments.
The in-plane component was rotating at a constant angular
frequency ω. making an angle ωt with the x axis. The nanorod
center was chosen to sit in the xy plane.

Simultaneously, a spherical system of coordinates was
introduced to describe the current spatial orientation of the
nanorod with respect to the laboratory system of xyz coordi-
nates. The angle θ of this spherical system of coordinates is
taken between the x axis and the projection of the nanorod
long axis onto the xy plane; the angle φ is taken between the
z axis and the nanorod long axis which is coincident with

the magnetic moment m (Fig. 1). Table S2 in the SM [3]
shows a relation between our notations and the commonly
used Euler angles. A full description of the rotation of an
arbitrary solid body requires an analysis of the equations of
motion for all three Euler angles, however, as demonstrated
in the SM [3] (Secs. S4.1 and S4.5), in our case the third
angle is not needed: There is no magnetic torque forcing
the nanorod to spin around its long axis. An auxiliary angle,
ψ = ωt−θ , is introduced to describe the relative direction of
the xy projection of the magnetic moment m with respect to
the rotating field B. The protocol for measurements of the two
determinants of the nanorod spatial orientation, the in-plane
angle θ , and the projection length L, is detailed in the SM [3].

To demonstrate the robustness of our experimental setup
and theoretical predictions, at the beginning of experi-
ment, we oriented the nanorod at specific angles φ0 =
[90◦, 80◦, 61◦, 55◦, 36◦] by adjusting the in-plane and out-
of-plane components of a constant aligning field. The ini-
tial in-plane angle θ0 = 90◦ and the total magnitude of the
aligning field Balign = 150 μT were kept constant. Once the
nanorod was aligned with this field, we removed the aligning
field and instantaneously superimposed the rotating field.
Figure 1(b) shows the in-plane and Fig. 1(c) shows the out-
of-plane components of the out-of-plane rotation of these
nanorods. We also performed reference experiments where
the nanorod was initially set parallel to the initial orientation
of the magnetic field. The details of these experiments are
outlined in the SM [3].

The initial oscillatory parts of the trajectories are remi-
niscent of the no-bias-field asynchronous rotation [Fig. 1(b),
oscillations with a slowly increasing average] but, surpris-
ingly, the nanorod gets synchronized later with the rotating
field [Fig. 1(b), decaying oscillations with an average slope
of 180/π ]. Oscillations of both the in-plane [Fig. 1(b)] and
out-of-plane angles [Fig. 1(c)] decay and reach a final syn-
chronized state (for details, see Sec. S2 in the SM [3]). The
out-of-plane angle reaches an equilibrium value depending on
the frequency of the applied field (see below). It never reaches
90◦, and the rod performs a stable precessional motion in
sync with the rotating field. Thus, the out-of-plane dynamics
with the out-of-plane bias field demonstrates a surprising
synchronizing effect of the bias field. This effect deserves a
detailed theoretical analysis.

Setting up the model, a unit vector r along the nanorod long
axis parallel to the magnetization and the angular velocity ω of
the nanorod are defined as r = (sin φ cos θ, sin φ sin θ, cos φ),
ω = r×ṙ. In the effective field Beff = B + h, the 3D rotation
of a nanorod is described by balancing the magnetic torque
τM = m×Beff and viscous torque τV = −�ω [22,23]. The
rotational drag coefficient, � = πηL3

0/[3 ln(L0/D0) − 2.4], is
a function of the rod length L0, diameter D0, and fluid vis-
cosity η. This vector torque balance, m×Beff = �ω, gives
a system of two ordinary differential equations. Introducing
dimensionless time as t∗ = ωt , the vector torque balance is
written in dimensionless form as (for the details, see Sec. S4.1
of the SM [3])
dψ

dt∗ = 1 − 1

�

sin ψ

sin φ
= f (ψ, φ), � = ω

ωC
, (1a)

dφ

dt∗ = 1

�
[cos φ cos ψ − μ sin φ] = g(ψ, φ), μ = h

B
. (1b)
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The two dimensionless parameters � and μ of the au-
tonomous system of Eqs. (1a) and (1b) describe the oscillation
frequency of the magnetic field and the relative magnitude of
the out-of-plane field, respectively. In the absence of the bias
field (μ = 0) and in the limit when only the in-plane motion
is considered (φ = 90◦), these equations are reduced to the
equations derived in Ref. [24]. The introduction of the angle
ψ in Eqs. (1) and Fig. 1(a) conveniently eliminates the explicit
dependence of these solutions on time.

The full analysis of the nonlinear system (1) can be done
using the phase portrait method of the theory of dynamic
systems [25]. The nanorod dynamics is described as a 2D flow

of fictitious particles representing one of the end points of the
nanorod on the surface of a unit sphere; the flow is defined in
the (ψ ,φ) plane with velocities

v = (vψ, vφ ), vψ = f (ψ, φ), vφ = g(ψ, φ). (2)

There are special, stationary points in the space, where the
flow velocity of the particles goes to zero, i.e., the right-hand
side of Eqs. (1) turns to zero,

f (ψS, φS ) = 0, g(ψS, φS ) = 0. (3)

Equations (3) have the following explicit solution,

sin φS = ±[1 + μ2 + �2 −
√

(1 + μ2 + �2)2 − 4�2]
1/2/√

2�, (4a)

sin ψS = � sin φS = ±[1 + μ2 + �2 −
√(

1 + μ2 + �2
)2 − 4�2]

1/2/√
2. (4b)

These stationary points describe the steady rotational mo-
tion of the nanorod and specify the constant angles (ψS ,
φS) that the nanorod makes with the in-plane component B
of the magnetic field and with the h component (z axis),
respectively. This synchronous solution (ψS , φS) exists for
any frequency of the applied in-plane rotating field and for
any nonzero bias field, μ = h/B �= 0. Two regimes of steady
rotation are distinguishable by the magnitude of the bias
field and the rotation frequency: synchronous planar rotation,
φS = 90◦, μ = 0, and synchronous 3D precession, φS �= 90◦,
μ �= 0. The synchronous in-plane rotation of nanorods has
been studied in detail in the literature [4,5,17] and hence we
focus only on 3D steady precession.

We classify the flow pattern into three parametric regions.
Two of these are discussed next and the third is discussed in
the SM [3] (Sec. S3.1). For the ease of perception the (ψ ,φ)
space is mapped hereinafter onto the Cartesian plane. More
rigorous spherical representation is discussed in the SM [3]
(Sec. S4.6).

In the first parametric region (� > 1, μ = 0), two distinct
flow patterns are observed: cyclic flow about the stationary
points and continuous flow as demonstrated in Fig. 2 for
� = 2, μ = 0. The flow trajectories show different dynamics
depending on the initial orientation of the nanorod. Some
(red trajectory) follow the continuous flow path while others
perform cyclic motion about the stationary points. These two
kinds of flows are separated by the separatrix.

Nanorod trajectories are classified according to the initial
orientation of the nanorod. A nanorod starting in the B plane
(φ = 90◦, the red trajectory in Fig. 2) would stay in the same
plane and perform asynchronous motion. The red trajectory
thus corresponds to the planar asynchronous motion [1,2].
For other initial orientations of the nanorods, different out-
of-plane dynamics are observed [see Figs. 2(a) and 2(b)].
Figure 2(a) offers a possible explanation for the spontaneous
out-of-plane motion reported in our earlier work [16]. If
the nanorod experiences an isolated out-of-plane perturba-
tion (say, at some time instant, the red trajectory in Fig. 2
gets perturbed to green or orange), the nanorod would not

asymptotically come back to the plane but continue asyn-
chronous out-of-plane motion.

We experimentally verified the out-of-plane motion de-
scribed above. The nanorod was initially tilted out of the focal
plane of observation, at φ = 36◦, and then the bias field was
removed, and the in-plane rotating field was applied parallel to
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FIG. 2. (a) Phase space for the cyclic flow at � = 2, μ = 0. (b)
Time dependence of φ (solid lines) and ψ (dashed lines) correspond-
ing to the phase portrait at ω = 1.6 Hz. Color (red, green, and orange)
corresponds to certain initial conditions for ϕ (see legend). The initial
condition for ψ is always zero.
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the focal plane of observation. These trajectories are marked
by orange diamonds in Fig. 1. The rotation frequency of the
applied field was set above the critical rotation frequency,
suggesting that asymptotically the nanorod should engage
in in-plane asynchronous rotation. Surprisingly, despite the
intuitive expectation that the magnetic torque τM = m×B
should pull the nanorod towards the focal plane, the nanorod
performed oscillatory out-of-plane motion and never settled to
the plane (trajectories marked orange diamonds in Fig. 1). In
each cycle, when the nanorod was about to approach the focal
plane, it was kicked off the plane as soon as it approached
some φC (φS < φC < 90◦). Then, on its way in the vertical
direction, the nanorod was again pulled back towards the
rotation plane. In this manner, the nanorod never reaches an
equilibrium orientation or synchronization with the magnetic
field and the out-of-plane angle φ oscillates about a mean
position, never crossing the φ = 90◦ plane. This experiment
demonstrates the presence of out-of-plane asynchronous dy-
namics without any out-of-plane field. Thus, the out-of-plane
dynamics is an inherent characteristic of the planar rotating
field. In light of this, one might wonder what role is played
by the out-of-plane component of the field. We now analyze
this by showing theoretically that switching on even a small
out-of-plane field causes synchronization of the out-of-plane
rotation of nanorods.

Switching on the bias field (second parametric region �

> 1, μ > 0), the cyclic flow pattern observed in the previ-
ous regime transforms into a spiraling flow demonstrated in
Fig. 3(a) for � = 2, μ = 0.5. The two stationary points in
this case become attractive and repulsive spirals. Fictitious
particles, i.e., the nanorod end points, spiral away from the
repulsive spiral and move toward the attractive spiral where
they ultimately become stationary, though a number of 360°
cycles of ψ might be necessary.

Thus, the nanorods starting from any initial condition
ultimately oscillate about the synchronous angle. These os-
cillations decay with time, asymptotically reaching the syn-
chronous state (ϕS; ψS) that is a function of (�;μ) in Eqs. (4).
Figure 3(b) displays these oscillatory dynamics in terms
of time-dependent trajectories where decaying oscillations
followed by synchronization are clearly visible. The above
analysis confirms that the out-of-plane precession does exist
at � > 1 without any out-of-plane fields. Small out-of-plane
fields, however, impart stability to the precessional dynamics.
Next, we demonstrate the impact of the out-of-plane field and
rotation frequency on the stable precession dynamics that are
experimentally verified.

Theoretically, for � < 1, the nanorod indefinitely rotates
synchronously with the magnetic field and the effect of a
small ambient field, μ < 0.05, is not noticeable. Figure 4
shows that the stationary angle φS is bound between 87°
and 90°, indicating that the nanorod rotates in plane. The
situation changes dramatically at � > 1. For negligibly small
μ � 1 bias field, one expects that once placed in the plane of
rotation, the nanorod would keep rotating in plane. However,
the expectation is not fulfilled when a small μ = 0.05 bias
field is applied in our experiments. As shown by the red curve
and the data points crowded at 30◦ < φS < 50◦ and 1.25 <

� < 2.3 in Fig. 4(b) in the presence of even a small bias field,
one observes a drastic transition to the 3D steady precession.
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FIG. 3. (a) Phase space for the spiral flow at � = 2, μ = 0.5.
(b) The time dependence of the angles corresponding to the phase
portrait at ω = 1.6 Hz. The dashed lines are the ψ trajectory and
the solid lines are the φ trajectory. Color (red, green, and orange)
corresponds to certain initial conditions for ϕ (see legend). The initial
condition for ψ is always zero.

The steady precession angle φS [Eqs. (4)] is observed to
significantly depend on the frequency of the applied in-plane
component of the field, dropping from ∼90° to 0° as the
frequency increases.

It is thus seen that in the applied 2D rotating magnetic field,
ferromagnetic nanorods demonstrate rich dynamic behavior.
Magnetic rotational spectroscopy of fluids takes advantage
of only one possible scenario when the nanorods undergo
a transition from synchronous to asynchronous 2D motion.
However, 3D motion brings more surprises. We discovered
that when the nanorod is aligned out of plane, and no bias
field is present, the nanorod is first pulled towards the plane
of the field rotation but then keeps tumbling, never settling
in the plane of the applied rotating field. This 3D effect is
purely dynamic—there is no static equivalent of this behavior:
A static field will always force the nanorod to coalign with the
field [17].

We also discovered that the introduction of an orthogonal
bias field changes the 2D rotation scenario dramatically: The
3D nanorod motion can be synchronized with an applied rotat-
ing field of any frequency. Our work suggests that the stronger
the bias field, the shorter is the time required for a nanorod
to find its steady-state precession angle (SM Sec. S5 [3]).
These experimental observations have been supported by the
nonlinear phase portrait theory and theoretical analysis of the
stability of nanorod rotation near the steady-state precession
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FIG. 4. (a) Contours of the steady precession angle φS and (b) experimental (circles with error bars) and theoretical (lines) angles φS at
different rotation frequencies.

angles. The developed theory and corresponding experiments
demonstrate that the out-of-plane bias field causes synchro-
nization of the precessional dynamics. The final synchronous
angle is a strong function of the field rotation frequency
and therefore can be controlled precisely. We demonstrated
that the obtained results can be utilized for experimental
analyses of viscosity (SM Sec. S5 [3]) in microrheological
applications. Utilizing fast precessional stabilization with a
bias field, one will be able to analyze the viscosity of the liquid
samples much easier compared to the existing methods. When
the liquid in question is given only in a minute amount and the
solvent evaporates fast or some chemical reactions change the

drop viscosity, the proposed procedure may help significantly.
The discovered effects can be used in many other applications
involving nanorheology, magnetic sensing, and the magnetic
levitation of particles [26].
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