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Isolated frequencies at which nonlinear materials behave linearly
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In this Rapid Communication, we demonstrate that specific frequencies in weakly nonlinear lattices avoid
the generation of higher harmonics, and thus the lattices behave linearly. Using a multiple scales analysis, we
present plane-wave solutions that persist at only a single frequency and wave number; i.e., whose spatiotemporal
production of higher harmonics is remarkably small. We study monatomic and diatomic chains with quadratic
and cubic stiffness nonlinearities as example systems. Direct numerical integration of the equations of motion
confirms that finite amplitude plane waves assigned to these special frequencies produce negligible higher
harmonics when injected into the lattices. Such findings provide new considerations for the operating frequency
of nonlinear communications devices, sensors, and transducers for enhanced signal-to-noise ratios.
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Extensive research has explored the generation of extra-
harmonics in nonlinear media, such as those resulting from
normal and umklapp phonon scattering processes in anhar-
monic lattices [1]. Other examples include finite amplitude
bulk waves in elastic solids [2–4] and Lamb waves [5–10],
which can support second-harmonic synchronization (inter-
nally resonant energy exchanges). Similarly, higher-harmonic
production has been studied in optical waves for media
with nonlinear dielectric coefficients [11], piezoelectric crys-
tals [12], and systems with interfaces [13]. Such problems
are posed in a finite, or semifinite, setting by introducing
an input boundary condition, commonly harmonic forcing.
Recently, wave propagation in periodic media—to include
metamaterials—has received increased attention due to their
enhanced filtering, cloaking, and waveguiding capabilities.
The growth of higher harmonics in forced nonlinear periodic
media has also been investigated, with notable recent dis-
coveries of a periodic energy exchange between the forcing
frequency and higher harmonics [14], modal mixing between
dispersion branches [15], and the formation of subharmonic
attenuation zones [16].

By contrast, other studies consider free-wave solutions for
infinite nonlinear media. Solution forms include breathers
[17–21], solitons [22–28], and cnoidal waves [29–31], which
have been observed in water, fiber-optic cables, granular
media, and periodic structures. In a recent study, we derived
multiharmonic invariant plane-wave solutions for weakly non-
linear lattices using the method of multiple scales [32]. The
summation of higher-order solutions composes a multihar-
monic plane wave with measurably less growth and decay
of its spectral amplitudes, as confirmed by numerical simula-
tions. Such solutions were found to be direction dependent in
two-dimensional (2D) shear lattices with symmetric stiffness
terms [33]. In this Rapid Communication, we identify spe-
cial frequencies at which higher-harmonic generation ceases
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in weakly nonlinear lattices. Such solutions are unique for
each lattice design and tunable through wave amplitude, as
identified by the multiple scales analysis. Higher amplitudes
can be achieved without losing signal information to higher
harmonics, thus improving the signal-to-noise ratio at the
operating frequency. These findings may inspire new methods
for preserving signal integrity in sensors, transducers, and
communication devices.

We consider one-dimensional (1D) wave propagation in
lattices with physically appropriate, small quadratic and cu-
bic stiffness nonlinearities. This arises in anharmonic three-
dimensional crystals when plane waves propagate in the
[100], [110], and [111] directions. Analogously, these equa-
tions can govern electromagnetic wave propagation in dis-
cretized photonic crystals or optical media whereby cubic
“stiffness” appears as the Kerr nonlinearity [34–36]. Fig-
ures 1(a) and 1(b) present example systems considered herein:
nonlinear monatomic and diatomic lattices. The monatomic
lattice comprises a single mass m that repeats in each unit cell
whereas the diatomic lattice consists of alternating masses ma

and mb. Both lattices possess linear stiffness denoted by k1

as well as quadratic and cubic stiffness denoted by k2 and k3,
respectively. In general, the equations of motion for the jth
unit cell of a weakly nonlinear lattice are

Mẍ j +
+1∑

p=−1

[K(p)x j+p]

+ εfNL(x j, x j−1, x j+1) = 0, j = −∞ · · · ∞, (1)

where x j and ẍ j are vectors containing the displacements and
accelerations of all masses in the unit cell, respectively; M
and K denote the mass and stiffness matrices, respectively;
and fNL consists of the nonlinear restoring forces. The small
parameter ε functions as a bookkeeping device in the multiple
scales framework. The reader is referred to our prior work
for additional details describing higher-order multiple scales
analysis of weakly nonlinear 1D [32] and 2D lattices [33].
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FIG. 1. Schematics of the example lattices considered in this
work: nonlinear monatomic (a) and diatomic (b) chains. Weak
quadratic and cubic stiffness nonlinearities are studied. Zeroth-order
dispersion relationships for the monatomic (c) and diatomic (d)
chains. Multiple scales derived third-harmonic solution coefficients
for the monatomic (e) and diatomic (f) chains. Specific wave num-
bers, μnull (identified by vertical dashed lines) exist in which the
solution coefficients are identically zero, signifying that higher-
harmonic generation is not expected at these special frequencies. For
the diatomic chain in (f), only the solution coefficients for the light
mass are depicted.

The multiple scales procedure begins by introducing slow
timescales and a series solution

t = T0 + εT1 + . . . εnTn, (2)

x j = x(0)
j + εx(1)

j + · · · + εnx(n)
j . (3)

In accordance with Eq. (2), we define the operator Dn( ) ≡
∂

∂Tn
( ). Collecting terms at matching powers of ε produces

a series of cascading differential equations. The first two
equations are

ε0 : Mẍ(0)
j +

+1∑

p=−1

[
K(p)x(0)

j+p

] = 0, (4)

ε1 : Mẍ(1)
j +

+1∑

p=−1

[
K(p)x(1)

j+p

]

= −2D0D1Mx(0)
j − fNL

(
x(0)

j , x(0)
j−1, x(0)

j+1

)
. (5)

At the zeroth order, a Bloch wave is admitted, which in its
simplest form comprises a single frequency and wave number

x(0)
j = 1

2φ(ω0)Aeiω0T0 e−iμ j + c.c., (6)

where A denotes the wave amplitude, ω0 the frequency, μ

the dimensionless wave number (or propagation constant),

φ(ω0) the wave propagation mode shape, and c.c. denotes
the complex conjugate of all preceding terms. As depicted in
Fig. 1(c), the monatomic lattice possesses a single dispersion
branch, whose maximum frequency supporting propagating
waves (vis-à-vis evanescent waves) is termed the cut-off fre-
quency. The diatomic lattice in Fig. 1(d), on the other hand,
consists of a lower acoustic branch and upper optical branch
separated by a band gap.

Updating Eq. (5) with the zeroth-order solution in Eq. (6)
gives

D2
0Mx(1)

j +
+1∑

p=−1

[
K(p)x(1)

j

]

= −MD1[iω0φ(ω0)Aeiω0T0 e−iμ j]

+
3∑

h=0

a(1)
h eih(ω0T0−μ j) + c.c., (7)

where the a(1)
h coefficient represents the first-order contribu-

tion of each harmonic produced by the nonlinear stiffness
interactions. The a(1)

h coefficients can therefore be expected to
depend on the nonlinear stiffness, wave amplitude, and lattice
parameters.

Secular terms on the right-hand side of Eq. (7) at eiω0T0 e−iμ j

(and its complex conjugate) must be eliminated, which yields
first-order evolution equations

D1(α) = 0, (8)

D1(β ) = δα2, (9)

where α and β are the magnitude and phase, respectively,
of the complex amplitude A, and δ is a function of μ, k3,
k1, and m (if monatomic) or ma and mb (if diatomic). As
previously studied in [37,38], D1(β ) provides closed-form
amplitude-dependent corrections to the lattice’s zeroth-order
band structure. Interestingly, quadratic stiffness does not shift
the dispersion curve until higher orders [32,33]. With secular
terms eliminated, we seek particular solutions for x(1)

j that ac-
company each of the inhomogeneities at eih(ω0T0−μ j) (h �= 1):

x(1)
j =

3∑

h=0

â(1)
h eih(ω0T0−μ j) + c.c., (10)

where â(1)
h can be obtained through the method of unde-

termined coefficients. The procedure repeats at each order:
removal of secular terms followed by solving for a particular
solution. Lattices with quadratic and cubic stiffness possess
first-order particular solutions at twice and three times the
fundamental frequency and wave number,

x(1)
j = 1

2 B2e2i(ω0T0−μ j) + 1
2 C3e3i(ω0T0−μ j) + c.c. (11)

For the monatomic chain, the coefficients simplify to
scalars

B2 = ik2A2(sin 2μ − 2 sin μ)

4mω2
0 + 2k1 cos 2μ − 2k1

= b2A2, (12)

C3 = k3A3(3 cos 2μ − cos 3μ − 3 cos μ + 1)

18mω2
0 + 4k1 cos 3μ − 4k1

= c3A3. (13)
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The vector expressions for the diatomic chain involve mul-
tiple terms, but can be represented symbolically in a similar
manner; i.e., B2 = b2A2 and C3 = c3A3. Note that such waves
do not satisfy the zeroth-order dispersion relationship for the
lattice; however, they both possess the same phase velocity
as the zeroth-order solution in Eq. (6). Consequently, the
particular solutions summed across all orders compose an
invariant plane wave composed of specific magnitudes and
phases of higher-harmonic frequencies and wave numbers,
valid for all space and time. The inclusion of these very
specific higher-order particular solutions results in plane-wave
propagation with less spatiotemporal variation of its spectral
content. This “shape-preserving” property makes these invari-
ant waves similar to solitons except they are not spatially
localized solutions.

Figures 1(e) and 1(f) display the magnitude of the third-
harmonic solution coefficient |C3| as a function of the propa-
gation constant μ for the nonlinear monatomic and diatomic
lattices. As expected for these lattice systems, the solution
coefficients repeat periodically across the Brillouin zone. For
the diatomic lattice, there are propagation constants in which
the third-harmonic solution coefficient becomes unbounded.
At these frequencies, an internally resonant energy exchange
occurs, and the multiple scales analysis requires the inclusion
of two plane waves at the zeroth order to capture such energy
exchange, which has been the subject of recent work [39]. The
aspect we focus on herein is the wave numbers, μ = μnull, at
which the third-harmonic solution coefficient becomes zero.
By extension of the invariance phenomenon, the absence
of such harmonics leads to a waveform that the nonlinear
lattice admits for all space and time, and as such, this higher
harmonic can be expected to not develop during propagation.
This behavior is quite different from the conventionally stud-
ied growth of harmonics in nonlinear waves. Such a finding
has implications for the design of sensors, transducers, and
communications systems such that they exhibit linearlike
responses at high-amplitude operation. In applications such
as Microelectromechanical System (MEMS) resonators, for
example, one might increase input amplitude/power in an
attempt to improve the signal-to-noise ratio, but this is often
accompanied by nonlinear behavior and loss of information at
the sending frequency [40–43]. Operation at [μnull, ω(μnull )]
would avoid this compromise. Additionally, it may be pos-
sible to observe ballistic transport of heat-carrying phonons
at these special frequencies. From here forward, we restrict
our attention to cubic stiffness as quadratic stiffness does not
exhibit this phenomenon at propagating wave numbers (those
with nonzero group velocity).

As validation of this finding, we carried out direct numeri-
cal integration of the lattice equations of motion. Long chains
were simulated (e.g., 300 wavelengths for a given value of
μ) with viscous dampers whose coefficients increase towards
the edge of the structure to absorb reflections. As initial condi-
tions, Eq. (6) (and its corresponding velocity) were assigned to
all unit cells at a specific amplitude and frequency and wave-
number combination satisfying the zeroth-order dispersion
relationship. The spatial and temporal spectral content of
the lattice is then tracked throughout the simulation across
time and space. We compare in Fig. 2 the spatiotemporal
spectral evolution for two separate simulations of the diatomic

FIG. 2. Spatiotemporal evolution of the spectral content for
plane waves in the acoustic branch of the nonlinear diatomic lattice
measured in numerical simulations. For lattices given wave numbers
away from μnull, higher-harmonic amplitudes develop across space
(a) and time (b). By contrast, for lattices assigned plane waves
at μnull (predicted by multiple scales), nearly-zero higher-harmonic
amplitudes develop across space (c) and time (d). Amplitudes and
frequencies are normalized with respect to their values at the funda-
mental frequency.

lattice: in Figs. 2(a) and 2(b), the lattice is assigned a plane
wave away from [μnull, ω(μnull )]; in Figs. 2(c) and 2(d), the
lattice is assigned a plane wave at [μnull, ω(μnull )]. In the first
case, higher harmonics develop in the temporal and spatial
frequency content of the wave, as expected. However, in the
latter case, negligible higher-harmonic content develops. Note
that the temporal frequency content at approximately 2.67ω0

and 3.46ω0 corresponds to ω0(3μ) for the acoustic and optical
branches, respectively.

The procedure is formally repeated over several combi-
nations of initial amplitude and frequency, and the higher-
harmonic magnitudes are averaged over many unit cells [for
temporal fast Fourier transforms (FFTs)] and time steps (for
spatial FFTs). Figure 3 summarizes the results over a range
of signal amplitude α. For the monatomic lattice, the mea-
sured response of simulated waveforms at [μnull, ω(μnull )] in
Fig. 3(a) is vastly different than those at other frequencies:
the magnitudes of higher harmonics are nearly zero regardless
of the initial amplitude assigned to the plane wave. This
small production of harmonics aligns with the multiple scales
prediction of μnull as identified for the monatomic lattice in
Fig. 3(b). Since higher-order particular solutions are functions
of lower-order particular solutions, still higher-harmonic so-
lution coefficients produced by the cubic stiffness [such as
[5μ, 5ω0(μ)]] tend to also evaluate to zero at [μnull, ω(μnull )].

Additionally, we observe in the nonlinear diatomic lattice
in Figs. 3(c)–3(h) that higher-harmonic generation for a single
degree of freedom within each unit cell can be blocked. Mul-

tiple scales identify frequencies at which â(1)
3 = [â(1)

3,a
0 ] or â(1)

3 =
[

0
â(1)

3,b
]. Thus, there are multiple layers of tunability offered

by the diatomic model, as μnull differs based on the degree
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FIG. 3. Third-harmonic generation relative to amplitude α at the fundamental frequency (log-scale) captured by numerical simulations of
the nonlinear monatomic lattice (a) compared to the multiple scales predictions of the third-harmonic solution coefficient as a function of the
propagation constant (b). Similarly, the third-harmonic production measured in numerical simulations of the diatomic chain is presented for
initial conditions at the acoustic branch [(c),(e)] and optical branch [(d),(f)] compared to the perturbation predictions at the acoustic branch (g)
and optical branch (h). In (c) and (d) simulations, the light mass is tracked whereas in (e) and (f), the heavy mass is tracked.

of freedom in addition to whether the acoustical or optical
branch is excited. This trend is confirmed by the numerical
simulations in Figs. 3(c)–3(f), agreeing with perturbation
predictions of μnull in Figs. 3(g) and 3(h).

A noteworthy feature of μnull values is that they are in-
dependent of the wave’s amplitude α. However, due to the
amplitude-dependent band structure shifting from the cubic
nonlinearity, the temporal frequency ω(μnull ) grows/shrinks as
a function of amplitude, thereby enabling a means to tune the
frequency at which the near-zero higher-harmonic generation
occurs. Using the closed-form expressions for the amplitude-
dependent band structures summarized in Eq. (9), Fig. 4
displays the relationship between ω(μnull ), the frequency of
propagation relative to the first cut-off frequency, and �3 ≡
k3
k1

|A|2, the dimensionless strength of the nonlinearity in the
system. Because these dispersion corrections apply for weakly
nonlinear chains, we restrict �3 to |�3| � 0.1. These plots
provide a design strategy for achieving a desired frequency at
which higher harmonics should not appear.

Physical insight into the cause of near-zero higher-
harmonic generation is difficult to assess. We can extract
from Eq. (13) that μnull = 2π

3 for the monatomic lattice. Thus,
ω0(3μnull ) = 0, yielding a zero phase velocity and indeter-
minate group velocity, which may explain the absence of
the third spatial harmonic, 3μ, for the monatomic chain but
cannot justify the absence of the third temporal harmonic,
3ω0(μnull ). For the diatomic chain, ω0(3μnull ) �= 0. More rich

behavior may exist for μnull in 2D periodic structures as
there may be directions in which higher-harmonic generation
ceases. Note that the authors recently discovered direction-

FIG. 4. Analytical, amplitude-dependent dispersion shifting in
the monatomic (a) and diatomic (c) lattices. The analytical predic-
tions of dispersion shifting at μnull are evaluated for the monatomic
(b) and diatomic (d) lattices to illustrate the tunability of the negligi-
ble higher-harmonic generation.
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dependent stability and invariance in 2D symmetric shear
lattices [33].

In summary, we have found that nonlinear lattices can
admit plane waves at specific frequencies which avoid higher
harmonics. Such behavior is a dramatic departure from the
well-studied phenomenon of higher-harmonic generation of
waves in nonlinear media. While the wave number at which
this phenomena occurs remains fixed, the frequency varies
with wave amplitude as predicted by a multiple scales anal-
ysis. Furthermore, lattices with many degrees of freedom per

unit cell avoid higher harmonics at different wavelengths,
which depend on the degree of freedom considered in each
unit cell. This finding may pave the way for inducing linear
behavior in nonlinear devices operating at high amplitudes, or
achieving near-ballistic thermal transport of phonons at select
frequencies.

The authors would like to thank the National Science Foun-
dation for support of this research under Grant No. CMMI
1332862.
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