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Charge regulation radically modifies electrostatics in membrane stacks
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Motivated by biological membrane-containing organelles in plants and photosynthetic bacteria, we study
charge regulation in a model membrane stack. Considering (de)protonation as the simplest mechanism of charge
equilibration between the membranes and with the bathing environment, we uncover a symmetry-broken charge
state in the stack with a quasiperiodic effective charge sequence. In the case of a monovalent bathing salt solution
our model predicts complex, inhomogeneous charge equilibria depending on the strength of the (de)protonation
reaction, salt concentration, and membrane size. Our results shed light on the basic reorganization mechanism
of thylakoid membrane stacks.
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Introduction. The charge regulation mechanism, described
originally in the 1920s [1] and later developed by Kirkwood
and Schumaker [2], Marcus [3], and Lifson [4] has become a
topic of considerable research interest in recent years [5–9].
Charge regulation refers to the situation in which the local
charge on a solvated surface responds to changes in the
environment, such as local pH, dielectric inhomogeneities,
salt concentrations, etc. The presence of dissociable groups,
in particular on biological surfaces, then allows the surface
charge to adapt to local and global solution conditions. As
a consequence, soft-matter electrostatics, often formulated
within the Poisson-Boltzmann (PB) paradigm, needs to be im-
plemented with the self-consistent boundary condition [10],
superseding the assumptions of constant charge vs constant
potential dichotomy [11]. However, recent work uncovered
charge regulation phenomena that cannot be rationalized even
within the modified boundary conditions framework [12]. In
fact, the interaction of two planar, chargeable surfaces in a
bathing electrolyte was shown to be much richer than what
could be predicted based on the constant charge vs constant
potential phenomenology: The charge symmetry itself can
become broken and the interaction turning attractive instead of
being, as expected otherwise, repulsive. This also ties in with
recent proposals that the attractive non-DLVO (Derjaguin-
Landau-Verwey-Overbeek) forces between colloidal surfaces,
exhibiting adsorption and dissociation equilibria are unrelated
to ion-ion correlations but depend rather directly on the charge
regulation mechanisms [13].

Reconstructed lamellae and bilayer systems with fixed
charges are well understood both experimentally and theoret-
ically [14–16]. Biological membrane stacks, however, gener-
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ally have a much more complex electrostatics. We take thy-
lakoid membranes in plants and photosynthetic bacteria as ex-
amples. They typically consist of ≈10 bilayers, stacked on top
of each other to form grana, the light-harvesting organelles.
The organization of these lamellae is obviously highly het-
erogeneous, since they are the carriers of the photosynthetic
proteins. Thylakoid stacking has been shown long ago to be
driven by electrostatics [17–19], and up to only recently, the
classic PB paradigm has been implemented and extended to
quantify experiments on thylakoid stacking [20]. However,
the charges at the thylakoid membranes are obviously not
constant, but depend on the equilibration through two rele-
vant processes: (de)protonation and (de)phosphorylation, fre-
quently leading to the observation of asymmetrically charged
membranes [21,22]. Given that the buildup of grana by thy-
lakoids is dynamic and light dependent, and very little is
still known about the regulation of this process [23–25], a
better understanding of the effect of charge regulation on
membrane stacks is generally called for. Physical theory can
play a crucial role, as we show by elucidating the effect
played by charge regulation in a membrane stack, in which
the embedding environment is taken into account.

Model and formalism. We consider an array of N charge-
regulated, equally spaced, parallel membranes of negligi-
ble thickness [26] immersed in a solvent of permittivity
ε (=εrε0 with the relative permittivity εr and the permittivity
of vacuum ε0) as depicted in Fig. 1. In a three-dimensional
Cartesian coordinate system the first surface is located at
z = 0 and the N th surface at z = L, implying a separa-
tion �L = L/(N − 1) between consecutive surfaces. As is
the case for proteins or membranes, the surfaces consist of
fixed negative charges with surface number density M and
neutral sites with surface number density θM = 1/a2 where
(de)protonation can occur. Here we consider the case θ = 2
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FIG. 1. (a) Sketch of our system consisting of an array of N
charge-regulated, equally spaced, parallel surfaces immersed in a
solvent of permittivity ε. The case depicted here corresponds to
N = 5. The surfaces are placed perpendicularly to the z axis with the
first and the last ones being situated at z = 0 and z = L, respectively.
As shown under magnification, each surface contains fixed negative
charges (red circles) and neutral sites (white circles). The surfaces
are charge regulated via (de)protonation (blue circles) of these sites.
The green circles indicate the mobile anions in the fluid. (b) Under
certain circumstances the surfaces can become alternatingly posi-
tively (σ ∗

j > 0) and negatively (σ ∗
j < 0) charged; the corresponding

electrostatic potential profile φ(z) is shown by the blue line.

for which the surface charge density in units of e/a2 on the
jth surface can vary in the interval σ ∗

j ∈ [− 1
2 , 1

2 ] (see [12]).
The grand potential per unit surface area in the units of

kBT = 1/β corresponding to our system is then given by [12]
(see also [27,28])

β�[σ ∗] = − ε

βe2

∫ ∞

−∞
dz

(
κ2{cosh[φ(z)] − 1} + 1

2
[φ′(z)]2

)

+ 1

a2

N∑
j=1

[
σ ∗

j φ j − αη j − χη2
j

2

+ η j ln η j + (1 − η j ) ln(1 − η j )

]
, (1)

where φ is the dimensionless electrostatic potential satisfying
the PB equation φ′′ = κ2 sinh φ (see [29]) with the inverse
Debye length κ and the Neumann boundary conditions at the
surfaces set by σ ∗ = (σ ∗

1 , . . . , σ ∗
N ). The electrostatic potential

and the fraction of sites occupied by protons at the jth surface
are given by φ j and η j , respectively, where the latter obeys
the relation η j = σ ∗

j + 1/2. The terms containing φ in Eq. (1)

FIG. 2. Variation of the quantity σ ∗
mca [defined in Eq. (2)] with the

parameters α and χ for N = 2 charge-regulated interacting surfaces
immersed in a solvent. The surfaces are considered to be fixed in
space with a dimensionless separation κ�L ≈ 1.

correspond to the electrostatic field energy and the logarithmic
terms are an entropic contribution. As in Ref. [12], the term
−αη j describes the nonelectrostatic adsorption free energy
penalty per ion and the term − 1

2χη2
j , proportional to the

Flory-Huggins parameter χ , is the change in the nonelectro-
static interaction between adsorbed ions on neighboring sites
upon (de)protonation. Nonelectrostatic interaction between
adsorbed ions may arise from the formation of a complex
hydrogen bonded network of water molecules or from forces
of quantum-chemical origin such as van der Waals and/or
chemical bonding interactions, that could be of repulsive
as well as attractive nature. The equilibrium values of σ ∗

j
minimize the grand potential β�[σ ∗] in Eq. (1) [30].

Results and discussion. The mean charge asymmetry

σ ∗
mca = 1

N − 1

N−1∑
j=1

|σ ∗
j − σ ∗

j+1| ∈ [0, 1] (2)

allows one to distinguish between equally (σ ∗
mca = 0) and un-

equally (σ ∗
mca > 0) charged neighboring surfaces of the stack.

The maximal value σ ∗
mca = 1 corresponds to a configuration

with all surfaces being completely charged (|σ ∗
j | = 1

2 ) with
alternating positive and negative signs. In the following, we
discuss the behavior of σ ∗

mca for a varying number of surfaces
in the stack as well as for varying strengths of the parameters
α and χ . Unless stated otherwise, we consider surfaces with
a = 1 nm immersed in an aqueous electrolyte solution (εr ≈
80) at T = 300 K. Please note that for these values of εr

and T , an ionic strength of 10 mM results in a Debye length
κ−1 ≈ 3 nm.

First we consider the simplest case of N = 2 surfaces,
which differs from the situation considered in Ref. [12],
where the regions outside the stack were not included. Their
presence may influence the charge regulation at the surfaces
and in turn affect the charge asymmetry observed in Ref. [12],
which results from a tradeoff among the energy costs due to
ion-surface, in-plane ion-ion and surface-surface interactions.
However, as one can infer from the colored regions in Fig. 2,
depending upon the values of the parameters α and χ , the
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FIG. 3. Variation of the quantity σ ∗
mca [defined in Eq. (2)] with

the interaction parameters α and χ for stacks with (a) N = 3 and
(b) N = 11 charge-regulated interacting surfaces immersed in a
solvent. The surfaces in each case are considered to be fixed in space
with a dimensionless separation κ�L ≈ 1 between two consecutive
surfaces. The yellow (light) and the black bullets in the lower panel
represent points considered in Figs. 5 and 6.

surfaces can still be unequally charged. For α < α0 (≈−11.4)
a dark-blue region appears around the line χ = −2α with
σ ∗

mca ≈ 1, implying that the surfaces are oppositely charged
with |σ ∗

1 | ≈ |σ ∗
2 | ≈ 1

2 . For α > α0, two very thin tails with
lower asymmetry between σ ∗

1 and σ ∗
2 appear on either side

of the line χ = −2α. Qualitatively, these results are in perfect
agreement with Fig. 2(b) of Ref. [12]. The outside regions in-
fluence the asymmetric charge regulation only quantitatively,
e.g., by giving rise to a thinning of the two tails in Fig. 2 as
compared to Fig. 2(b) of Ref. [12].

Now we consider stacks with more than two surfaces.
As pairwise electrostatic attractions between consecutive sur-
faces promote a lowering of the grand potential of the system,
one would naturally expect the occurrence of alternatingly
positively and negatively charged surfaces within the stack,
similar to the case of two surfaces. Consequently, the lo-
cal electrostatic potential would exhibit “oscillations” [see
Fig. 1(b) for an example with N = 5 surfaces] that would
modify the value of the Donnan potential [31], making it
effectively vanish. Compared to the case of N = 2 in Fig. 2,
the colored regions in the α-χ plane are broadened for N > 2
(see Figs. 3 and 4).

FIG. 4. Variation of the quantity σ ∗
mca [defined in Eq. (2)] with

the interaction parameters α and χ for a stack of N = 4 charge-
regulated interacting surfaces immersed in a solvent. The surfaces
are considered to be fixed in space with a dimensionless separation
κ�L ≈ 1 between two consecutive surfaces.

Figure 3 shows the mean charge asymmetry σ ∗
mca for odd

numbers N of surfaces in the stack. Upon increasing N � 3,
the dark-blue region with the highest asymmetry remains
almost unaffected but the tails shrink. Inside the dark-blue
region close to the line χ = −2α, the entropic terms in
Eq. (1) almost vanish and the terms involving α and χ nearly
cancel each other such that the electrostatic attraction between
consecutive surfaces gives rise to the dominant contribution
to the grand potential. The key observation is that this elec-
trostatic contribution is invariant upon exchanging all signs
of the surface charges. By virtue of a slight preference for
filled or empty sites for χ � −2α or χ � −2α, respectively,
one observes crossovers between different charging patterns
upon changing χ . For example, for N = 3 [see Fig. 3(a)],
the charge distribution changes from (−,+,−) with a net
negative charge for χ < −2α to (+,−,+) with a net positive
charge for χ > −2α. Here “+” and “−” represent charge
densities σ ∗

j of approximately + 1
2 and − 1

2 , respectively. As
α is increased beyond the dark-blue region, two more regions
(tails) with lower charge asymmetry are obtained. For N = 3,
in the upper (bluish) part of the lower tail (below the line
χ = −2α) in Fig. 3(a), the charge distribution is (0+,−, 0+),
where 0+ represents a slightly positive charge density. Along
the lower tail, the surfaces with charge densities 0+ become
more negatively charged. However, their charge densities
differ from the middle surface within the entire greenish
region. Exactly the same phenomenon is observed within the
upper tail albeit with 0+ and − being replaced by 0− and
+, respectively. Moreover, similar trends are observed for
N = 11 [see Fig. 3(b)] as well.

Next, we consider the case of even numbers N of surfaces
in the stack (see Fig. 4). A significant difference compared to
odd N is observed regarding the charge distribution among
the surfaces within the dark-blue region close to the line
χ = −2α. For even N and alternatingly charged surfaces the
total charge of all the surfaces is always zero. Therefore, with
increasing χ , a mere flipping of signs of the charges on each
surface is not favorable as it does not allow adsorption of
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FIG. 5. Binding energy per cross-sectional area of a stack of
N = 11 surfaces as a function of the dimensionless stack width κL
for three different combinations of the interaction parameters α and
χ . The blue solid, red dotted, and green dashed lines correspond
to points in the dark-blue region, the lower tail, and the upper tail
of Fig. 3(b), respectively. The binding energy increases within the
entire considered range of κL for the blue curve as the electrostatic
interaction is strongest there. For the other cases, the electrostatic in-
teraction is weaker such that tiny barriers (marked by the large dots)
occur. The dash-dotted straight line depicts a slope of 2.66kBT/nm2,
which corresponds to the asymptotic disjoining pressure at small
stack widths κL � 4 � N − 1 = 10 and κ ≈ 0.1027 nm−1.

more protons onto the surfaces. Consequently, a competition
between the electrostatic interaction energy and the contri-
bution of the term involving χ in Eq. (1) takes place which
leads to a very different reorganization of charges among the
surfaces. For example, within the blue region of Fig. 4, the
distribution of charges inside the stack of N = 4 surfaces
changes from (−,+,−,−) for χ < −2α via (−,+,−,+)
for χ ≈ −2α to (+,+,−,+) for χ > −2α. Although in the
configurations (−,+,−,−) and (+,+,−,+) one pair of
surfaces repels each other electrostatically, they are favorable
due to the ion-ion interaction at each surface. Inside the
lower tail in Fig. 4 the charge distribution is of the type
(0+,−, 0+, 0−) or (0+,−, 0−, 0−) in the upper part whereas
it is of the type (0−,−,−, 0−) in the lower part. For the
upper tail, one just needs to invert the signs. Exactly the
same phenomenon occurs for N = 10 (see Fig. S1 of [30]).
So far we have considered the case κ�L ≈ 1 only. With
decreasing separation between the surfaces, the electrostatic
pair interaction becomes stronger and the dark-blue region
spreads to dominate over the tails (see Fig. S1 of [30]).

After calculating the equilibrium surface charge densities
σ ∗

j for fixed parameters α, χ , and N as functions of the
stack width L and using Eq. (1), one obtains the grand
potential per unit cross-sectional area �(L). In the limit
L → ∞, the electrostatic interaction between the surfaces
vanishes. The binding energy of the stack �(L) − �(∞) is
shown in Fig. 5 as a function of the dimensionless stack
width κL for N = 11 and three different combinations of the
parameters α and χ . In all three cases, the binding energy
�(L) − �(∞) increases initially, implying that the disjoin-
ing pressure −∂�(L)/∂L within the stack is attractive for
small widths L. For high mean charge asymmetry σ ∗

mca ≈ 1
and surface separations �L = L/(N − 1) � 1/κ , no signif-

α = −7.9, χ = 18.1
α = −10.4, χ = 18.4
α = −17.0, χ = 34.0

κL
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50403020100

1
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FIG. 6. Mean charge asymmetry σ ∗
mca for a stack of N = 11

surfaces as a function of the dimensionless stack width κL for the
three combinations of the interaction parameters α and χ considered
in Fig. 5. The blue curve corresponds to a point (marked with bullet)
on the χ = −2α line in Fig. 3(b) where extreme charge asymmetry
leading to σ ∗

mca ≈ 1 prevails for the entire range of separations shown
here. The other two lines correspond to points which, for very short
separations, lie within the dark-blue region, then fall within the
light-blue regions of the tails before making a transition to the green
or white regions with likely charged surfaces.

icant screening of the electric field by the ions takes place
such that the system can be viewed as a series of N − 1
capacitors each charged with approximately half of the max-
imal surface charge density |σ ∗

j |/2 ≈ 1/4. From the electric
field energy of such a setup one infers the disjoining pres-
sure −∂�(L)/∂L 	 −0.273kBT/nm3 = −11.3 bars for L �
(N − 1)/κ [30]. Note that this value, which corresponds to the
slope depicted in Fig. 5 in the range κL � 4 � N − 1 = 10,
is independent of the number of surfaces N and of the parame-
ters α and χ , as long as high mean charge asymmetry prevails.
For the dashed and the dotted curves, which correspond to
points within the two tails in Fig. 3(b), the binding energy
exhibits a tiny barrier, i.e., the disjoining pressure becomes
repulsive for sufficiently thick stacks. The disjoining pressure
derived from the solid line, corresponding to parameters α

and χ within the dark-blue region in Fig. 3(b), is attractive
throughout the entire range of κL values shown, as the elec-
trostatic interaction is the strongest here. The corresponding
changes in the charge patterns are confirmed by the variation
of the mean charge asymmetry σ ∗

mca shown in Fig. 6. Whereas
σ ∗

mca remains constant at the highest value (≈1) throughout the
entire range of κL for the blue solid curve, it decreases with
increasing κL for the two points in the tails. With increasing
separation between the surfaces, the colored regions with
asymmetric charge distributions shrink. Consequently, these
points first fall within the dark-blue region with highest charge
asymmetry, then in the sky-blue region with lower asymme-
try, before making a transition to the green tails indicating
unequally but likely charged surfaces or to the white regions
with equally charged surfaces.

Finally we discuss the relevance of our results in view
of two systems, namely, the plant thylakoid membrane and
photosynthetic membranes of the family of cyanobacteria,
in the same spirit as has been done for the standard PB
case (see, e.g., [20]). Both systems show stacklike structures
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in their light-harvesting organelles. For thylakoids, typically
≈10 disks of diameter in the range 300–600 nm are stacked
together with interdisk separation �L ≈ 3.5 nm [20,23,24].
The ionic strength of the embedding medium shows two dif-
ferent ranges for monovalent salts [20]: 2–20 mM [22,32,33]
and 100–200 mM [34]. Up to a salinity of ≈10 mM the
dimensionless stack width is given by κL � 10, for which
the disjoining pressure is attractive for all asymmetrically
charged configurations (see Fig. 5). For higher salinities, κL is
beyond the barrier of the dashed and the dotted lines in Fig. 5.
However, even for the highest salinity of 200 mM with κL ≈
50 the disjoining pressure is still attractive within the dark-
blue region. It has been verified that the charge-regulation-
induced attraction described above dominates quantitatively
over the attractive van der Waals (vdW) force, even for the
recently suggested high value of the Hamaker constant A ≈
4.8 × 10−20 J [20], an order of magnitude higher than the
standard estimates [35]. Therefore, when asymmetric charg-
ing of the stack occurs, the disjoining pressure is dominated by
the electrostatic contribution which, at very short separations
(�2 nm), encounters the repulsive hydration force [36]. Simi-
lar numbers are found for photosynthetic members of the fam-
ily of cyanobacteria; typical separation distances lie within
10–120 nm [37,38] and the concentration of monovalent ions
falls in the range of 10–100 mM [39].

Conclusions. To conclude, we have studied the electro-
static interaction of charge-regulating membranes forming a
stack composed of N membranes, embedded in a solution
of monovalent salt. Depending on the system parameters,
specifically the number of membranes N in the stack, the
charge regulation mechanism leads to a complex distribu-

tion of attraction and repulsion forces between membranes
in the stack. When symmetry broken charge state occurs
in the stack, the resulting attraction can easily dominate over
the vdW force between the membrane surfaces. Currently we
are extending our study to the model of membranes with finite
thickness.

While obtained within a simple model for the charge
regulation mechanism, our results have an impact on models
of biological membranes, in particular of thylakoid surfaces
in grana, the organelles of photosynthesis in plants. The for-
mation of these membrane stacks has been largely discussed
in terms of simple electrostatics models based on the standard
Poisson-Boltzmann equation for monovalent or divalent salts,
in which the charges on the membrane surfaces have been
related to the charge state of membrane-embedded protein
complexes, notably their phosphorylation status (see, e.g.,
[20]). Our results confirm the relevance of electrostatics on
the stability of membrane stacks; however, they show that
a simple balancing of the resulting repulsive forces against
attractive vdW forces between two surfaces is generally
not sufficient for an understanding of thylakoid stacks. The
changes of the charge state on the membranes in the stacks
affect the overall charge distribution in a complex manner
which may also have a strong influence on the dynamics of
thylakoid stack formation, a long-standing open problem in
plant science [23,25], and for photosynthetic cyanobacteria
[37]. Changes between the charge load on the membranes,
which occur naturally as a function of illumination, are known
to affect the packing of the stacks [22]. Hence, the formation
of asymmetrically charged membranes is expected to play a
major role in the formation of stacks.
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